首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
Abstract

In this study, the equations of the three-dimensional convective motion of an infinite Prandtl number fluid are solved in spherical geometry, for Rayleigh numbers up to 15 times the critical number. An iterative method is used to find stationary solutions. The spherical parts of the operators are treated using a Galerkin collocation method while the radial and time dependences are expressed using finite difference methods. A systematic search for stationary solutions has led to eight different stream patterns for a low Rayleigh number (1.28 times the critical number). They can be classified as:

I) Axisymmetrical solutions, analogous to rolls in plane geometry.

II) Solutions which have several ascending plumes within a large area of ascending current, and also several descending plumes within an area of descending current. This type of flow is analogous to bimodal circulation in plane geometry.

III) Solutions characterized by isolated ascending (or descending) plumes separated from each other by a closed polyhedral network of descending (or ascending) currents. This type of circulation is called ‘polygonal’ in analogy with hexagonal circulation in plane geometry.

The behaviour of each of the eight solutions has been studied by increasing the Rayleigh number up to 15 times the critical number. A trend towards transitions from type (I) and type (II) solutions to type (III) solutions is observed. It is inferred that only the “polygonal” solutions are stable for a Rayleigh number greater than 15 times the critical number.  相似文献   

2.
The onset of Boussinesq convection in a horizontal layer of an electrically conducting incompressible fluid is considered. The layer rotating about a vertical axis is heated from below; a vertical magnetic field is imposed. Rigid electrically insulating boundaries are assumed. The loss of stability of the trivial steady state, which occurs as the Rayleigh numbers increase, can be accompanied by the development of a monotonic or an oscillatory instability, depending on the parameter values of the problem at hand (the Taylor number, the Chandrasekhar number, the kinematic and the magnetic Prandtl numbers). When the instability is monotonic, the emerging convective rolls themselves are also unstable if the Taylor number is sufficiently large (the so-called Küppers-Lortz instability takes place). In the present work it is studied how the critical value of the Rayleigh number, the type of the trivial steady state instability, and the critical value of the Taylor number for the Küppers-Lortz instability depend on the kinematic and the magnetic Prandtl numbers. We consider the values of the Prandtl number not exceeding 1, which is typical for the outer core of the Earth.  相似文献   

3.
Numerical experiments have been carried out on two-dimensional thermal convection, in a Boussinesq fluid with infinite Prandtl number, at high Rayleigh numbers. With stress free boundary conditions and fixed heat flux on upper and lower boundaries, convection cells develop with aspect ratios (width/depth) λ? 5, if heat is supplied either entirely from within or entirely from below the fluid layer. The preferred aspect ratio is affected by the lateral boundary conditions. If the temperature, rather than the heat flux, is fixed on the upper boundary the cells haveλ ≈ 1. At Rayleigh numbers of 2.4 × 105 and greater, small sinking sheets are superimposed on the large aspect ratio cells, though they do not disrupt the circulation. Similar two-scale flows have been proposed for convection in the earth's mantle. The existence of two scales of flow in two-dimensional numerical experiments when the viscosity is constant will allow a variety of geophysically important effects to be investigated.  相似文献   

4.
Abstract

As an extension of a model by Busse (1983a), a two-layer model of thermal convection in the self-gravitating rotating spherical fluid is considered. The upper layer with arbitrary vertical distributions of density and potential temperature representing the atmospheric layer of major planets is imposed on the spherical Boussinesq fluid. The Prandtl number P and the ratio of the mass of the upper layer to that of the lower layer are used as small expansion parameters. The modification of the critical Rayleigh number by imposing the upper layer are clearly separated into two parts, proportional to (1) the mass of the upper layer and to (2) an integral representing a measure of convective instability of the upper layer. Some implications for atmospheric dynamics of the major planets are also presented.  相似文献   

5.
Abstract

Finite amplitude solutions for convection in a rotating spherical fluid shell with a radius ratio of η=0.4 are obtained numerically by the Galerkin method. The case of the azimuthal wavenumber m=2 is emphasized, but solutions with m=4 are also considered. The pronounced distinction between different modes at low Prandtl numbers found in a preceding linear analysis (Zhang and Busse, 1987) is also found with respect to nonlinear properties. Only the positive-ω-mode exhibits subcritical finite amplitude convection. The stability of the stationary drifting solutions with respect to hydrodynamic disturbances is analyzed and regions of stability are presented. A major part of the paper is concerned with the growth of magnetic disturbances. The critical magnetic Prandtl number for the onset of dynamo action has been determined as function of the Rayleigh and Taylor numbers for the Prandtl numbers P=0.1 and P=1.0. Stationary and oscillatory dynamos with both, dipolar and quadrupolar, symmetries are close competitors in the parameter space of the problem.  相似文献   

6.
Abstract

Small amplitude two-dimensional Boussinesq convection in a plane layer with stress-free boundaries rotating uniformly about the vertical is studied. A horizontally unbounded layer is modelled by periodic boundary conditions. When the centrifugal force is balanced by an appropriate pressure gradient the resulting equations are translation invariant, and overstable convection can take the form of travelling waves. In the Prandtl number regime 0.53 < [sgrave] < 0.68 such solutions are preferred over the more usual standing waves. For [sgrave] < 0.53, travelling waves are stable provided the Taylor number is sufficiently large.  相似文献   

7.
Abstract

The modal expansion procedure has been used to analyze penetrative convection that arises when a thin unstable layer is embedded between two stable regions. The Boussinesq approximation is applied in which the effect of compressibility and stratification are neglected. Various calculations have been made, with one and two modes, for Rayleigh numbers ranging from the critical value to more than 105 times critical. The effect of decreasing the Prandtl number has also been investigated.

It is found that in the nonlinear regime, the convective motions penetrate substantially into the stable regions. The flux of kinetic energy plays a crucial role in such penetration, and its existence puts some requirements on the motions: in the single-mode case, they need to be three-dimensional. The extent of penetration amounts to about half of the thickness of the unstable layer on each side of it when the degree of instability and that of stability are comparable in the two domains; it increases as the stability of the outer region is lowered. The penetration depth appears to be independent of all other parameters defining the problem.  相似文献   

8.
Investigation of magnetic field generation by convective flows is carried out for three values of kinematic Prandtl number: P = 0.3, 1 and 6.8. We consider Rayleigh–Bénard convection in Boussinesq approximation assuming stress-free boundary conditions on horizontal boundaries and periodicity with the same period in the x and y directions. Convective attractors are modelled for increasing Rayleigh numbers for each value of the kinematic Prandtl number. Linear and non-linear dynamo action of these attractors is studied for magnetic Prandtl numbers P m ≤ 100. Flows, which can act as magnetic dynamos, have been found for all the three considered values of P, if the Rayleigh number R is large enough. The minimal R, for which of magnetic field generation occurs, increases with P. The minimum (over R) of critical Pm for magnetic field generation in the kinematic regime is admitted for P = 0.3. Thus, our study indicates that smaller values of P are beneficial for magnetic field generation.  相似文献   

9.
Three-dimensional (3-D) numerical simulations of single turbulent thermal plumes in the Boussinesq approximation are used to understand more deeply the interaction of a plume with itself and its environment. In order to do so, we varied the Rayleigh and Prandtl numbers from Ra?~?105 to Ra?~?108 and from Pr?~?0.025 to Pr?~?70. We found that thermal dissipation takes place mostly on the border of the plume. Moreover, the rate of energy dissipation per unit mass ε T has a critical point around Pr?~?0.7. The reason is that at Pr greater than ~0.7, buoyancy dominates inertia and thermal advection dominates wave formation whereas this trend is reversed at Pr less than ~0.7. We also found that for large enough Prandtl number (Pr?~?70), the velocity field is mostly poloidal although this result was known for Rayleigh–Bénard convection (see Schmalzl et al. [On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 2004, 67, 390--396]). On the other hand, at small Prandtl numbers, the plume has a large helicity at large scale and a non-negligible toroidal part. Finally, as observed recently in details in weakly compressible turbulent thermal plume at Pr?=?0.7 (see Plourde et al. [Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction. J. Fluid Mech. 2008, 604, 99--123]), we also noticed a two-time cycle in which there is entrainment of some of the external fluid to the plume, this process being most pronounced at the base of the plume. We explain this as a consequence of calculated Richardson number being unity at Pr?=?0.7 when buoyancy balance inertia.  相似文献   

10.

The effect of the Prandtl number on convection in a planar three-dimensional geometry is investigated in this study. We have employed a numerical scheme to integrate the governing equations. Differently from previous studies we have chosen stress-free boundaries. Experiments have been performed at a Rayleigh number of Ra = 10 6 for Prandtl numbers (Pr) ranging from 0.025 to 100. We have further conducted one experiment in the limiting case of infinite Prandtl number. Despite the differences in the geometry and the boundary conditions, as compared to other studies, we find a similar transition in the dynamics of the flow when the Prandtl number is increased. While the velocity and the temperature structure show diffusive character at low Pr, sharp thermal boundary layers form at high Pr. The heat transport efficiency increases with Pr until a transition value is reached, from there on Nu behaves almost asymptotically. The transition can not be caused by a change in hierarchies between velocity and thermal boundary layers, as suggested in other studies. Due to the stress-free boundaries, a velocity boundary layer does not exist. We observe that the toroidal part of the flow is strong at low Pr and looses its strength with increasing Pr, thus it is likely to be responsible for the transition. In a further chapter we demonstrate that due to the neglect of the toroidal part in two-dimensional calculations at low Pr results are obtained which are misleading, even in a qualitative sense. Infinite Pr results from 2D calculations closely resemble the dynamics of fully 3D flows.  相似文献   

11.
The paper presents results obtained in experiments on a horizontal layer heated from below in its central part and cooled from above; the layer models the oceanic asthenosphere. Flow velocity and temperature profiles are measured and the flow structure under boundary layer conditions is determined (at Rayleigh numbers Ra > 5 × 105). The flow in the core of a plane horizontal layer heated laterally and cooled from above develops under conditions of a constant temperature gradient averaged over the layer thickness. The flow core is modeled by a horizontal layer with a moving upper boundary and with adiabatic bounding surfaces under conditions of a constant horizontal gradient of temperature. Exact solutions of free convection equations are found for this model in the Boussinesq approximation. Model results are compared with experimental data. Temperature and flow velocity ranges are determined for the boundary layer regime. Based on the experimental flow velocity profiles, an expression is found for the flow velocity profile in a horizontal layer with a mobile upper boundary heated laterally and cooled from above. Free convection velocity profiles are obtained for the asthenosphere beneath a mid-ocean ridge (MOR) with a mobile lithosphere. An expression is obtained for the tangential stress at the top of the asthenosphere beneath an MOR and the total friction force produced by the asthenospheric flow at the asthenosphere-lithosphere boundary is determined.  相似文献   

12.
Abstract

We describe nonlinear time-dependent numerical simulations of whole mantle convection for a Newtonian, infinite Prandtl number, anelastic fluid in a three-dimensional spherical shell for conditions that approximate the Earth's mantle. Each dependent variable is expanded in a series of 4,096 spherical harmonics to resolve its horizontal structure and in 61 Chebyshev polynomials to resolve its radial structure. A semiimplicit time-integration scheme is used with a spectral transform method. In grid space there are 61 unequally-spaced Chebyshev radial levels, 96 Legendre colatitudinal levels, and 192 Fourier longitudinal levels. For this preliminary study we consider four scenarios, all having the same radially-dependent reference state and no internal heating. They differ by their radially-dependent linear viscous and thermal diffusivities and by the specified temperatures on their isothermal, impermeable, stress-free boundaries. We have found that the structure of convection changes dramatically as the Rayleigh number increases from 105 to 106 to 107. The differences also depend on how the Rayleigh number is increased. That is, increasing the superadiabatic temperature drop, δT, across the mantle produces a greater effect than decreasing the diffusivities. The simulation with a Rayleigh number of 107 is approximately 10,000 times critical, close to estimates of that for the Earth's mantle. However, although the velocity structure for this highest Rayleigh number scenario may be adequately resolved, its thermodynamic structure requires greater horizontal resolution. The velocity and thermodynamic structures of the scenarios at Rayleigh numbers of 105 and 106 appear to be adequately resolved. The 105 Rayleigh number solution has a small number of broad regions of warm upflow embedded in a network of narrow cold downflow regions; whereas, the higher Rayleigh number solutions (with large δT) have a large number of small hot upflow plumes embedded in a broad weak background of downflow. In addition, as would be expected, these higher Rayleigh number solutions have thinner thermal boundary layers and larger convective velocities, temperatures perturbations, and heat fluxes. These differences emphasize the importance of developing even more realistic models at realistic Rayleigh numbers if one wishes to investigate by numerical simulation the type of convection that occurs in the Earth's mantle.  相似文献   

13.
14.
Abstract

A study has been made of a basic state of axisymmetric flow, at large rotational Reynolds numbers, in a double-diffusive stratified fluid contained in a vertically-mounted, differentially-rotating cylindrical cavity. The aim is to describe the qualitative characteristics of the flow of a fluid, the density of which is stratified by two diffusive effects, i.e., temperature and salinity gradients. Attention is confined to situations in which the temperature and salinity gradients make opposing contributions to the overall density profile, the undisturbed stratification being gravitationally stable. Finite difference numerical solutions of the governing Navier-Stokes equations have been obtained using the Boussinesq approximation. The results are presented in a way that illustrates the explicit effects of double-diffusivity when the cavity aspect ratio, height/radius, is O(1). The principal non-dimensional parameters characterizing the flow field are identified. In the interior core, the primary dynamic balance is between the horizontal density gradient and the vertical shear of the prevailing azimuthal velocity. The effective stratification is seen to decrease as the double-diffusivity increases, even if the overall stratification parameter, St, is held constant. The solute field contains a very thin boundary layer structure at large Lewis numbers. The effective stratification increases with the Prandtl number. Results have been derived for extreme values of the cavity aspect ratio. For small cavity aspect ratios, the dominant dynamic ingredients are viscous diffusion and rotation. For large aspect ratios, the bulk of the flow field is determined by the rotating sidewall. In this case, the direct influence of the double-diffusivity is minor.  相似文献   

15.
Convection in a Boussinesq fluid in an annular channel rotating about a vertical axis with lateral rigid sidewalls, stress-free top and bottom, uniformly heated from below is investigated. The sidewalls are assumed to be either perfectly insulating or conducting. Three different types of convection are identified when the channel is rotating sufficiently fast: (i) global oscillatory convection preferred for small Prandtl numbers in channels with intermediate or large aspect ratios (width to height ratio), (ii) wall-localized oscillatory convection representing the most unstable mode for moderate or large Prandtl numbers in channels with intermediate or large aspect ratios and (iii) global stationary convection preferred in channels with sufficiently small aspect ratios regardless of the size of the Prandtl number. The corresponding weakly nonlinear problem describing differential rotation and meridional circulation is also examined, showing that geostrophic, multiple-peaked (two prograde and two retrograde) differential rotation can be maintained by the Reynolds stresses in wall-localized convective eddies in a rapidly rotating channel.  相似文献   

16.
Abstract

Models of a differentially rotating compressible convection zone are calculated, considering the inertial forces in the poloidal components of the equations of motion. Two driving mechanisms have been considered: latitude dependent heat transport and anisotropic viscosity. In the former case a meridional circulation is induced initially which in turn generates differential rotation, whereas in the latter case differential rotation is directly driven by the anisotropic viscosity, and the meridional circulation is a secondary effect.

In the case of anisotropic viscosity the choice of boundary conditions has a big influence on the results: depending on whether or not the conditions of vanishing pressure perturbation are imposed at the bottom of the convection zone, one obtains differential rotation with a fast (≥ 10 ms?1) or a slow (~ 1 ms?1) circulation. In the latter case the rotation law is mainly a function of radius and the rotation rate increases inwards if the viscosity is larger in radial direction than in the horizontal directions.

The models with latitude dependent heat transport exhibit a strong dependence on the Prandtl number. For values of the Prandtl number less than 0.2 the pole-equator temperature difference and the surface velocity of the meridional circulation are compatible with observations. For sufficiently small values of the Prandtl number the convection zone becomes globally unstable like a layer of fluid for which the critical Rayleigh number is exceeded.  相似文献   

17.

To investigate the mechanism of mixing in oscillatory doubly diffusive (ODD) convection, we truncate the horizontal modal expansion of the Boussinesq equations to obtain a simplified model of the process. In the astrophysically interesting case with low Prandtl number (traditionally called semiconvection), large-scale shears are generated as in ordinary thermal convection. The interplay between the shear and the oscillatory convection produces intermittent overturning of the fluid with significant mixing. By contrast, in the parameter regime appropriate to sea water, large-scale flows are not generated by the convection. However, if such flows are imposed externally, intermittent overturning with enhanced mixing is observed.  相似文献   

18.
Abstract

A theoretical analysis of pseudo two-dimensional, finite-amplitude, thermal convection is made for an infinite Prandtl number fluid which is subjected to a constant heat flux out of the top boundary and insulated at the bottom. For large Rayleigh numbers the convective flow becomes intermittent and the system is characterized by the following cyclic process: the formation of a thermal boundary layer by diffusion, the instability of this layer when it becomes sufficiently thick, the destruction of the layer by the convective flow, the dying down of the convection, and the reforming of the thermal boundary layer by diffusion. The periodicity and the horizontal wave number of the intermittent convective flow are found to be independent of the depth of the fluid layer but depend on the rate of cooling and the properties of the fluid.  相似文献   

19.
Abstract

The linear problem of the onset of convection in rotating spherical shells is analysed numerically in dependence on the Prandtl number. The radius ratio η=r i/r o of the inner and outer radii is generally assumed to be 0.4. But other values of η are also considered. The goal of the analysis has been the clarification of the transition between modes drifting in the retrograde azimuthal direction in the low Taylor number regime and modes traveling in the prograde direction at high Taylor numbers. It is shown that for a given value m of the azimuthal wavenumber a single mode describes the onset of convection of fluids of moderate or high Prandtl number. At low Prandtl numbers, however, three different modes for a given m may describe the onset of convection in dependence on the Taylor number. The characteristic properties of the modes are described and the singularities leading to the separation with decreasing Prandtl number are elucidated. Related results for the problem of finite amplitude convection are also reported.  相似文献   

20.
Abstract

A study is made of the behavior of a thermally stratified fluid in a container when the non-horizontal boundaries have finite thermal conductance. The theory of Rahm and Walin is briefly recounted. Numerical solutions to the Navier-Stokes equations for a Boussinesq fluid in a cylinder, adopting a Newtonian heat flux condition at the vertical sidewall, are presented. Results on the details of flow and temperature fields are given over ranges of the Rayleigh number Ra, the container aspect ratio H, and the sidewall conductance S. As S increases, the isotherms in the meridional plane are horizontal at small radii but they diverge at large radii. This creates temperature nonuniformilies in the horizontal direction, and convective motions result. The salient features of the interior temperature profiles are captured by the theoretical model. The velocity field is characterized by two oppositely-directed circulations. As Ra or S varies, the qualitative circulation patterns remain substantially unchanged, but the magnitudes of the convective flows differ by large amounts. The effects of the externally-imposed parameters on the flow and temperature structures are examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号