共查询到20条相似文献,搜索用时 15 毫秒
1.
Susan Friedlander 《地球物理与天体物理流体动力学》2013,107(1-3):53-67
Abstract Investigations of an earlier paper (Friedlander 1987a) are extended to include the effect of an azimuthal shear flow on the small amplitude oscillations of a rotating, density stratified, electrically conducting, non-dissipative fluid in the geometry of a spherical shell. The basic state mean fields are taken to be arbitrary toroidal axisymmetric functions of space that are consistent with the constraint of the ‘‘magnetic thermal wind equation''. The problem is formulated to emphasize the similarities between the magnetic and the non-magnetic internal wave problem. Energy integrals are constructed and the stabilizing/destabilizing roles of the shears in the basic state functions are examined. Effects of curvature and sphericity are studied for the eigenvalue problem. This is given by a partial differential equation (P.D.E.) of mixed type with, in general, a complex pattern of turning surfaces delineating the hyperbolic and elliptic regimes. Further mathematical complexities arise from a distribution of the magnetic analogue of critical latitudes. The magnetic extension of Laplace's tidal equations are discussed. It is observed that the magnetic analogue of planetary waves may propagate to the east and to the west. 相似文献
2.
Steven D. London 《地球物理与天体物理流体动力学》2013,107(6):616-628
We consider an electrically conducting fluid confined to a thin rotating spherical shell in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for a possible stable layer at the top of the Earth's outer core. It may also be a model for the thin shells which are thought to be a source of the magnetic fields of some planets such as Mercury or Uranus. Linear hydromagnetic waves are studied using a multiple scale asymptotic scheme in which boundary layers and the associated boundary conditions determine the structure of the waves. These waves are assumed to be of the form of an asymptotic series expanded about an ambient magnetic field which vanishes on the equatorial plane and velocity and pressure fields which do not. They take the form of short wave, slowly varying wave trains. The results are compared to the author's previous work on such waves in cylindrical geometry in which the boundary conditions play no role. The approximation obtained is significantly different from that obtained in the previous work in that an essential singularity appears at the equator and nonequatorial wave regions appear. 相似文献
3.
Steven D. London 《地球物理与天体物理流体动力学》2013,107(4):317-333
We consider an electrically conducting fluid in rotating cylindrical coordinates in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for the Earth's outer core. Fully nonlinear waves dominated by the nonlinear Lorentz forces are studied using the method of geometric optics (essentially WKB). These waves are assumed to be of the form of an asymptotic series expanded about ambient magnetic and velocity fields which vanish on the equatorial plane. They take the form of short wave, slowly varying wave trains. The first-order approximation is sinusoidal and basically the same as in the linear problem, with a dispersion relation modified by the appearance of mean terms. These mean terms, as well the undetermined amplitude functions, are found by suppressing secular terms in a “fast” variable in the second-order approximation. The interaction of the mean terms with the dispersion relation is the primary cause of behaviors which differ from the linear case. In particular, new singularities appear in the wave amplitude functions and an initial value problem results in a singularity in one of the mean terms which propagates through the fluid. The singularities corresponding to the linear ones are shown to develop when the corresponding waves propagate toward the equatorial plane. 相似文献
4.
Abstract The linear problem of the onset of convection in rotating spherical shells is analysed numerically in dependence on the Prandtl number. The radius ratio η=r i/r o of the inner and outer radii is generally assumed to be 0.4. But other values of η are also considered. The goal of the analysis has been the clarification of the transition between modes drifting in the retrograde azimuthal direction in the low Taylor number regime and modes traveling in the prograde direction at high Taylor numbers. It is shown that for a given value m of the azimuthal wavenumber a single mode describes the onset of convection of fluids of moderate or high Prandtl number. At low Prandtl numbers, however, three different modes for a given m may describe the onset of convection in dependence on the Taylor number. The characteristic properties of the modes are described and the singularities leading to the separation with decreasing Prandtl number are elucidated. Related results for the problem of finite amplitude convection are also reported. 相似文献
5.
Abstract Finite amplitude solutions for convection in a rotating spherical fluid shell with a radius ratio of η=0.4 are obtained numerically by the Galerkin method. The case of the azimuthal wavenumber m=2 is emphasized, but solutions with m=4 are also considered. The pronounced distinction between different modes at low Prandtl numbers found in a preceding linear analysis (Zhang and Busse, 1987) is also found with respect to nonlinear properties. Only the positive-ω-mode exhibits subcritical finite amplitude convection. The stability of the stationary drifting solutions with respect to hydrodynamic disturbances is analyzed and regions of stability are presented. A major part of the paper is concerned with the growth of magnetic disturbances. The critical magnetic Prandtl number for the onset of dynamo action has been determined as function of the Rayleigh and Taylor numbers for the Prandtl numbers P=0.1 and P=1.0. Stationary and oscillatory dynamos with both, dipolar and quadrupolar, symmetries are close competitors in the parameter space of the problem. 相似文献
6.
David R. Fearn 《地球物理与天体物理流体动力学》2013,107(1-4):55-75
Abstract The first three papers in this series (Fearn, 1983b, 1984, 1985) have investigated the stability of a strong toroidal magnetic field Bo =Bo(s?)Φ [where (s?. Φ, z?) are cylindrical polars] in a rapidly rotating system. The application is to the cores of the Earth and the planets but a simpler cylindrical geometry was chosen to permit a detailed study of the instabilities present. A further simplification was the use of electrically perfectly conducting boundary conditions. Here, we replace these with the boundary conditions appropriate to an insulating container. As expected, we find the same instabilities as for a perfectly conducting container, with quantitative changes in the critical parameters but no qualitative differences except for some interesting mixing between the ideal (“field gradient”) and resistive modes for azimuthal wavenumber m=1. In addition to these modes, we have also found the “exceptional” slow mode of Roberts and Loper (1979) and we investigate the conditions required for its instability for a variety of fields Bo(s?) Roberts and Loper's analysis was restricted to the case Bo∝s? and they found instability only for m=1 and ?1 <ω<0 [where ω is the frequency non-dimensionalised on the slow timescale τx, see (1.5)]. For other fields we found the necessary conditions to be less “exceptional”. One surprising feature of this instability is the importance of inertia for its existence. We show that viscosity is an alternative destabilising agent. The standard (magnetostrophic) approximation of neglecting inertial (and viscous) terms in the equation of motion has the effect of filtering out this instability. The field strength required for this “exceptional” mode to become unstable is found to be very much larger than that thought to be present in the Earth's core, so we conclude that this mode is unlikely to play an important role in the dynamics of the core. 相似文献
7.
8.
9.
Abstract This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd2/ρ0V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences. 相似文献
10.
11.
D. Schmitt 《地球物理与天体物理流体动力学》2013,107(6):660-680
A new category of hydromagnetic waves in a rotating conducting fluid within a spherical shell geometry is investigated. These quasi-free-decay magnetic modes are based on particular solutions of the induction equation where the magnetic diffusion plays the central role. These solutions, normally only decaying with time, become propagative owing to the combined action of the background magnetic field and the rotation. The amplitude and sign of their azimuthal phase drift strongly depend on morphology and magnitude of the background magnetic field. The validity domain of these quasi-free-decay (QFD)-modes is related to the Elsasser number and is written as Λ???1. It follows that these modes dissipate quickly before propagating out. This restriction falls when the above criterion is no longer fulfilled (Λ?~?1), the corresponding modes evolving towards distorted QFD-modes. A systematic study of these QFD-modes is made in the limit of small Elsasser number (Λ???1), for the different symmetries allowed. Application to the Earth's and other planetary cores is then examined for an Elsasser number up to Λ?≈?O(1), in relation to the geomagnetic secular variation and the frozen-flux approximation. 相似文献
12.
Abstract Magnetic instabilities play an important role in the understanding of the dynamics of the Earth's fluid core. In this paper we continue our study of the linear stability of an electrically conducting fluid in a rapidly rotating, rigid, electrically insulating spherical geometry in the presence of a toroidal basic state, comprising magnetic field BMB O(r, θ)1ø and flow UMU O(r, θ)1ø The magnetostrophic approximation is employed to numerically analyse the two classes of instability which are likely to be relevant to the Earth. These are the field gradient (or ideal) instability, which requires strong field gradients and strong fields, and the resistive instability, dependent on finite resistivity and the presence of a zero in the basic state B O(r,θ). Based on a local analysis and numerical results in a cylindrical geometry we have established the existence of the field gradient instability in a spherical geometry for very simple basic states in the first paper of this series. Here, we extend the calculations to more realistic basic states in order to obtain a comprehensive understanding of the field gradient mode. Having achieved this we turn our attention to the resistive instability. Its presence in a spherical model is confirmed by the numerical calculations for a variety of basic states. The purpose of these investigations is not just to find out which basic states can become unstable but also to provide a quantitative measure as to how strong the field must become before instability occurs. The strength of the magnetic field is measured by the Elsasser number; its critical value c describing the state of marginal stability. For the basic states which we have studied we find c 200–1000 for the field gradient mode, whereas for the resistive modes c 50–160. For the field gradient instability, c increases rapidly with the azimuthal wavenumber m whereas in the resistive case there is no such pronounced difference for modes corresponding to different values of m. The above values of c indicate that both types of instability, ideal and resistive, are of relevance to the parameter regime found inside the Earth. For the resistive mode, as is increased from c, we find a shortening lengthscale in the direction along the contour BO = 0. Such an effect was not observable in simpler (for example, cylindrical) models. 相似文献
13.
Abstract The solution of the full nonlinear hydromagnetic dynamo problem is a major numerical undertaking. While efforts continue, supplementary studies into various aspects of the dynamo process can greatly improve our understanding of the mechanisms involved. In the present study, the linear stability of an electrically conducting fluid in a rigid, electrically insulating spherical container in the presence of a toroidal magnetic field Bo(r,θ)lø and toroidal velocity field Uo(r,θ)lø, [where (r,θ,ø) are polar coordinates] is investigated. The system, a model for the Earth's fluid core, is rapidly rotating, the magnetostrophic approximation is used and thermal effects are excluded. Earlier studies have adopted a cylindrical geometry in order to simplify the numerical analysis. Although the cylindrical geometry retains the fundamental physics, a spherical geometry is a more appropriate model for the Earth. Here, we use the results which have been found for cylindrical systems as guidelines for the more realistic spherical case. This is achieved by restricting attention to basic states depending only on the distance from the rotation axis and by concentrating on the field gradient instability. We then find that our calculations for the sphere are in very good qualitative agreement both with a local analysis and with the predictions from the results of the cylindrical geometry. We have thus established the existence of field gradient modes in a realistic (spherical) model and found a sound basis for the study of various other, more complicated, classes of magnetically driven instabilities which will be comprehensively investigated in future work. 相似文献
14.
Abstract We investigate the influence of differential rotation on magnetic instabilities for an electrically conducting fluid in the presence of a toroidal basic state of magnetic field B 0 = BMB0(r, θ)1 φ and flow U0 = UMU0 (r, θ)1φ, [(r, θ, φ) are spherical polar coordinates]. The fluid is confined in a rapidly rotating, electrically insulating, rigid spherical container. In the first instance the influence of differential rotation on established magnetic instabilities is studied. These can belong to either the ideal or the resistive class, both of which have been the subject of extensive research in parts I and II of this series. It was found there, that in the absence of differential rotation, ideal modes (driven by gradients of B 0) become unstable for Ac ? 200 whereas resistive instabilities (generated by magnetic reconnection processes near critical levels, i.e. zeros of B0) require Ac ? 50. Here, Λ is the Elsasser number, a measure of the magnetic field strength and Λc is its critical value at marginal stability. Both types of instability can be stabilised by adding differential rotation into the system. For the resistive modes the exact form of the differential rotation is not important whereas for the ideal modes only a rotation rate which increases outward from the rotation axis has a stabilising effect. We found that in all cases which we investigated Λc increased rapidly and the modes disappeared when Rm ≈ O(ΛC), where the magnetic Reynolds number Rm is a measure of the strength of differential rotation. The main emphasis, however, is on instabilities which are driven by unstable gradients of the differential rotation itself, i.e. an otherwise stable fluid system is destabilised by a suitable differential rotation once the magnetic Reynolds number exceeds a certain critical value (Rm )c. Earlier work in the cylindrical geometry has shown that the differential rotation can generate an instability if Rm ) ?O(Λ). Those results, obtained for a fixed value of Λ = 100 are extended in two ways: to a spherical geometry and to an analysis of the effect of the magnetic field strength Λ on these modes of instability. Calculations confirm that modes driven by unstable gradients of the differential rotation can exist in a sphere and they are in good agreement with the local analysis and the predictions inferred from the cylindrical geometry. For Λ = O(100), the critical value of the magnetic Reynolds number (Rm )c Λ 100, depending on the choice of flow U0 . Modes corresponding to azimuthal wavenumber m = 1 are the most unstable ones. Although the magnetic field B 0 is itself a stable one, the field strength plays an important role for this instability. For all modes investigated, both for cylindrical and spherical geometries, (Rm )c reaches a minimum value for 50 ≈ Λ ≈ 100. If Λ is increased, (Rm )c ∝ Λ, whereas a decrease of Λ leads to a rapid increase of (Rm )c, i.e. a stabilisation of the system. No instability was found for Λ ≈ 10 — 30. Optimum conditions for instability driven by unstable gradients of the differential rotation are therefore achieved for ≈ Λ 50 — 100, Rm ? 100. These values lead to the conclusion that the instabilities can play an important role in the dynamics of the Earth's core. 相似文献
15.
Scattering of an arbitrary elastic wave incident upon a spherically symmetric inclusion is considered and solutions are developed in terms of the spherical vector system of Petrashen, which produces results in terms of displacements rather than displacement potentials and in a form suitable for accurate numerical computations. Analytical expressions for canonical scattering coefficients are obtained for both the cases of incidentP waves and incidentS waves. Calculations of energy flux in the scattered waves lead to elastic optical theorems for bothP andS waves, which relate the scattering cross sections to the amplitude of the scattered fields in the forward direction. The properties of the solutions for a homogeneous elastic sphere, a sphere filled by fluid, and a spherical cavity are illustrated with scattering cross sections that demonstrate important differences between these types of obstacles. A general result is that the frequency dependence of the scattering is defined by the wavelength of the scattered wave rather than the wavelength of the incident wave. This is consistent with the finding that the intensity of thePS scattering is generally much stronger than theSP scattering. When averaged over all scattering angles, the mean intensity of thePS converted waves is2V
p
2
/V
s
4
times the mean intensity of theSP converted waves, and this ratio is independent of frequency. The exact solutions reduce to simple and easily used expressions in the case of the low frequency (Rayleigh) approximation and the low contrast (Rayleigh-Born) approximation. The case of energy absorbing inclusions can also be obtained by assigning complex values to the elastic parameters, which leads to the result that an increase in attenuation within the inclusion causes an increased scattering cross section with a marked preference for scatteredS waves. The complete generality of the results is demonstrated by showing waves scattered by the earth's core in the time domain, an example of high-frequency scattering that reveals a very complex relationship between geometrical arrivals and diffracted waves. 相似文献
16.
17.
Abstract The simplest model for geophysical flows is one layer of a constant density fluid with a free surface, where the fluid motions occur on a scale in which the Coriolis force is significant. In the linear shallow water limit, there are non-dispersive Kelvin waves, localized near a boundary or near the equator, and a large family of dispersive waves. We study weakly nonlinear and finite depth corrections to these waves, and derive a reduced system of equations governing the flow. For this system we find approximate solitary Kelvin waves, both for waves traveling along a boundary and along the equator. These waves induce jets perpendicular to their direction of propagation, which may have a role in mixing. We also derive an equivalent reduced system for the evolution of perturbations to a mean geostrophic flow. 相似文献
18.
The dynamics of stably stratified stellar radiative zones is of considerable interest due to the availability of increasingly detailed observations of Solar and stellar interiors. This article reports the first non-axisymmetric and time-dependent simulations of flows of anelastic fluids driven by baroclinic torques in stably stratified rotating spherical shells – a system serving as an elemental model of a stellar radiative zone. With increasing baroclinicity a sequence of bifurcations from simpler to more complex flows is found in which some of the available symmetries of the problem are broken subsequently. The poloidal component of the flow grows relative to the dominant toroidal component with increasing baroclinicity. The possibility of magnetic field generation thus arises and this paper proceeds to provide some indications for self-sustained dynamo action in baroclinically-driven flows. We speculate that magnetic fields in stably stratified stellar interiors are thus not necessarily of fossil origin as it is often assumed. 相似文献
19.
Abstract Starting from Euler's equations of motion a nonlinear model for internal waves in fluids is developed by an appropriate scaling and a vertical integration over two layers of different but constant density. The model allows the barotropic and the first baroclinic mode to be calculated. In addition to the nonlinear advective terms dispersion and Coriolis force due to the Earth's rotation are taken into account. The model equations are solved numerically by an implicit finite difference scheme. In this paper we discuss the results for ideal basins: the effects of nonlinear terms, dispersion and Coriolis force, the mechanism of wind forcing, the evolution of Kelvin waves and the corresponding transport of particles and, finally, wave propagation over variable topography. First applications to Lake Constance are shown, but a detailed analysis is deferred to a second paper [Bauer et al. (1994)]. 相似文献
20.
Atmospheric waves influence the dynamics and energetic budget of the upper atmosphere. Using the continuous HF Doppler sounder,
we study the wave activity in the ionosphere during tropospheric convective storms in western and central part of the Czech
Republic. The study is focused on acoustic-gravity waves in the period range 2–30 minutes. We discuss possible methods of
distinguishing the waves emitted by meteorological sources from waves of different origin, particularly waves of geomagnetic
origin. In two cases out of twenty-five analysed, we found waves in the infrasonic period range which might be generated by
exceptionally intense meteorological activity in the troposphere. The results differ considerably from those previously obtained
in North America. In the central part of the United States, infrasonic waves were frequently observed during convective storms.
As a possible reason, we discuss different intensity and dynamics of weather systems in both regions. 相似文献