共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Jae Min Hyun 《地球物理与天体物理流体动力学》2013,107(1-4):65-79
Abstract Finite-difference numerical solutions were obtained to present the flow and temperature field details within the transient Ekman layer during spin-up of a thermally stratified fluid in a cylinder. This complements the earlier studies on stratified spin-up which examined the flows in the interior core region. As the stratification increases, the following changes in the flow field are noticeable. The radial velocity in the Ekman layer decreases in magnitude. The azimuthal flows adjust smoothly from the interior region to the endwall boundary, and the Ekman layer in the azimuthal flow field fades. Vertical motions are inhibited, resulting in a weakened Ekman pumping. The axial vorticity field behaves similarly to the azimuthal flows. The temperature deviation from the equilibrium profile decreases, and the heat transfer flux from the endwall to the fluid decreases. The thickness of the thermal layer is larger than the velocity layer thickness. Illustrative comparisons of the relative sizes of the terms in the governing equations are conducted in order to assess the stratification effect in the adjustment process of the fluid. 相似文献
3.
采用高精度的拟谱方法,数值模拟了层结海洋中小振幅内行进波的演变和破碎过程.在演变过程中,导致内波破碎的PSI不稳定机制在共振相互作用中逐渐占据主导地位,能量从初级波向低频、高波数运动缓慢传递并形成一次级波包,随即破碎发生.破碎后产生的层化湍流引起的强烈混合以及湍流间歇性可从总能量和涡度峰度随时间的变化趋势看出.我们分析了层化湍流的一些统计特性,包括动能和有效位能沿垂向波数ky的功率谱.结果表明,动能和有效位能谱都存在一个谱段满足k-3y律,且分别可表示为0.1N4k-3y和0.2N4k-3y(N为Brunt-Visl频率),通常称其为浮力子区.另外,我们分析了Cox数(湍流扩散系数与分子扩散系数之比),在层化湍流维持在一定强度时,计算结果和由海洋内区观测(远离内波强生成源和复杂地形)所推测的结论较为吻合. 相似文献
4.
In a previous paper (Grimshaw, 1987) the resonant forcing of coastally trapped waves was discussed in the barotropic case. In order to extend that theory to more realistic situations, we have considered the analogous theory whereby a longshore current interacts with a longshore topographic feature, or the forcing is due to longshore wind stress, for the case of the continuously stratified ocean. As in the previous theory, near resonance, when a long-wave phase speed is close to zero (in the reference frame of the forcing), the wave motion is governed by a forced evolution equation of the KdV-type. The behaviour of the wave field is characterized by three parameters representing the bandwidth for resonance, the forcing amplitude and the dissipation. We have evaluated these parameters in various practical cases, and found that the bandwidths, which scale with 1/2 when the forcing has dimensionless amplitude , can often be quite broad. Typically the second, third, or higher, modes may be resonant. Concurrently, the dissipation is also usually significant, leading to a steady state balance between the forcing, dissipation and nonlinear terms. 相似文献
5.
6.
David E. Loper 《地球物理与天体物理流体动力学》2013,107(1):175-203
Abstract The linear spin-up of a stably stratified, electrically conducting fluid within an electrically insulating cylindrical container in the presence of an applied axial magnetic field is analyzed for those cases in which electric currents generated within the steady MAC layer control the fluid interior, The MAC layer is a new boundary layer first studied by Loper (1976a) which controls the fluid in the parameter range E/α2 ? σS ? α2/E, α2 ? 1 Where E = vωL2, 2α2 = σB2/pω and σS = vN2/κω;2. The problem is solved using the Laplace transform and four new spin-up times are obtained. Combined into one expression they are t = ω;?1E-½[1+(σSE/α6)½ + δα-2] [1+(σSE/α6 1/4]?1 where δ = σμv. The internal spin-up mechanisms for this problem are shown to be very similar to those discussed in part 1 (Loper, 1976b). The ten known spin-up times are summarized and their inter-relationships are investigated. It is shown how to obtain the seven hydromagnetic spin-up times from a simple torsional Alfvén wave model involving a single parameter which measures the strength of the boundary layer dissipation. Finally, the present theory is applied to the solar spin-down problem and it is found that if the magnetic field in the solar interior is at least as strong as the interplanetary field of 10-5 gauss, then the hydromagnetic spin-down time is much shorter than the Eddington-Sweet time and is comparable to the age of the sun. 相似文献
7.
J. A. Van De Konijnenberg V. Naulin J. Juul Rasmussen B. Stenum G. J. F. Van Heijst 《地球物理与天体物理流体动力学》2013,107(1-2):85-114
Abstract spin-up and spin-down in a circular tank with a uniformly sloping bottom are studied experimentally and numerically for small values of the relative change in the angular velocity of the tank. Generally, the initial single-cell flow evolves into a number of smaller vortices. The evolution is compared with an analytical model based on an expansion of the flow field in linear Rossby waves (Pedlosky and Greenspan, 1967). Although it is possible to tune the experimental parameters in such a way that agreement with the theory is found, in most cases the experiments show shedding of vortices in the initial stage of the spin-up or spin-down, a phenomenon not described by the analytical model. Nonetheless, in such cases the analytical model still accounts for other observations: the alternating generation of cyclonic and anticyclonic vortices in the eastern part of the tank and their subsequent westward motion. 相似文献
8.
David E. Loper 《地球物理与天体物理流体动力学》2013,107(1):133-156
Abstract The linear spin-up of a stably stratified, electrically conducting fluid within an electrically insulating cylindrical container in the presence of an applied axial magnetic field is analyzed for those cases in which electric currents generated within the steady Hartmann boundary layer control the fluid interior. It is shown how to obtain the known spin-up times for a homogeneous, nonconducting fluid (τ = E -½), a stably stratified, nonconducting fluid (τ = (σS/E, E ?1) and a homogeneous conducting fluid (τ = α?1 E -½) from the present formulation where τ = v/ωt, E = v/ωL 2, σS = vN2/κω2 and 2α2 = σB2/pω. The problem is solved in the parameter range E?α2?1, α2/E?σS using the Laplace transform and two new spin-up times are obtained. Combined into one expression, they are τ = (1 + δ)α?1E-½ where δ = σμv. The spin-up mechanism is investigated and it is found that, in contrast to the homogeneous, conducting case, torsional Alfvén waves may be instrumental in the spin-up of a stratified conducting fluid. The effects of viscous and ohmic diffusion on the torsional Alfvén wave fronts are studied and the following regimes are identified: 0 < δ ?E/α2, spin-up by meridional circulation of electric current with no Alfvén waves; E-½/α ? δ ? 1, spin-up by meridional circulation of electric current with transient Alfvén waves; α/E½ ? δ ? α2/E, spin-up by meridional circulation of current with weak Alfvén waves; 1 ? δ ? α/E½, spin-up by strong Alfvén waves; α½/E ? δ ? α2/E, spin-up by viscous diffusion with transient Alfvén waves; α/E ? δ < ∞, spin-up by viscous diffusion with no Alfvén waves. 相似文献
9.
《Earth and Planetary Science Letters》2007,253(3-4):507-512
A light fluid accumulation on the Core–Mantle Boundary due to barodiffusion is considered in an earlier paper [S.I. Braginsky. Formation of the stratified ocean of the core. Earth Planet. Sci. Lett. 243 (2006) 650–656], assuming that the Earth's core consists of binary solution of iron and some light admixture. The accumulated light fluid forms on the Core–Mantle Boundary a stably stratified layer; we call this layer the Stratified Ocean of the Core (SOC). In this paper a similar mechanism of the SOC formation is considered assuming that the core material is a ternary alloy of iron and two light components, in conformity with the new information about the core chemical physics. 相似文献
10.
11.
12.
水平成层均质土地震反应非线性分析的半解析算法 总被引:1,自引:0,他引:1
采用动态应力-应变关系及其推广的Masing加卸载准则,考虑土体在地震等不规则加载条件下的非线性滞回特征,将增量法与相应场地地震线性反应解析解相结合,提出了该动力非线性方程的半解析时域算法,以水平成层场地一维剪切梁模型为例,建立了求解土体地震反应的非线性分析技术。针对Seed-Idriss给出的砂土平均曲线,分析计算了非均匀层状密砂的线性和非线性地震反应。 相似文献
13.
S. G. H. Philander 《地球物理与天体物理流体动力学》2013,107(1):105-123
AbstractThe flow properties of an homogeneous fluid which is bounded by two concentric spheres and two meridional planes which intersect along a diameter of the spheres are investigated. The spheres rotate about this diameter with slightly different angular velocities. As in the axisymmetric case studied by Proudman (1956) and Stewartson (1966) the viscous terms in the equations of motion are important only in boundary layers on the spheres and on the cylinder C which circumscribes the inner sphere and which has generators parallel to the axis of rotation, provided the Ekman number E is small. In the inviscid region the velocities are independent of the coordinate measuring distance along the axis of rotation and are much weaker, by a factor 0(E ½), than the velocities in the Ekman layer on the driving surface (outer sphere). (It is assumed that the reference frame is fixed in the slower rotating inner sphere.) If the separation of the spheres is small compared to their radii then the asymmetric circulation inside C is characterized by an intense jet along the western wall. Loss of fluid from this jet sustains the eastward and northward flow in the inviscid interior where motion is driven by the suction of the Ekman layer on the outer sphere. (Geophysical conventions have been adopted.) Outside C an intense current is present on the eastern, not western, wall while motion in the inviscid region is westward, and away from the axis of rotation. Though there is no transport across C in the inviscid region, the meridional transport of the Ekman layer on the outer sphere is continuous across C and increases, through suction, as the equator is approached until it drains into an eastward flowing equatorial current of width 0(E 1/7). The eastern boundary current outside C and shear layers on C carry this fluid to the intersection of C and the western wall where it feeds the western boundary current inside C.The relation between this study and the experiments of Baker and Robinson (1970) is discussed. 相似文献
14.
Summary The disturbances of the velocity and magnetic fields close to the Earth's core-mantle boundary, caused by sudden irregular changes in the Earth's rotation, are investigated. The problem leads to the investigation of the structure of the Ekman-Hartman hydromagnetic boundary layer, the magnetic diffusive region and the currentless region. Precise Laplacean inversions of the images of all disturbances in the Earth's core-mantle system are obtained for the limiting case of a zero magnetic Prandtl number, =0. The disturbance of the velocity in the direction of the axis of rotation (Ekman suction) in the currentless region has the nature of inertial oscillations with a frequency of 2. Additional disturbances (with respect to the case of =0) of the velocity in the azimuthal and radial directions, particularly for the EHL and MDR region, are determined for the case when 0< « 1. The disturbance in the velocity again has the character of inertial oscillations with the frequency 2, being exponentially damped in EHL asexp (–22t) and in MDR asexp (–2t). 相似文献
15.
Eruptions from the top of a dyke containing two layers of magma can selectively withdraw the upper layer, leaving the dense lower layer undisturbed. Alternatively, if the upper layer is thinner than some critical depth, d, then both layers will be tapped simultaneously. Laboratory experiments yield an equation giving the draw-up depth, d, as a function of dyke geometry, eruption rate, and magma properties. This equation is valid for low to moderate Reynolds numbers and applies to dykes which are much longer than the draw-up depth. Short dykes will yield larger draw-up depths than are predicted by the equation. A large draw-up depth is favoured when the eruption rate, upper layer magma viscosity, or dyke length/breadth ratio is large or the density difference is small. Calculations show that rhyolite-capped dykes can contain several hundred metres thickness of rhyolite when a lower layer is first tapped. Draw-up depths in a dyke are as much as an order of magnitude greater than those for an identical eruption from a large cylindrical chamber tapped by a central vent. Nonetheless, for low effusion rate eruptions from small dykes, as at Inyo Domes, California, relatively small draw-up heights are calculated (e.g. 70 m). This is compatible with the small amounts of mixed magmas found at the transition between the two rhyolite magmas erupted there [11]. 相似文献
16.
Abstract Inertial waves are excited in a fluid contained in a slightly tilted rotating cylindrical cavity while the fluid is spinning up from rest. The surface of the fluid is free. Since the perturbation frequency is equal to the rotation speed resonance occurs at a critical height to radius aspect ratio of the fluid. Detailed study of a particular inertial wave shows that in solid body rotation this “eigenratio” agrees with predictions from linear inviscid theory to within 0.5%. Measured time dependence of the eigenratio during spin-up from rest is a function of the tilt amplitude and agrees favorably with predictions from a numerical study. Mean flow associated with the inertial wave becomes unstable during spin-up and in the steady state. A boundary for the unstable region is found experimentally. 相似文献
17.
S. G. H. Philander 《地球物理与天体物理流体动力学》2013,107(1):219-245
Abstract It is shown that the linear equatorial dynamics of a shallow ocean is characterized by two boundary layers of width γ? L and γL (γ is the Ekman number of the flow, assumed small, and L is a horizontal dimension of the basin). In the γ? layer stress in the bottom Ekman layer is comparable to that in the surface Ekman layer. In the γ layer vertical friction is important throughout the depth of the ocean. Should the Rossby number ? be so large as to invalidate a linear theory (? > γ5/3), then inertial effects become important at a distance ?2/5 L from the equator. The role played in the circulation of the basin by the non-linear equatorial current first studied by Charney (1960) is shown to be similar to that of the γ layer of the linear theory. Though lateral friction is unimportant in a linear model of the flow, shear layers at the equator are found to be a necessary feature of non-linear flow. 相似文献
18.
Ocean Dynamics - Wind-induced mixing forms the surface mixed layer (ML) above the stratified interior oceans. The ML depth (MLD), a key quantity for several upper ocean processes such as the... 相似文献
19.
A. J. Willson 《Pure and Applied Geophysics》1970,79(1):41-52
Summary The problem of the flow of a viscous liquid layer down an inclined plane is analyzed in the case in which the local viscosity depends linearly upon the height above the plane. By an application ofYih's technique, the velocity of long waves is calculated and the criterion for their stability is established. These are then compared with the corresponding results for a homogeneous layer. 相似文献