首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用ICESat数据确定格陵兰冰盖高程和体积变化   总被引:1,自引:0,他引:1       下载免费PDF全文
两极冰盖消融是造成海平面上升的重要原因,作为世界第二大冰盖,格陵兰冰盖消融速度在进入21世纪以后明显加快,引起了广泛关注.本文利用ICESat卫星激光测高数据,探讨了坡度改正的方法,通过改进平差模型解决了病态问题,并采用重复轨道方法计算了2003年9月至2009年10月间格陵兰冰盖的体积和高程变化趋势,对格陵兰冰盖各冰川流域系统的变化情况进行了详细分析.结果表明,格陵兰冰盖在这6年间平均高程变化趋势为-16.79±0.84cm·a^-1,体积变化速率为-301.37±15.16km^3·a^-1,体积流失主要发生在冰盖边缘,其中DS1、DS8等流域的体积损失正在加剧,而高程在2000m以上的冰盖内陆地区表现出高程积聚的状态,但增长速度明显减缓.与现有研究成果的对比表明,算法优化后的本文结果更具可靠性.  相似文献   

2.
3.
Lambert冰川-Amery冰架系统是南极冰盖最大的冰流系统之一,对南极冰盖物质平衡研究有着重要的作用.数字高程模型(DEM)是进行南极冰盖研究的基础.本文基于CryoSat-2 L1b波形数据,研究建立了Lambert冰川流域高分辨率DEM.测高卫星返回波形在冰盖区域存在变形,需进行波形重跟踪处理.利用交叉点分析方法对重心偏移法(OCOG)、阈值法和β参数法等常用的波形重跟踪方法对不同类型的CryoSat-2波形的适用性进行了研究.最后,利用克里金插值方法建立了500 m分辨率的Lambert冰川流域DEM——LAS DEM (Lambert Glacier-Amery Ice Shelf system DEM).利用ICESat卫星测高数据和GPS地面实测数据对LAS DEM进行精度验证,并与另外两种基于CryoSat-2数据的南极DEM进行了对比.结果表明:LAS DEM的整体精度约为0.295±2.7 m,优于另外两种CryoSat-2 DEM;在冰盖内陆地区,LAS DEM的高程误差在2 m之内;在Amery冰架上,LAS DEM的精度优于1 m.  相似文献   

4.
We have used satellite solutions to the low degree zonal harmonics of the Earth's gravitational potential, and rates of surface accumulation to partially constrain, by means of repeated forward solution, the time rates of thickness change over the Antarctic and Greenland Ice Sheets (dTA and dTG respectively). In addition to the observed zonal coefficients j2 through j5 we impose only one other constraint: That dTA and dTG are proportional to surface accumulation. The lagged response of the Earth to secular changes in ice thickness spanning recent time periods (up to 2000 years before present) and the late Pleistocene is accounted for by means of two viscoelastic rebound models. The sea level contributions from the ice sheets, calculated from dTA and dTG, lower mantle viscosity, and the start time of present-day thickness change are all variables subject to the constraints. For a given set of post glacial rebound inputs, a family of solutions that have similar characteristics and that agree well with observation are obtained from the large number of forward solutions. The off axis position of the Greenland ice sheet makes its contribution to the low degree zonal coefficients less sensitive to the spatial details of the mass balance than to the overall sea level contribution. dTG is therefore modeled as surface mass balance offset by a uniform and constant mass loss. Though dTA varies widely with choices of input parameters, the combined sea level contribution from both ice sheets is reasonably well constrained by the gravity coefficients, and is predicted to range from -0.9 to +1.6 mm yr-1. The sign of the slope of the low degree zonal coefficients versus sea level contribution for Greenland is positive, but for Antarctica, the sign of the slope is positive for even degree and negative for odd degree harmonics. By using this property of the zonal coefficients, it is possible to determine the individual sea level contributions for Greenland and Antarctica. They vary from -0.6 to +0.3 mm yr-1 for the Greenland Ice Sheet, and from -0.3 to +1.3 mm yr-1 for the Antarctic Ice Sheet.  相似文献   

5.
Controversy exists over the extent of glaciation in Eastern Asia at the Last Glacial Maximum: complete ice sheet cover vs. restricted mountain icefields (an area discrepancy equivalent to 3.7 Greenland Ice Sheets). Current arguments favour the latter. However, significant last glacial ice-rafted debris (IRD) exists in NW Pacific ocean cores, which must have been sourced from a major ice sheet somewhere bordering the North Pacific. The origin of this IRD is addressed through a combination of marine core analysis, iceberg trajectory modelling and remote sensing of glacial geomorphology. We find compelling evidence for two stages of glaciation centred on the Kamchatka area of maritime southeast Russia during the last glacial, with ice extent intermediate in size between previous maximum and minimum reconstructions. Furthermore, a significant increase in iceberg flux precedes, and accompanies, a substantial marine core ash deposit at around 40 ka BP. We speculate that rapid decay of the first stage of the ice sheet may have triggered substantial volcanic activity.  相似文献   

6.
Calculations were performed with the Earth system model of intermediate complexity LOVECLIM to study the response of the Greenland and Antarctic ice sheets to sustained multi-millennial greenhouse warming. Use was made of fully dynamic 3D thermomechanical ice-sheet models bidirectionally coupled to an atmosphere and an ocean model. Two 3,000-year experiments were evaluated following forcing scenarios with atmospheric CO2 concentration increased to two and four times the pre-industrial value, and held constant thereafter. In the high concentration scenario the model shows a sustained mean annual warming of up to 10°C in both polar regions. This leads to an almost complete disintegration of the Greenland ice sheet after 3,000 years, almost entirely caused by increased surface melting. Significant volume loss of the Antarctic ice sheet takes many centuries to initiate due to the thermal inertia of the Southern Ocean but is equivalent to more than 4 m of global sea-level rise by the end of simulation period. By that time, surface conditions along the East Antarctic ice sheet margin take on characteristics of the present-day Greenland ice sheet. West Antarctic ice shelves have thinned considerably from subshelf melting and grounding lines have retreated over distances of several 100 km, especially for the Ross ice shelf. In the low concentration scenario, corresponding to a local warming of 3?C4°C, polar ice-sheet melting proceeds at a much lower rate. For the first 1,200 years, the Antarctic ice sheet is even slightly larger than today on account of increased accumulation rates but contributes positively to sea-level rise after that. The Greenland ice sheet loses mass at a rate equivalent to 35 cm of global sea level rise during the first 1,000 years increasing to 150 cm during the last 1,000 years. For both scenarios, ice loss from the Antarctic ice sheet is still accelerating after 3,000 years despite a constant greenhouse gas forcing after the first 70?C140 years of the simulation.  相似文献   

7.
The outline and trend of 6566 subglacial bedforms in the New York Drumlin Field have been digitized from digital elevation data. A spatial predictive model has been used to extend values of bedform elongation over an area measuring 200 km × 110 km. The resulting surface is used in conjunction with depth‐to‐bedrock data and an assumed duration of ice residence to test three proposed controls on bedform elongation. Upon comparison, the resulting display of morphometry is best explained by differences in ice velocity across the field of study. The existence of multiple zones of fast‐moving ice located along the southern margin of the Laurentide Ice Sheet is implied by the observed patterns of bedform elongation and orientation. We present two interpretations that are consistent with the observations. First, enhanced basal sliding caused by decreasing effective pressure near a calving margin is suggested as a possible mechanism by which localized fast ice flow is initiated and maintained. Second, topographically controlled ice streams likely occupied the fjord‐like troughs of the Appalachian Upland northern rim. Contrary to previous understanding of the Laurentide southern margin in New York State, the resulting palaeoglaciological reconstruction illustrates a dynamic mosaic of ice stream and/or outlet glacier activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
In this study,under conditions of different flow and ice discharge,extensive experiments have been carried out in a 180°-bend flume and an S-shaped bend channel.The phenomenon and mechanisms of ice accumulation in the bend channel have been studied.Ice accumulation along the convex bank was normally thicker than that along the concave bank.The maximum thickness of ice accumulation in the downstream bend channel occurred close to the convex bank.The difference between the maximum thickness and the minimum thickness of ice accumulation was significant.The entire ice accumulation became unstable if flow Froude number was large.When the flow Froude Number is high,the entire ice accumulation becomes unstable.For Froude Number between 0.035 and 0.060,the bottom surface of ice accumulation became waved in form.Small changes in Froude number and ice discharge rate can change a channel from a state of no ice accumulation to uniform accumulation over the channel bend.The higher the ice discharge,the more uniform the ice accumulation.The experimental results have been compared with field observations of ice jams at the Hequ Reach of the Yellow River.  相似文献   

9.
利用2003~2008年间的ICESat卫星激光测高数据,通过块域交叉点分析提取南极大陆冰盖表面高程变化信息,同时探讨了卫星激光测高不同任务间的系统偏差,结合冰盖地表粒雪密度模型探测南极大陆冰盖质量变化,并对其原因做了初步分析.结果显示南极大陆冰盖高度变化具有明显的年周期信号,平均周年振幅为2.21 cm.在南极大陆的...  相似文献   

10.
Based on interpolation of thermoluminescence dates and the mean accumulation rate of 0.034 mm yr?1, four cycles of pedogenic CaCO3 accumulation are found within the Loveland Loess: 415–325 ka, 325–250 ka, 250–195 ka and 195–95 ka. The four CaCO3 peaks correspond chronologically to marine oxygen isotope stages 11, 9, 7 and 5, respectively. The early Wisconsin (95–70 ka) was characterized by sand dune activity. The reddish pedocomplex was formed from 70 to 35 ka under relatively warm and moist climatic conditions with a very slow rate of silt accumulation (0·016 mm yr?1). The Gilman Canyon pedocomplex, enriched in organic matter and dated at 35–20 ka, was formed under a strong physical weathering regime and a relatively high rate of silt accumulation (0·15 mm yr?1), indicating a windy, relatively moist, probably cool environment. It developed when the Laurentide ice sheet was advancing and dust content in Greenland ice core was low. The Peoria Loess was accumulated at a rate of 0·3 mm yr?1 in central Kansas under cold dry conditions when the ice sheet fluctuated around its maximum position and the dust content in the Greenland ice core was the highest. Even the warm substage around 13 ka has some corresponding evidence in the central Great Plains. The well-developed Brady Soil, dated at 10·5–8·5 ka, indicates that the early Holocene was the optimal time for soil development since 20 ka. The poorly weathered Bignell Loess might have been deposited during the Altithermal Period from 8·5 to 6 ka.  相似文献   

11.
Recent satellite observations of the Antarctic and Greenland ice sheets show accelerated ice flow and associated ice sheet thinning along coastal outlet glaciers in contact with the ocean. Both processes are the result of grounding line retreat due to melting at the grounding line (the grounding line is the contact of the ice sheet with the ocean, where it starts to float and forms an ice shelf or ice tongue). Such rapid ice loss is not yet included in large-scale ice sheet models used for IPCC projections, as most of the complex processes are poorly understood. Here we report on the state-of-the art of grounding line migration in marine ice sheets and address different ways in which grounding line migration can be attributed and represented in ice sheet models. Using one-dimensional ice flow models of the ice sheet/ice shelf system we carried out a number of sensitivity experiments with different spatial resolutions and stress approximations. These are verified with semi-analytical steady state solutions. Results show that, in large-scale finite-difference models, grounding line migration is dependent on the numerical treatment (e.g. staggered/non-staggered grid) and the level of physics involved (e.g. shallow-ice/shallow-shelf approximation).  相似文献   

12.
利用ICESat数据解算南极冰盖冰雪质量变化   总被引:5,自引:4,他引:1       下载免费PDF全文
南极冰盖冰雪质量变化反映了全球气候变化,并且直接影响着全球海平面变化.ICESat测高卫星的主要任务之一就是要确定南北两极冰盖的质量变化情况并评估其对全球海平面变化的影响.本文利用2003年10月至2008年12月的ICESat测高数据,针对南极DEM分辨率有限的特殊性,通过求解坡度改正值,解决重复轨道地面脚点不重合的问题,计算了南极大陆(86°S以北区域,后文所述南极冰盖均不包括86°S以南区域)在这5年里的冰雪质量变化情况,得到东南极冰盖的质量变化为-18±20Gt/a,西南极-26±6Gt/a,南极冰盖的冰雪质量变化为-44±21Gt/a,对全球海平面上升的影响约为0.12mm·a~(-1).解算结果表明,南极冰盖质量亏损主要集中在西南极阿蒙森海岸附近冰川以及东南极波因塞特角区域.  相似文献   

13.
Of the various information recovered from radio‐echo sounding (RES) of polar ice sheets, internal layering is currently under‐utilized by glaciologists, due in part to a lack of available data. Here, RES layering of the West Antarctic Ice Sheet, from the 1970s RES survey of approximately 70 per cent of this ice mass, is made available in a series of spreadsheets. Three types of internal layers are evident in the dataset. The first is continuous layers that have a stratigraphic appearance and can often be traced easily for hundreds of kilometres. The second is buckled layering, which also resembles stratigraphy and can sometimes be traced over tens of kilometres (although layer identification can often be difficult). The roughness of these layers is often greater than the bed at the same wavelength. The third is highly distorted or absent layering, which is not possible to trace laterally. Despite debate concerning the origin of RES layers, they are thought by most glaciologists to represent isochronous surfaces. The pattern of internal layering is potentially of importance to glaciologists for three reasons. (1) The position of undeformed layers below the ice surface is a function of accumulation rate, ice flow and basal melting conditions. Numerical modelling (including new ‘data assimilation’ techniques) could be used to discriminate between these processes, so revealing important information about the ice sheet and its environment. (2) Buckled layers are deformed by ice flow process, and so their occurrence can be related to the flow dynamics of the ice sheet. (3) Very buckled layers are often associated with ice stream flow, which allows their location to mark the positions of past and present fast‐flowing ice. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

14.
Relative sea-level (RSL) observations from the margins of the Greenland Ice Sheet (GIS) provide information regarding the timing and rate of deglaciation and constraints on geophysical models of ice sheet evolution. In this paper we present the first RSL record for the southeast sector of the GIS based on field observations completed close to Ammassalik. The local marine limit is c. 69 m above sea-level (asl) and is dated to c. 11 k cal. yrs BP (thousand calibrated years before present) and is a minimum date for ice free conditions at the study site. RSL fell to c. 24 m asl by 9.5 k cal. yrs BP and continued to fall at a decreasing rate to reach close to present by 6.5 k cal. yrs BP. Our chronology agrees with radiocarbon dates from offshore cores that indicate ice free conditions on the adjacent mid-shelf by 15 k cal. yrs BP. We compare the new RSL data with predictions generated using two recently published glaciological models of the GIS that differ in the amount and timing of ice loading and unloading over our study area. These two GIS models are coupled to the same Earth viscosity model and background (global) ice model to aid in the data-model comparison. Neither model provides a close fit to the RSL observations. Based on a preliminary sensitivity study using a suite of Earth viscosity models, we conclude that the poor data-model fit is most likely due to an underestimate of the local ice unloading. An improved fit could be achieved by delaying the retreat of a thicker ice sheet across the continental shelf. A thick ice sheet extending well onto the continental shelf is in agreement with other recent observations elsewhere in east and south Greenland.  相似文献   

15.
Glaciers and ice sheets play a dynamic role in Earth's climate system, influencing regional- and global-scale climate and responding to climate change on time scales from years to millennia. They are also an integral part of Earth's landscape in alpine and polar regions, where they are an active agent in isostatic, tectonic, and Earth surface processes. This review paper summarizes recent progress in understanding and modelling ice sheet dynamics, from the microphysical processes of ice deformation in glaciers to continental-scale processes that influence ice dynamics. Based on recent insights and research directions, it can be expected that a new generation of ice sheet models will soon replace the current standard. Improvements that can be foreseen in the near future include: (i) the addition of internally-consistent evolutionary equations for ice crystal fabric (anisotropic flow laws), (ii) more generalized flow laws that include different deformation mechanisms under different stress regimes, (iii) explicit incorporation of the effects of chemical impurities and grain size (dynamic recrystallization) on ice deformation, (iv) higher-order stress solutions to the momentum balance (Stokes' equation) that governs ice sheet flow, and (v) the continued merger of ice sheet models with increasingly complex Earth systems models, which include fully-coupled subglacial hydrological and geological processes. Examples from the Greenland Ice Sheet and Vatnajökull Ice Cap, Iceland are used to illustrate several of these new directions and their importance to glacier dynamics.  相似文献   

16.
孟秋  胡才博  石耀霖 《地球物理学报》1954,63(10):3751-3763
挪威北海北部在末次冰期存在较大范围的冰盖,其冰盖的加载和卸载会对地表变形和内部应力调整产生重要影响.本文基于Maxwell黏弹性本构关系,根据初应力法自主开发了一套Maxwell黏弹性体有限元程序,它可以考虑重力和构造加载、地球介质弹性的纵向和横向不均匀性以及黏性的分层性,可以计算冰川载荷变化引起的地球表面变形及内部应力状态的变化.利用它研究了挪威北海北部1.1 Ma以来的冰川载荷变化、特别是两万多年以来冰盖的消退引起的地表冰后回弹.结果表明,自2万年以来,冰后回弹效应在冰盖载荷变化的不同阶段呈现明显的时空变化,现今地表垂直变化速率为几个毫米/年,与观测结果一致.下地壳和上地幔的黏弹性松弛效应明显,上地壳的应力状态在现今海岸线两侧存在差异性,水平和垂直正应力变化可达几十兆帕,剪应力变化有一个先增加后迅速减小至零的过程,与古地震、现今地震时空分布及应力测量结果也比较符合,研究结果有助于加深对冰后回弹的动力学过程的认识.  相似文献   

17.
Abstract

The flow of large natural ice masses under gravity is described by the mass, momentum, and energy balances of an incompressible, homogeneous, heat conducting, non-linearly viscous fluid in which the shear response includes a strongly temperature-dependent rate factor. Dimensionless analysis and co-ordinate stretching reflecting the long aspect ratio show that series expansions in a small parameter which determines the surface slope magnitude are uniformly valid even when temperature variation induces a strongly non-uniform mechanical response. The normalised energy balance shows that both horizontal and vertical advection are significant in thin and thick grounded sheets and in floating shelves, and that viscous dissipation can be significant in basal regions of a grounded sheet, and hence there is strong thermomechanical coupling. Moreover, though a thermal basal boundary layer may arise in a thick sheet, it would only give rise to significantly enhanced temperature and strain-rate gradients in extreme circumstances. The leading order relations for steady plane flow of a grounded sheet are reduced to a parabolic system for the temperature and two velocity components, which incorporates the unknown surface slope in coefficients and boundary conditions. This provides a useful starting point for numerical solution of the thermomechanically coupled problem. A fixed domain mapping is presented as an attractive alternative formulation when the bed topography is close to planar.  相似文献   

18.
Grounding-zone wedges (GZWs) mark the grounding terminus of flowing marine-based ice streams and, in the presence of an ice shelf, the transition from grounded ice to floating ice. The morphology and stratigraphy of GZWs is predominantly constrained by seafloor bathymetry, seismic data, and sediment cores from deglaciated continental shelves; however, due to minimal constraints on GZW sedimentation processes, there remains a general lack of knowledge concerning the production of these landforms. Herein, outcrop observations are provided of GZWs from Whidbey Island in the Puget Lowlands (Washington State, USA). These features are characterized by prograded diamictons bounded by glacial unconformities, whereby the lower unconformity indicates glacial advance of the southern Cordilleran Ice Sheet and the upper unconformity indicates locally restricted ice advance during GZW growth; the consistent presence of an upper unconformity supports the hypothesis that GZWs facilitate ice advance during landform construction. Based on outcrop stratigraphy, GZW construction is dominated by sediment transport of deformation till and melt-out of entrained basal debris at the grounding line. This material may be subsequently remobilized by debris flows. Additionally, there is evidence for subglacial meltwater discharge at the grounding line, as well as rhythmically bedded silt and sand, indicating possible tidal pumping at the grounding line. A series of GZWs on Whidbey Island provides evidence of punctuated ice sheet movement during retreat, rather than a rapid ice sheet lift-off. The distance between adjacent GZWs of 102–103 m and the consistency in their size relative to modern ice stream grounding lines suggests that individual wedges formed over decades to centuries. © 2018 John Wiley & Sons, Ltd.  相似文献   

19.
As fundamental parameters of the Antarctic Ice Sheet, ice thickness and subglacial topography are critical factors for studying the basal conditions and mass balance in Antarctica. During CHINARE 24 (the 24th Chinese National Antarctic Research Expedition, 2007/08), the research team used a deep ice-penetrating radar system to measure the ice thickness and subglacial topography of the “Chinese Wall” around Kunlun Station, East Antarctica. Preliminary results show that the ice thickness varies mostly from 1600 m to 2800 m along the “Chinese Wall”, with the thickest ice being 3444 m, and the thinnest ice 1255 m. The average bedrock elevation is 1722 m, while the minimum is just 604 m. Compared with the northern side of the ice divide, the ice thickness is a little greater and the subglacial topography lower on the southern side, which is also characterized by four deep valleys. We found no basal freeze-on ice in the Gamburtsev Subglacial Mountains area, subglacial lakes, or water bodies along the “Chinese Wall”. Ice thickness and subglacial topography data extracted from the Bedmap 2 database along the “Chinese Wall” are consistent with our results, but their resolution and accuracy are very limited in areas where the bedrock fluctuates intensely. The distribution of ice thickness and subglacial topography detected by ice-penetrating radar clarifies the features of the ice sheet in this “inaccessible” region. These results will help to advance the study of ice sheet dynamics and the determination of future locations of the GSM’s geological and deep ice core drilling sites in the Dome A region.  相似文献   

20.
Our understanding of Lake Vostok, the huge subglacial lake beneath the East Antarctic Ice Sheet, has improved recently through the identification of key physical and chemical interactions between the ice sheet and the lake. The north of the lake, where the overlying ice sheet is thickest, is characterized by subglacial melting, whereas freezing of lake water occurs in the south, resulting in ~210 m of ice accretion to the underside of the ice sheet. The accreted ice contains lower concentrations of the impurities normally found in glacier ice, suggesting a net transfer of material from meltwater into the lake. The small numbers of microbes found so far within the accreted ice have DNA profiles similar to those of contemporary surface microbes. Microbiologists expect, however, that Lake Vostok, and other subglacial lakes, will harbour unique species, particularly within the deeper waters and associated sediments. The extreme environments of subglacial lakes are characterized by high pressures, low temperatures, permanent darkness, limited nutrient availability, and oxygen concentrations that are derived from the ice that provides the meltwater. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号