首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

We consider the turbulent dynamo action in a differentially rotating flow by making use of a kinematic approach when the effect of a generated magnetic field on turbulent motions is neglected. The mean electromotive force is calculated in a quasilinear approximation. Differential rotation can stretch turbulent magnetic field lines and break the symmetry of turbulence in such a way that turbulent motions become suitable for the generation of a large scale magnetic field. The presence of shear changes the type of an equation governing the mean magnetic field. Due to shear stresses the mean magnetic field can be generated by a turbulent dynamo action even in a uniform turbulence. The growth rate depends on the length scale of the mean field being faster for the field with a smaller length scale.  相似文献   

2.
Environmental flows are generally characterized by complex bed morphology and high current speeds. Such configurations favor the formation of vortex structures that strongly affect hydrody-namics and sediment transport. Large-Eddy Simulation (LES) enables investigation of the dynam-ics of the largest turbulence scales and, thanks to enhanced calculation resources, has now become applicable for simulating environmental flows. In this paper, a LES approach is developed in a CFD code (TELEMAC-3D), which was originally developed to simulate free surface flows using RANS methods. The present developments involve implementing subgrid models, boundary con-ditions and numerical schemes suitable for LES. The LES version of TELEMAC-3D was validated by comparing results on the model with experimental data for flow past a cylinder. Then, the model was applied to a test case representing flow over dunes. After validating the hydrodynamics, the model was used to assess the bottom shear stress, using both a RANS and a LES approach. Com-parison highlighted the potential contribution of LES to investigating the hydrodynamic forces acting on the bottom.  相似文献   

3.
Atmospheric and oceanic eddies are believed to be manifestations of quasigeostrophic turbulence — turbulence that occurs in rapidly rotating, vertically stratified fluid systems. The heat, momentum, and water transport by these eddies constitute a significant component of the climate balance, without which climate change cannot be understood. A major, unsolved problem is whether the turbulent eddy fluxes can be parameterized in terms of the large-scale, background flow. In the past, stochastic models have been used quite extensively to investigate quasigeostrophic turbulence in the case in which the eddy statistics are isotropic and homogeneous. Unfortunately, these models ignore the background shear which is absolutely essential to maintaining the eddies in the presence of dissipation. Recent attempts to extend stochastic models to shear flows have shown significant skill in predicting the structure of the eddy fluxes in arbitrary, three-dimensionally varying flows. This paper provides an accessible introduction to these models. The topics reviewed include quasigeostrophic turbulence and two-dimensional turbulence, non-modal andoptimal perturbations, mathematical theory of stochastic models, stochastic model simulations with realistic background states, and recent closure theories. A list of unsolved problems concludes this review.  相似文献   

4.
D. Yu  S. N. Lane 《水文研究》2011,25(1):36-53
Numerical modelling of flood inundation over large and complex floodplains often requires mesh resolutions coarser than the structural features (e.g. buildings) that are known to influence the inundation process. Recent research has shown that this mismatch is not well represented by conventional roughness treatments, but that finer‐scale features can be represented through porosity‐based subgrid‐scale treatments. This paper develops this work by testing the interactions between feature representation, subgrid‐scale resolution and mesh resolution. It uses as the basis for this testing a 2D diffusion‐based flood inundation model which is applied to a 2004 flood event in a topologically complex upland floodplain in northern England. This study formulated simulations with different grid mesh resolution and subgrid mesh ratio. The sensitivity of the model to mesh resolution and roughness specification was investigated. Model validation and verification suggest that the subgrid treatment with higher subgrid mesh ratio can give much improved predictions of flood propagation, in particular, in terms of the predicted water depth. This study also highlighted the limitation of using at‐a‐point in time inundation extent for validation of flood models of this type. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Coupled groundwater–surface water (GW–SW) models are capable of simulating complex hydrological systems when used at fine resolutions. However, properly characterizing bulk GW–SW fluxes for either coarsely resolved integrated models or basin‐discretized surface water models remains a challenge. Loss of subgrid detail, while beneficially decreasing computational cost, leads to a decrease in model accuracy as scale effects become important. Ideally, coarse low‐resolution models should be informed by expected subgrid behaviour, reducing the impact of scale effects. Determining how to best represent these fine‐scale details in lower‐resolution models is important for improving the accuracy and appropriateness of these models. To investigate some of these scale effects, we here explore the relationships between area‐averaged hydraulic head and bulk GW–SW exchange fluxes (e.g. evapotranspiration and discharge), all of which are presumed to be controlled predominantly by subgrid topographic effects. These relationships may be useful for simply upscaling models without the complete loss of crucial fine‐resolution subgrid details. Using finely resolved simulation output from Modflow for a fine‐resolution simulation and post‐processed results generated to represent coarser resolutions, upscaled flux relationships (UFRs) are generated for multiple terrains; these UFRs define the relationships that exist between average hydraulic head and average fluxes in unconfined aquifer systems. It is found that, for steady‐flow regimes, similar one‐to‐one power law relationships consistently exist between area‐averaged hydraulic heads, exchange fluxes and saturated area for a variety of terrains. Additionally, when the averaged values are properly normalized, the generated steady‐state UFRs for a single terrain are independent of hydraulic conductivity and potential evapotranspiration rates and apparently insensitive to the presence of mild heterogeneity. While some hysteresis is apparent in the relationships under transient conditions, transient artefacts are shown to be minor under some circumstances, indicating that UFRs may be applied to both steady‐state and transient scenarios. Simpler tests performed under saturated and variably saturated conditions in a cross‐sectional model show similar trends, suggesting that the UFR representation is extendable to systems where the vadose zone plays a significant role. It is suggested that relatively simple UFRs such as these may find use as an alternative to direct point upscaling or multi‐resolution models for estimating GW–SW exchange fluxes in coarse‐scale models. They also appear to justify the functional form of some classical models of baseflow and evapotranspiration used in conceptual surface water models. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Abstract

We consider the mixing of passive tracers and vorticity by temporally fluctuating large scale flows in two dimensions. In analyzing this problem, we employ modern developments stemming from properties of Hamiltonian chaos in the particle trajectories; these developments generally come under the heading “chaotic advection” or “Lagrangian turbulence.” A review of the salient properties of this kind of mixing, and the mathematics used to analyze it, is presented in the context of passive tracer mixing by a vacillating barotropic Rossby wave. We then take up the characterization of subtler aspects of the mixing. It is shown the chaotic advection produces very nonlocal mixing which cannot be represented by eddy diffusivity. Also, the power spectrum of the tracer field is found to be k ? l at shortwaves—precisely as for mixing by homogeneous, isotropic two dimensional turbulence,—even though the physics of the present case is very different. We have produced two independent arguments accounting for this behavior.

We then examine integrations of the unforced barotropic vorticity equation with initial conditions chosen to give a large scale streamline geometry similar to that analyzed in the passive case. It is found that vorticity mixing proceeds along lines similar to passive tracer mixing. Broad regions of homogenized vorticity ultimately surround the separatrices of the large scale streamline pattern, with vorticity gradients limited to nonchaotic regions (regions of tori) in the corresponding passive problem.

Vorticity in the chaotic zone takes the form of an arrangement of strands which become progressively finer in scale and progressively more densely packed; this process transfers enstrophy to small scales. Although the enstrophy cascade is entirely controlled by the large scale wave, the shortwave enstrophy spectrum ultimately takes on the classical k ? l form. If one accepts that the enstrophy cascade is indeed mediated by chaotic advection, this is the expected behavior. The extreme form of nonlocality (in wavenumber space) manifest in this example casts some doubt on the traditional picture of enstrophy cascade in the Atmosphere, which is based on homogeneous two dimensional turbulence theory. We advance the conjecture that these transfers are in large measure attributable to large scale, low frequency, planetary waves.

Upscale energy transfers amplifying the large scale wave do indeed occur in the course of the above-described process. However, the energy transfer is complete long before vorticity mixing has gotten very far, and therefore has little to do with chaotic advection. In this sense, the vorticity involved in the enstrophy cascade is “fossil vorticity,” which has already given up its energy to the large scale.

We conclude with some speculations concerning statistical mechanics of two dimensional flow, prompted by our finding that flows with identical initial energy and enstrophy can culminate in very different final states. We also outline prospects for further applications of chaotic mixing in atmospheric problems.  相似文献   

7.
Abstract

It is shown that, even for vanishingly small diffusivities of momentum and heat, a rotating stratified zonal shear flow is more unstable to zonally symmetric disturbances than would be indicated by the classical inviscid adiabatic criterion, unless σ, the Prandtl number, = 1. Both monotonic instability, and growing oscillations ("overstability") are involved, the former determining the stability criterion and having the higher growth rates. The more σ differs from 1, the larger the region in parameter space for which the flow is stable by the classical criterion, but actually unstable.

If the baroclinity is sufficiently great for the classical criterion also to indicate instability, the corresponding inviscid adiabatic modes usually have the numerically highest growth rates. An exception is the case of small isotherm slope and small σ.

A single normal mode of the linearized theory is also, formally, a finite amplitude solution; however, no theoretical attempt is made to assess the effect of finite amplitude in general. But, in a following paper, viscous overturning (the mechanism giving rise to the sub‐classical monotonic instability when σ > 1) is shown to play an important role at finite amplitude in certain examples of nonlinear steady thermally‐driven axisymmetric flow of water in a rotating annulus. Irrespective of whether analogous mechanisms turn out to be identifiable and important in large‐scale nature, it appears then that a Prandtl‐type parameter should enter the discussion of any attempt to make laboratory or numerical models of zonally‐symmetric baroclinic geophysical or astrophysical flows.  相似文献   

8.
Abstract

A depth-dependent model for the topographic rectification of tidal currents in a homogeneous rotating fluid is used to examine the dependence of the rectified mean flow on various tidal, topographic and frictional parameters. Friction is parameterized through a vertically-uniform, time-independent vertical eddy viscosity and a bottom stress law applied near the top of the constant stress layer. The model neglects the interaction of mean and tidal currents, assumes uniformity along isobaths, and is closed with the assumption of zero depth-averaged mean flow across isobaths.

In the limit of depth-independence, the model reduces to that considered by Huthnance (1973) and Loder (1980) which, for weak friction, favours anticyclonic mean circulation around shallow regions and Lagrangian flow which is significantly reduced from the Eulerian. With the inclusion of vertical structure, the magnitude of the anticyclonic flow is amplified suggesting that depth-independent models may underestimate the along-isobath flow. For strong friction the direction of the mean flow depends on the orientation of the tidal ellipse relative to the isobaths. The depthindependent model again underestimates the magnitude of the along-isobath flow, but this can be offset with an appropriate reduction of the bottom friction coefficient.

The cross-isobath mean flows are one to two orders of magnitude weaker than the along-isobath flows and generally have more vertical structure. There is also a significant Stokes drift in the cross-isobath direction. Although there is some tendency for the cross-isobath mean bottom current to be down the cross-isobath mean pressure gradient, it appears that it is not generally possible to infer this current from depth-independent models.  相似文献   

9.
It is well known that snow plays an important role in land surface energy balance; however, modelling the subgrid variability of snow is still a challenge in large‐scale hydrological and land surface models. High‐resolution snow depth data and statistical methods can reveal some characteristics of the subgrid variability of snow depth, which can be useful in developing models for representing such subgrid variability. In this study, snow depth was measured by airborne Lidar at 0.5‐m resolution over two mountainous areas in south‐western Wyoming, Snowy Range and Laramie Range. To characterize subgrid snow depth spatial distribution, measured snow depth data of these two areas were meshed into 284 grids of 1‐km × 1‐km. Also, nine representative grids of 1‐km × 1‐km were selected for detailed analyses on the geostatistical structure and probability density function of snow depth. It was verified that land cover is one of the important factors controlling spatial variability of snow depth at the 1‐km scale. Probability density functions of snow depth tend to be Gaussian distributions in the forest areas. However, they are eventually skewed as non‐Gaussian distribution, largely due to the no‐snow areas effect, mainly caused by snow redistribution and snow melt. Our findings show the characteristics of subgrid variability of snow depth and clarify the potential factors that need to be considered in modelling subgrid variability of snow depth.  相似文献   

10.
Better models are more effectively connected models   总被引:1,自引:0,他引:1       下载免费PDF全文
Water‐ and sediment‐transfer models are commonly used to explain or predict patterns in the landscape at scales different from those at which observations are available. These patterns are often the result of emergent properties that occur because processes of water and sediment transfer are connected in different ways. Recent advances in geomorphology suggest that it is important to consider, at a specific spatio‐temporal scale, the structural connectivity of system properties that control processes, and the functional connectivity resulting from the way those processes operate and evolve through time. We argue that a more careful consideration of how structural and functional connectivity are represented in models should lead to more robust models that are appropriate for the scale of application and provide results that can be upscaled. This approach is necessary because, notwithstanding the significant advances in computer power in recent years, many geomorphic models are still unable to represent the landscape in sufficient detail to allow all connectivity to emerge. It is important to go beyond the simple representation of structural connectivity elements and allow the dynamics of processes to be represented, for example by using a connectivity function. This commentary aims to show how a better representation of connectivity in models can be achieved, by considering the sorts of landscape features present, and whether these features can be represented explicitly in the model spatial structure, or must be represented implicitly at the subgrid scale. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

11.
《Advances in water resources》2003,26(10):1041-1060
A new technique for generating coarse scale models of highly heterogeneous subsurface formations is developed and applied. The method uses generic global coarse scale simulations to determine the boundary conditions for the local calculation of upscaled properties (permeability or transmissibility). An iteration procedure assures consistency between the local and global calculations. Transport processes are simulated using a subgrid velocity reconstruction technique applied in conjunction with the local–global upscaling procedure. For highly heterogeneous (e.g., channelized) systems, the new method is shown to provide considerably more accurate coarse scale models for flow and transport, relative to reference fine scale results, than do existing local (and extended local) upscaling techniques. The applicability of the upscaled models for different global boundary conditions is also considered.  相似文献   

12.
ABSTRACT

It is shown that flows in precessing cubes develop at certain parameters large axisymmetric components in the velocity field which are large enough to either generate magnetic fields by themselves, or to contribute to the dynamo effect if inertial modes are already excited and acting as a dynamo. This effect disappears at small Ekman numbers. The critical magnetic Reynolds number also increases at low Ekman numbers because of turbulence and small-scale structures.  相似文献   

13.
Abstract

It is shown that in the Earth's core, where the geodynamo is at work (and is supplied with energy by the prevailing unstable density stratification), a buoyancy instability of a local character exists which is highly supercritical. This instability results in fully developed turbulence dominated by small scale vortices. The influence of the Earth's rotation and of the magnetic field produced by the geodynamo makes this small scale turbulence highly anisotropic. A qualitative picture of this local anisotropic turbulence is devised and the main parameters characterizing it are estimated. Expressions for the turbulent diffusivity are developed and discussed.  相似文献   

14.
15.
Evaporation rate estimation is important for water resource studies. Previous studies have shown that the radiation‐based models, mass transfer models, temperature‐based models and artificial neural network (ANN) models generally perform well for areas with a temperate climate. This study evaluates the applicability of these models in estimating hourly and daily evaporation rates for an area with an equatorial climate. Unlike in temperate regions, solar radiation was found to correlate best with pan evaporation on both the hourly and daily time‐scales. Relative humidity becomes a significant factor on a daily time‐scale. Among the simplified models, only the radiation‐based models were found to be applicable for modelling the hourly and daily evaporations. ANN models are generally more accurate than the simplified models if an appropriate network architecture is selected and a sufficient number of data points are used for training the network. ANN modelling becomes more relevant when both the energy‐ and aerodynamics‐driven mechanisms dominate, as the radiation and the mass transfer models are incapable of producing reliable evaporation estimates under this circumstance. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
A prototype flow meter has been developed, based upon the heat perturbation principle, to monitor groundwater specific discharge in soft sediments. The device is designed for use in spatially intensive, long-term monitoring campaigns in remote or inconvenient locations, and is cheap, robust and capable of being logged automatically. The results of the laboratory tests indicate that the heat perturbation principle is suitable for determining the magnitude of specific discharge to a degree of accuracy that would be useful in practical applications in dynamic groundwater systems with rapidly changing flows of approximately 1 md−1 or more and that the groundwater flow direction can generally be determined to a high level of precision. The accuracy and reliability of the estimates of specific discharge have been shown to depend strongly upon the geometrical precision of manufacture and the quality of the temperature monitoring system. These factors become most significant in the estimation of lower flows and further investigation is required to determine the detection limit of the device. Specific discharge estimates have been shown to be insensitive to dispersivity values appropriate to the scale of the device. Unlike the majority of heat perturbation devices, calibration is unnecessary.  相似文献   

17.
Abstract

Fluxes of angular momentum produced by turbulence in rotating fluids are derived with the effects of a magnetic field included. It is assumed that the rotation is slow but that the magnetic field is of arbitrary strength. A mean magnetic field is shown to produce qualitative changes of the sources of the differential rotation rather than the quenching of differential rotation usually expected. A new equatorward flux of angular momentum arises through the influence of the toroidal magnetic field. The possibility of interpreting the torsional oscillations of the Sun as a consequence of the magnetic perturbations of the turbulent angular momentum fluxes is discussed.  相似文献   

18.

Oceanic mesoscale eddies which are analogs of well known synoptic eddies (cyclones and anticyclones), are studied on the basis of the turbulence model originated by Dubovikov (Dubovikov, M.S., "Dynamical model of turbulent eddies", Int. J. Mod. Phys. B7, 4631-4645 (1993).) and further developed by Canuto and Dubovikov (Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: I. General formalism", Phys. Fluids 8, 571-586 (1996a) (CD96a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: II. Sheardriven flows", Phys. Fluids 8, 587-598 (1996b) (CD96b); Canuto, V.M., Dubovikov, M.S., Cheng, Y. and Dienstfrey, A., "A dynamical model for turbulence: III. Numerical results", Phys. Fluids 8, 599-613 (1996c)(CD96c); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "A dynamical model for turbulence: IV. Buoyancy-driven flows", Phys. Fluids 9, 2118-2131 (1997a) (CD97a); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: V. The effect of rotation", Phys. Fluids 9, 2132-2140 (1997b) (CD97b); Canuto, V.M., Dubovikov, M.S. and Wielaard, D.J., "A dynamical model for turbulence: VI. Two dimensional turbulence", Phys. Fluids 9, 2141-2147 (1997c) (CD97c); Canuto, V.M. and Dubovikov, M.S., "Physical regimes and dimensional structure of rotating turbulence", Phys. Rev. Lett. 78, 666-669 (1997d) (CD97d); Canuto, V.M., Dubovikov, M.S. and Dienstfrey, A., "Turbulent convection in a spectral model", Phys. Rev. Lett. 78, 662-665 (1997e) (CD97e); Canuto, V.M. and Dubovikov, M.S., "A new approach to turbulence", Int. J. Mod. Phys. 12, 3121-3152 (1997f) (CD97f); Canuto, V.M. and Dubovikov, M.S., "Two scaling regimes for rotating Raleigh-Benard convection", Phys. Rev. Letters 78, 281-284, (1998) (CD98); Canuto, V.M. and Dubovikov, M.S., "A dynamical model for turbulence: VII. The five invariants for shear driven flows", Phys. Fluids 11, 659-664 (1999a) (CD99a); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: VIII. IR and UV Reynolds stress spectra for shear driven flows", Phys. Fluids 11, 656-677 (1999b) (CD99b); Canuto, V.M., Dubovikov, M.S. and Yu, G., "A dynamical model for turbulence: IX. The Reynolds stress for shear driven flows", Phys. Fluids 11, 678-694 (1999c) (CD99c).). The CD model derives from general principles and does not resort to any free parameters. Yet, it successfully describes a wide variety of quite different turbulent flows. In the present work we apply CD model to the compressible ocean. The model yields mesoscale eddies generated by the baroclinic instability. The latter, in turn, arises from the nonhorizontal orientation of the surfaces of the constant potential density (isopycnals). The obtained dynamic equations for eddy fields reduce to a vertical eigen value problem, an eigen value real part yielding an eddy radius, while an imaginary part - an eddy drift velocity. The size of the eddy is about 3rd (where rd is the Rossby deformation radius). The eddy dynamics has the following distinctive features: (1) the large scale potential energy feeds the eddy potential energy (EPE) at scales ~ rd , (2) from rd EPE cascades to the smaller scales down to ~ l 1 determined from the condition that the spectral Rossby number Ro(q) ≡ qU'(q)f?1 becomes ~ 1 (q is two-dimensional wave number within an isopycnal surface), (3) at scales ~ l 1 EPE transforms into eddy kinetic energy (EKE) which cascades backwards to the larger scales up to ~ rd , where it transforms back into EPE, thereby closing the energy flux circulation in a wavenumber space, (4) dissipation of the eddy energy (EE) occurs at scales ~ l 1 since at those scales the fluctuating component of the vertical shear is maximal and equals to the Brunt-Vaisala frequency. The latter equality is the well known condition for generating the vertical turbulence which dissipates EE. The model enables to determine all turbulence characteristics, including the horizontal (isopycnal) diffusivity κ h in terms of the large scale mean fields. From the typical values of the latter follow estimates for the parameters of an eddy which agree well with the observational and simulational data: kh ~ 103m2s?1, EKE K ~ 103m2s?1, rd ~ 3 × 104m, lI ~ 10. In what concerns the bolus velocity, it contains additional terms (as compared to the model of Gent and McWilliams (Gent, P.R. and McWilliams, J.C., "Isopycnal mixing in ocean circulation models", J. Phys. Oceanogr. 20, 150-155 (1990)) which result from the eddy fields advection by a mean velocity ū. Since the latter varies with depth, it is inevitable to differ from the eddy drift velocity that produces a shearing force eroding the eddy coherent structures and, therefore, contributing negatively to EE production. This is in contrast with the positive contribution from the GM term (which is due to the baroclinic instability). In those regions where the disruptive action is stronger, there is no eddy generation.  相似文献   

19.
Abstract

Non-Markovian closure theories are compared with ensemble averaged direct numerical simulations (DNS) for decaying two-dimensional turbulence at large scale Reynolds numbers ranging from ≈ 50 to ≈ 4000. The closures, as well as DNS, are formulated for discrete wave numbers relevant to flows on the doubly periodic domain and are compared with the results of continuous wave number closures. The direct interaction approximation (DIA), self-consistent field theory (SCFT) and local energy-transfer theory (LET) closures are also compared with cumulant update versions of these closures (CUDIA, CUSCFT, CULET). The cumulant update closures are shown to have comparable performance to the standard closures but are much more efficient allowing long time integrations.

The discrete wave number closures perform considerably better than continuous wave number closures as far as evolved energy and transfer spectra and skewness are concerned. The discrete wave number closures are in reasonable agreement with DNS in the energy containing range of the large scales for Reynolds numbers ranging from ≈ 50 to ≈ 4000. The closures tend to underestimate the enstrophy flux to high wave numbers, increasingly so with increasing Reynolds number, resulting in underestimation of small-scale kinetic energy.  相似文献   

20.
We investigate instability of convective flows of simple structure (rolls, standing and travelling waves) in a rotating layer with stress-free horizontal boundaries near the onset of convection. We show that the flows are always unstable to perturbations, which are linear combinations of large-scale modes and short-scale modes, whose wave numbers are close to those of the perturbed flows. Depending on asymptotic relations of small parameters α (the difference between the wave number of perturbed flows and the critical wave number for the onset of convection) and ε (ε2 being the overcriticality and the perturbed flow amplitude being O(ε)), either small-angle or Eckhaus instability is prevailing. In the case of small-angle instability for rolls the largest growth rate scales as ε8/5, in agreement with results of Cox and Matthews (Cox, S.M. and Matthews, P.C., Instability of rotating convection. J. Fluid. Mech., 2000, 403, 153–172) obtained for rolls with k = k c . For waves, the largest growth rate is of the order ε4/3. In the case of Eckhaus instability the growth rate is of the order of α2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号