首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress—Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of order unity, as is the ratio of thermal to magnetic diffusivity. Attention is focused on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection. The case of main interest is the layer confined between electrically-insulating no-slip walls, but the analysis is guided by a parallel study based on illustrative boundary conditions that are mathematically simpler.  相似文献   

2.
Abstract

To model penetrative convection at the base of a stellar convection zone we consider two plane parallel, co-rotating Boussinesq layers coupled at their fluid interface. The system is such that the upper layer is unstable to convection while the lower is stable. Following the method of Kondo and Unno (1982, 1983) we calculate critical Rayleigh numbers Rc for a wide class of parameters. Here, Rc is typically much less than in the case of a single layer, although the scaling Rc~T2/3 as T → ∞ still holds, where T is the usual Taylor number. With parameters relevant to the Sun the helicity profile is discontinuous at the interface, and dominated by a large peak in a thin boundary layer beneath the convecting region. In reality the distribution is continuous, but the sharp transition associated with a rapid decline in the effective viscosity in the overshoot region is approximated by a discontinuity here. This source of helicity and its relation to an alpha effect in a mean-field dynamo is especially relevant since it is a generally held view that the overshoot region is the location of magnetic field generation in the Sun.  相似文献   

3.
Abstract

The linear hydromagnetic stability of a non-constantly stratified horizontal fluid layer permeated by an azimuthal non-homogeneous magnetic field is investigated for various widths of the stably stratified part of the layer in the geophysical limit q→0 (q is the ratio of thermal and magnetic diffusivities). The choice of the strength of the magnetic field Bo is as in Soward (1979) (see also Soward and Skinner, 1988) and the equations for the disturbances are treated as in Fearn and Proctor (1983). It was found that convection is developed in the whole layer regardless of the width of its stably stratified part. The thermal instability penetrates essentially from the unstably stratified part of the layer into the stably stratified part for A ~ 1 (A characterises the ratio of the Lorentz and Coriolis forces). When the magnetic field is strong (A>1) the thermal convection is suppressed in the stably stratified part of the layer. However, in this case, it is replaced by the magnetically driven instability; which is fully developed in the whole layer. The thermal instabilities always propagate westward and exist for all the modes m. The magnetically driven instabilities propagate either westward or eastward according to the width of the stably and unstably stratified parts and exist only for the mode m=1.  相似文献   

4.
We study the effect of stratification and compressibility on the threshold of convection and the heat transfer by developed convection in the nonlinear regime in the presence of strong background rotation. We consider fluids both with constant thermal conductivity and constant thermal diffusivity. The fluid is confined between two horizontal planes with both boundaries being impermeable and stress-free. An asymptotic analysis is performed in the limits of weak compressibility of the medium and rapid rotation (τ?1/12???|θ|???1, where τ is the Taylor number and θ is the dimensionless temperature jump across the fluid layer). We find that the properties of compressible convection differ significantly in the two cases considered. Analytically, the correction to the characteristic Rayleigh number resulting from small compressibility of the medium is positive in the case of constant thermal conductivity of the fluid and negative for constant thermal diffusivity. These results are compared with numerical solutions for arbitrary stratification. Furthermore, by generalizing the nonlinear theory of Julien and Knobloch [Fully nonlinear three-dimensional convection in a rapidly rotating layer. Phys. Fluids 1999, 11, 1469–1483] to include the effects of compressibility, we study the Nusselt number in both cases. In the weakly nonlinear regime we report an increase of efficiency of the heat transfer with the compressibility for fluids with constant thermal diffusivity, whereas if the conductivity is constant, the heat transfer by a compressible medium is more efficient than in the Boussinesq case only if the specific heat ratio γ is larger than two.  相似文献   

5.
Abstract

The paper explores some of the many facets of the problem of the generation of magnetic fields in convective zones of declining vigor and/or thickness. The ultimate goal of such work is the explanation of the magnetic fields observed in A-stars. The present inquiry is restricted to kinematical dynamos, to show some of the many possibilities, depending on the assumed conditions of decline of the convection. The examples serve to illustrate in what quantitative detail it will be necessary to describe the convection in order to extract any firm conclusions concerning specific stars.

The first illustrative example treats the basic problem of diffusion from a layer of declining thickness. The second adds a buoyant rise to the field in the layer. The third treats plane dynamo waves in a region with declining eddy diffusivity, dynamo coefficient, and large-scale shear. The dynamo number may increase or decrease with declining convection, with an increase expected if the large-scale shear does not decline as rapidly as the eddy diffusivity. It is shown that one of the components of the field may increase without bound even in the case that the dynamo number declines to zero.  相似文献   

6.
7.
Abstract

A linear analysis is used to study the stability of a rapidly rotating, electrically-conducting, self-gravitating fluid sphere of radius r 0, containing a uniform distribution of heat sources and under the influence of an azimuthal magnetic field whose strength is proportional to the distance from the rotation axis. The Lorentz force is of a magnitude comparable with that of the Coriolis force and so convective motions are fully three-dimensional, filling the entire sphere. We are primarily interested in the limit where the ratio q of the thermal diffusivity κ to the magnetic diffusivity η is much smaller than unity since this is possibly of the greatest geophysical relevance.

Thermal convection sets in when the temperature gradient exceeds some critical value as measured by the modified Rayleigh number Rc. The critical temperature gradient is smallest (Rc reaches a minimum) when the magnetic field strength parameter Λ ? 1. [Rc and Λ are defined in (2.3).] The instability takes the form of a very slow wave with frequency of order κ/r 2 0 and its direction of propagation changes from eastward to westward as Λ increases through Λ c ? 4.

When the fluid is sufficiently stably stratified and when Λ > Λm ? 22 a new mode of instability sets in. It is magnetically driven but requires some stratification before the energy stored in the magnetic field can be released. The instability takes the form of an eastward propagating wave with azimuthal wavenumber m = 1.  相似文献   

8.
Abstract

Dynamic interaction between magnetic field and fluid motion is studied through a numerical experiment of nonlinear three-dimensional magnetoconvection in a rapidly rotating spherical fluid shell to which a uniform magnetic field parallel to its spin axis is applied. The fluid shell is heated by internal heat sources to maintain thermal convection. The mean value of the magnetic Reynolds number in the fluid shell is 22.4 and 10 pairs of axially aligned vortex rolls are stably developed. We found that confinement of magnetic flux into anti-cyclonic vortex rolls was crucial on an abrupt change of the mode of magnetoconvection which occurred at Δ = 1 ~ 2, where A is the Elsasser number. After the mode change, the fluid shell can store a large amount of magnetic flux in itself by changing its convection style, and the magnetostrophic balance among the Coriolis, Lorentz and pressure forces is established. Furthermore, the toroidal/poloidal ratio of the induced magnetic energy becomes less than unity, and the magnetized anti-cyclones are enlarged due to the effect of the magnetic force. Using these key ideas, we investigated the causes of the mode change of magnetoconvection. Considering relatively large magnetic Reynolds number and a rapid rotation rate of this model, we believe that these basic ideas used to interpret the present numerical experiment can be applied to the dynamics in the Earth's and other planetary cores.  相似文献   

9.
Abstract

An inviscid, electrically conducting fluid is contained between two rigid horizontal planes and bounded laterally by two vertical walls. The fluid is permeated by a strong uniform horizontal magnetic field aligned with the side wall boundaries and the entire system rotates rapidly about a vertical axis. The ratio of the magnitudes of the Lorentz and Coriolis forces is characterized by the Elsasser number, A, and the ratio of the thermal and magnetic diffusivities, q. By heating the fluid from below and cooling from above the system becomes unstable to small perturbations when the adverse density gradient as measured by the Rayleigh number, R, is sufficiently large.

With the viscosity ignored the geostrophic velocity, U, which is aligned with the applied magnetic field, is independent of the coordinate parallel to the rotation axis but is an arbitrary function of the horizontal cross-stream coordinate. At the onset of instability the value of U taken ensures that Taylor's condition is met. Specifically the Lorentz force, which results from marginal convection must not cause any acceleration of the geostrophic flow. It is found that the critical Rayleigh number characterising the onset of instability is generally close to the corresponding value for the usual linear problem, in which Taylor's condition is ignored and U is chosen to vanish. Significant differences can occur when q is small owing to a complicated flow structure. There is a central interior region in which the local magnetic Reynolds number, Rm , based on U is small of order q and on exterior region in which Rm is of order unity.  相似文献   

10.
ABSTRACT

Turbulence in the Earth's outer core not only increases all diffusive coefficients, but it can lead to their anisotropic properties. Therefore, the model of rotating magnetoconvection in horizontal plane layer rotating about vertical axis and permeated by homogeneous horizontal magnetic field, influenced by anisotropic diffusivities, viscosity and thermal diffusivity, is advanced by considering the magnetic diffusivity as anisotropic too. The case of full anisotropy, i.e. all coefficients anisotropic, is compared with both the case possessing isotropic diffusion coefficients and the case of partial anisotropy, i.e. mixed case with isotropic and anisotropic diffusive coefficients (viscosity and thermal diffusivity anisotropic and magnetic diffusivity isotropic). The existence and preference of instabilities is sensitive to all non-dimensional parameters, as well as on anisotropic parameter, the ratio of horizontal and vertical diffusivities. Two types of anisotropy, BM (introduced by Braginsky and Meytlis) and SA (stratification anisotropy) are studied. BM as well as SA were applied by ?oltis and Brestenský to the study of the partial anisotropy; this study is extended, in this paper, to full anisotropy cases (full SA and full BM) and it is shown that the style of convection given by the onset of stationary modes is more affected by anisotropic diffusivities in BM than in SA anisotropy. The important influence of strong anisotropies in the Earth's core dynamics is stressed.  相似文献   

11.
The onset of convection in a layer of an electrically conducting fluid heated from below is considered in the case when the layer is permeated by a horizontal magnetic field of strength B 0 the orientation of which varies sinusoidally with height. The critical value of the Rayleigh number for the onset of convection is derived as a function of the Chandrasekhar number Q. With increasing Q the height of the convection rolls decreases, while their horizontal wavelength slowly increases. Potential applications to the penumbral filaments of sunspots are briefly discussed.  相似文献   

12.
Abstract

This paper analyzes the linear stability of a rapidly-rotating, stratified sheet pinch in a gravitational field, g, perpendicular to the sheet. The sheet pinch is a layer (O ? z ? d) of inviscid, Boussinesq fluid of electrical conductivity σ, magnetic permeability μ, and almost uniform density ρ o; z is height. The prevailing magnetic field. B o(z), is horizontal at each z level, but varies in direction with z. The angular velocity, Ω, is vertical and large (Ω ? VA/d, where VA = B0√(μρ0) is the Alfvén velocity). The Elsasser number, Λ = σB2 0/2Ωρ0, measures σ. A (modified) Rayleigh number, R = gβd20V2 A, measures the buoyancy force, where β is the imposed density gradient, antiparallel to g. A Prandtl number, PK = μσK, measures the diffusivity, k, of density differences.  相似文献   

13.
Abstract

Results are presented of a numerical study of marginal convection of electrically conducting fluid, permeated by a strong azimuthal magnetic field, contained in a circular cylinder rotating rapidly about its vertical axis of symmetry. To this basic state is added a geostrophic flow UG (s), constant on geostrophic cylinders radius s. Its magnitude is fixed by requiring that the Lorentz forces induced by the convecting mode satisfy Taylor's condition. The nonlinear mathematical problem describing the system was developed in an earlier paper (Skinner and Soward, 1988) and the predictions made there are confirmed here. In particular, for small values of the Roberts number q which measures the ratio of the thermal to magnetic diffusivities, two distinct regions can be recognised within the fluid with the outer region moving rapidly compared to the inner. Otherwise, conditions for the onset of instability via the Taylor state (UG 0) do not differ significantly from those appropriate to the static (UG = 0) basic state. The possible disruption of the Taylor states by shear flow instabilities is discussed briefly.  相似文献   

14.
Abstract

The weak-field Benard-type dynamo treated by Soward is considered here at higher levels of the induced magnetic field. Two sources of instability are found to occur in the intermediate field regime M ~ T 1/12, where M and T are the Hartmann and Taylor numbers. On the time scale of magnetic diffusion, solutions may blow up in finite time owing to destabilization of the convection by the magnetic field. On a faster time scale a dynamic instability related to MAC-wave instability can also occur. It is therefore concluded that the asymptotic structure of this dynamo is unstable to virtual increases in the magnetic field energy.

In an attempt to model stabilization of the dynamo in a strong-field regime we consider two approximations. In the first, a truncated expansion in three-dimensional plane waves is studied numerically. A second approach utilizes an ad hoc set of ordinary differential equations which contains many of the features of convection dynamos at all field energies. Both of these models exhibit temporal intermittency of the dynamo effect.  相似文献   

15.
Abstract

The stratification profile of the Earth's magnetofluid outer core is unknown, but there have been suggestions that its upper part may be stably stratified. Braginsky (1984) suggested that the magnetic analog of Rossby (planetary) waves in this stable layer (the ‘H’ layer) may be responsible for a portion of the short-period secular variation. In this study, we adopt a thin shell model to examine the dynamics of the H layer. The stable stratification justifies the thin-layer approximations, which greatly simplify the analysis. The governing equations are then the Laplace's tidal equations modified by the Lorentz force terms, and the magnetic induction equation. We linearize the Lorentz force in the Laplace's tidal equations and the advection term in the magnetic induction equation, assuming a zeroth order dipole field as representative of the magnetic field near the insulating core-mantle boundary. An analytical β-plane solution shows that a magnetic field can release the equatorial trapping that non-magnetic Rossby waves exhibit. A numerical solution to the full spherical equations confirms that a sufficiently strong magnetic field can break the equatorial waveguide. Both solutions are highly dissipative, which is a consequence of our necessary neglect of the induction term in comparison with the advection and diffusion terms in the magnetic induction equation in the thin-layer limit. However, were one to relax the thin-layer approximations and allow a radial dependence of the solutions, one would find magnetic Rossby waves less damped (through the inclusion of the induction term). For the magnetic field strength appropriate for the H layer, the real parts of the eigenfrequencies do not change appreciably from their non-magnetic values. We estimate a phase velocity of the lowest modes that is rather rapid compared with the core fluid speed typically presumed from the secular variation.  相似文献   

16.
Abstract

We consider the stability of a toroidal magnetic field B = B(s*) (where (s*,φ,z*) are cylindrical polar coordinates) in a cylindrical annulus of conducting fluid with inner and outer radii si and s o rotating rapidly about its axis. The outer boundary is taken to be either insulating or perfectly conducting, and the effect of a finite magnetic diffusivity in the inner core is investigated. The ratio of magnetic diffusivity in the inner core to that of the outer core is denoted by ηη→0 corresponding to a perfectly conducting inner core and η→∞ to an insulating one. Comparisons with the results of Fearn (1983b, 1988) were made and a good match found in the limits η→0 and η→∞ with his perfectly conducting and insulating results, respectively. In addition a new mode of instability was found in the eta;→0 regime. Features of this new mode are low frequency (both the frequency and growth rate →0 as η→0) and penetration deep into the inner core. Typically it is unstable at lower magnetic field strengths than the previously known instabilities.  相似文献   

17.
Abstract

The study of the mechanisms controlling the stratification in closed fluid regions is an important branch of geophysical fluid dynamics. Part of this subject can be handled with a simple linear model, consisting of a buoyancy layer at the non-horizontal boundaries of a container and an advective-diffusive interior coupled by volume continuity. The model is valid under the following conditions: firstly, the buoyancy-frequency characterizing the solution must be sufficiently large to give rise to a flow pattern of boundary layer type and, secondly, the non-horizontal walls must not have too large thermal conductivity.

The main purpose of the present paper is to summarise previous work done by the authors in this field and to present some consequences of their theory not previously discussed.

Three important cases are discussed; certain stationary solutions, the decay of a given stratification and the build up of a stratification in a homogeneous fluid. The experimental results concerning the afore-mentioned cases are presented.  相似文献   

18.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   

19.
Abstract

A spherical αω-dynamo is studied for small values of the viscous coupling parameter ε ~ v1/2, paying attention particularly to large dynamo numbers. The present study is a follow-up of the work by Hollerbach et al. (1992) with their choice of α-effect and Archimedean wind including also the constraint of magnetic field symmetry (or antisymmetry) due to equatorial plane. The magnetic field scaled by ε1/2 is independent of ε in the solutions for dynamo numbers smaller than a certain value of D b (the Ekman state) which are represented by dynamo waves running from pole to equator or vice-versa. However, for dynamo numbers larger than D b the solution bifurcates and subsequently becomes dependent on ε. The bifurcation is a consequence of a crucial role of the meridional convection in the mechanism of magnetic field generation. Calculations suggest that the bifurcation appears near dynamo number about 33500 and the solutions for larger dynamo numbers and ε = 0 become unstable and fail, while the solutions for small but non-zero ε are characterized by cylindrical layers of local maximum of magnetic field and sharp changes of geostrophic velocity. Our theoretical analysis allows us to conclude that our solution does not take the form of the usual Taylor state, where the Taylor constraint should be satisfied due to the special structure of magnetic field. We rather obtained the solution in the form of a “weak” Taylor state, where the Taylor constraint is satisfied partly due to the amplitude of the magnetic field and partly due to its structure. Calculations suggest that the roles of amplitude and structure are roughly fifty-fifty in our “weak” Taylor state solution and thus they can be called a Semi-Taylor state. Simple estimates show that also Ekman state solutions can be applicable in the geodynamo context.  相似文献   

20.
Abstract

Nonlinear two-dimensional magnetoconvection, with a Boussinesq fluid driven across the field-lines, is taken as a model for giant-cell convection in the sun and late-type stars. A series of numerical experiments shows the sensitivity of the horizontal scale of convection to the applied field and to the Rayleigh number R. Overstable oscillations occur in cells as broad as they are deep, but increasing R leads to steady motions of much greater wavelength. Purely geometrical effects can cause oscillation: this work implies that strong horizontal field will in general lead to time-dependent convection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号