首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The radial temperature differences at which the transition from lower symmetry to the wave regime and the transition from the wave regime to lower symmetry occur have been measured for rotation rates ≦2rad/sec. It was found that the temperature differences at which the transitions occur differ for a fixed rotation rate, depending on whether the radial temperature difference is either increased or decreased with time. There is hysteresis in the transition at lower symmetry.  相似文献   

2.
Abstract

The velocities of the wave patterns relative to the rotating annulus have been measured with either increasing or decreasing positive radial temperature gradients and different rotation rates, with the fluid in thermal equilibrium and in contact with a rigid lid. The pattern velocities are dependent on initial conditions except in the unique areas of the stability diagram, where the velocities observed with either increasing or decreasing ΔT, overlap. The pattern velocities change discontinuously with each wave number transition, with a particularly large discontinuity at the transition from two to one wave. The frequency of the amplitude oscillations of the waves has been measured also. It has been found that the period of the oscillation of the three wave pattern is inversely proportional to the period of the pattern velocity, which means that in this case the ratio of the frequency of amplitude oscillation and the frequency of the pattern revolution is incommensurate.  相似文献   

3.
Abstract

Drift rates and amplitudes of convection columns driven by centrifugal bouyancy in a cylindrical fluid annulus rotating about a vertical axis have been measured by thermistor probes. Conical top and bottom boundaries of the annular fluid region are responsible for the prograde Rossby wave like dynamics of the convection columns. A constant positive temperature difference between the outer and the inner cylindrical boundaries is generated by the circulation of thermostatically controled water. Mercury and water have been used as converting fluids. The measurements extend the earlier visual observations of Busse and Carrigan (1974) and provide quantitative data for an eventual comparison with nonlinear theories of thermal Rossby waves. The measured drift frequencies are in general agreement with linear theory. Of particular interest is the decline of the amplitude of convection with increasing Rayleigh number in a region beyond the onset of convection.  相似文献   

4.
Abstract

Thermal convection in a vertically-mounted, rotating annulus of a particular design proposed by Davies and Walin (1977) is investigated. The annulus used in the present study differs from the conventional type in some important aspects: the sidewalls are finitely conducting, and the thermal conductance of the sidewalls is height-dependent. The theoretical model due to Davies and Walin is briefly recounted. The present study aims to verify the theoretical model; we have acquired numerical solutions to the governing Navier-Stokes equations. The numerical results are supportive of the theoretical contentions. The near-linear dependence of the isothermal slope on the parameter D, which is a function of Ω and ΔT, is corroborated within reasonable limits. New data on the vertical and radial structures of the meridional and azimuthal flows are presented. The numerical results also confirm that the shape of the sidewall thickness has a substantial influence on the meridional flow patterns. In the bulk of the interior flow field, the dominant azimuthal flow field and the temperature field are linked by the thermal wind relation.  相似文献   

5.
Summary The transition between axisymmetric and wave convection in a rotating, cylindrical annulus of fluid subjected to a horizontal temperature gradient is usually determined in laboratory experiments by visually observing the motion of tracer particles at the top surface of the fluid. More recent transition determinations by means of small transducers suspended within the body of the fluid give evidence of quantitative disagreement with the visual method. The dgree of disagreement and experimental details are discussed in this note.Contribution No. 20 of the Geophysical Fluid Dynamics Institute.  相似文献   

6.
We study the effect of stratification on large-scale dynamo action in convecting fluids in the presence of background rotation. The fluid is confined between two horizontal planes and both boundaries are impermeable, stress-free and perfectly conducting. An asymptotic analysis is performed in the limit of rapid rotation (τ???1 where τ is the Taylor number). We analyse asymptotic magnetic dynamo solutions in rapidly rotating systems generalising the results of Soward [A convection-driven dynamo I. The weak field case. Philos. Trans. R. Soc. Lond. A 1974, 275, 611–651] to include the effects of compressibility. We find that in general the presence of stratification delays the efficiency of large-scale dynamo action in this regime, leading to a reduction of the onset of dynamo action and in the nonlinear regime a diminution of the large-scale magnetic energy for flows with the same kinetic energy.  相似文献   

7.
8.
Abstract

The problem of the removal of the degeneracy of the patterns of convective motion in a spherically symmetric fluid shell by the effects of rotation is considered. It is shown that the axisymmetric solution is preferred in sufficiently thick shells where the minimum Rayleigh number corresponds to degree l = 1 of the spherical harmonics. In all cases with l > 1 the solution described by sectional spherical harmonics Yl l (θ,φ) is preferred.  相似文献   

9.
Abstract

Dynamic interaction between magnetic field and fluid motion is studied through a numerical experiment of nonlinear three-dimensional magnetoconvection in a rapidly rotating spherical fluid shell to which a uniform magnetic field parallel to its spin axis is applied. The fluid shell is heated by internal heat sources to maintain thermal convection. The mean value of the magnetic Reynolds number in the fluid shell is 22.4 and 10 pairs of axially aligned vortex rolls are stably developed. We found that confinement of magnetic flux into anti-cyclonic vortex rolls was crucial on an abrupt change of the mode of magnetoconvection which occurred at Δ = 1 ~ 2, where A is the Elsasser number. After the mode change, the fluid shell can store a large amount of magnetic flux in itself by changing its convection style, and the magnetostrophic balance among the Coriolis, Lorentz and pressure forces is established. Furthermore, the toroidal/poloidal ratio of the induced magnetic energy becomes less than unity, and the magnetized anti-cyclones are enlarged due to the effect of the magnetic force. Using these key ideas, we investigated the causes of the mode change of magnetoconvection. Considering relatively large magnetic Reynolds number and a rapid rotation rate of this model, we believe that these basic ideas used to interpret the present numerical experiment can be applied to the dynamics in the Earth's and other planetary cores.  相似文献   

10.
Abstract

An exceptional case to the model-independent theory of Knobloch (1995) is presented, by investigating a rotating cylindrical annulus of height H and side wall radii r o and r i, with non-slip, perfectly thermally conducting side walls and thermally insulating stress-free ends. Radial heating permits the possibility of either two- or three-dimensional convective solutions being the preferred mode. An analytical solution is obtained for the two-dimensional case and a numerical solution for the three-dimensional solution, which is also applied to the two-dimensional solution. It is shown that both two- and three-dimensional solutions can be realized depending on the aspect ratio, γ = H/d, where d = r o-r i is the thickness of the annulus, the radii ratio λ = r i/r o and the rotation rate of the model. For γ = O(1) and λ = 0.4, the preferred convective solution is three-dimensional when the Taylor number, T < 102 and two-dimensional for T > 102. For small aspect ratios, γ ? 1, the preferred mode is two-dimensional for all rotation rates.  相似文献   

11.
Abstract

The effects of the upper boundary condition on the regime diagram and certain characteristics of the convection within a rotating, differentially heated cylindrical anulus of water were studied in the laboratory. It was found that the regime diagram was not substantially affected by the upper boundary condition. However, the thermal amplitude of the baroclinic waves, as a function of parameter space, and, as expected from previous work, the angular drift velocity of those waves were found to be strongly affected by the upper boundary condition. When the upper surface was free, the amplitude changes were explosive and highly non-linear (as discovered earlier by Kaiser, 1970). When the upper surface was rigid, they were smooth and quite linear. The baroclinic wave patterns drifted round the annulus at rates which were in direct response to the imposed “thermal wind”. However, (as previously observed by Koschmieder, 1972), when the upper surface was rigid they drifted approximately ten times more slowly than when it was free.  相似文献   

12.
Abstract

The annulus model considers convection between concentric cylinders with sloping endwalls. It is used as a simplified model of convection in a rapidly rotating sphere. Large azimuthal wavenumbers are preferred in this problem, and this has been exploited to develop an asymptotic approach to nonlinear convection in the annulus. The problem is further reduced because the Taylor-Proudman constraint simplifies the dependence in the direction of the rotation vector, so that a nonlinear system dependent only on the radial variable and time results. As Rayleigh number is increased a sequence of bifurcations is found, from steady solutions to periodic solutions and 2-tori, typically ending in chaotic behaviour. Both the magnetic (MHD convection) and non-magnetic problem has been considered, and in the non-magnetic case our bifurcation sequence can be compared with those found by previous two-dimensional numerical simulations.  相似文献   

13.
The development of the control volume method for the thermal convection problem in a rotating spherical shell is presented. In contrast to the spectral methods, commonly used in geodynamo simulations, the control volume method belongs to the class of grid methods (the solution is approximated by a set of discrete values in physical space). In the present paper we concentrate on some problems of convergence and stability of the method. Case 0 of the numerical dynamo benchmark (Christensen et al., 2001, Phys. Earth Planet. Inter., 128, 25-34) was used to check the correctness of our computer code. The results demonstrate good convergence to the suggested standard solution.  相似文献   

14.
We report the results of fully three-dimensional numerical simulations of nonlinear convection in a Boussinesq fluid in an annular channel rotating about a vertical axis with lateral no-slip or stress-free sidewalls, stress-free top and bottom, uniformly heated from below, a problem first studied by Davies-Jones and Gilman (1971 Davies-Jones, RP and Gilman, PA. 1971. Convection in a rotating annulus uniformly heated from below.. J. Fluid Mech., 46: 6581.  [Google Scholar]) and Gilman (1973 Gilman, PA. 1973. Convection in a rotating annulus uniformly heated from below. Part 2. Nonlinear results. J. Fluid Mech., 57: 381400.  [Google Scholar]). A substantial range of the Rayleigh number R (Rc≤R≤O(100 Rc)), where Rc denotes the critical value at the onset of convection) is considered. It is found that the wall-localized convection mode, unaffected by the velocity boundary condition imposed on the sidewalls, is nonlinearly robust. Both directions of travelling waves, one propagating against the sense of rotation near the outer sidewall and the other propagating in the same sense as the rotation in the vicinity of the inner sidewall, are always present in the nonlinear solutions. In contrast to nonlinear convection in a rotating Bénard layer, neither convection rolls nor the Küpper–Lortz instability can exist in a rotating annular channel because of the effect of the sidewalls. It is the nonlinear interaction between the wall-localized modes and the internal mode that plays an essential role in determining the nonlinear properties of convection in a rotating annular channel. Our studies reveal systematically the various nonlinear phenomena, from steady travelling waves trapped in the vicinities of the sidewalls to convective turbulence exhibiting columnar structure.  相似文献   

15.
This paper documents an experimental investigation in which a differentially-heated rotating annulus experiment was used to investigate the effects of topography on fluid flow under conditions similar to the atmospheric and oceanic circulation on Earth and other planets. In particular, the relationship between the effects of topographic resonance and the existence and mechanism for generation of low-frequency variability (LFV) were studied, motivated by outstanding questions in works such as Jin and Ghil (J. Atmos. Sci., 1990, 47) and Read and Risch (Geophys. Astrophys. Fluid Dyn., 2011, 105). Whilst employing sinusoidal wavenumber-3 topography a new regime was encountered within a region of stationary wavenumber-3 structural vacillation. Denoted as the “stationary-transition” regime, it featured periodic oscillations between a dominant stationary wavenumber-3 flow and axisymmetric or chaotic flow. Further investigation found that the “stationary-transition” regime appeared to be a near-resonant region where nonlinear topographic resonant instability led to a 23–42 “day” oscillatory behaviour. Within the regime, a Hopf bifurcation sequence was discovered, and the nonlinear instabilities were found to have terms in both wave-zonal flow and wave–wave interactions, including a notable resonant wave-triad. This report summarises the nature of the “stationary-transition” regime, and also makes comparisons with similar regimes of LFV found in other experimental studies, as well as intraseasonal oscillations in the atmosphere.  相似文献   

16.
Convection in a Boussinesq fluid in an annular channel rotating about a vertical axis with lateral rigid sidewalls, stress-free top and bottom, uniformly heated from below is investigated. The sidewalls are assumed to be either perfectly insulating or conducting. Three different types of convection are identified when the channel is rotating sufficiently fast: (i) global oscillatory convection preferred for small Prandtl numbers in channels with intermediate or large aspect ratios (width to height ratio), (ii) wall-localized oscillatory convection representing the most unstable mode for moderate or large Prandtl numbers in channels with intermediate or large aspect ratios and (iii) global stationary convection preferred in channels with sufficiently small aspect ratios regardless of the size of the Prandtl number. The corresponding weakly nonlinear problem describing differential rotation and meridional circulation is also examined, showing that geostrophic, multiple-peaked (two prograde and two retrograde) differential rotation can be maintained by the Reynolds stresses in wall-localized convective eddies in a rapidly rotating channel.  相似文献   

17.
Abstract

Results are presented of a numerical study of marginal convection of electrically conducting fluid, permeated by a strong azimuthal magnetic field, contained in a circular cylinder rotating rapidly about its vertical axis of symmetry. To this basic state is added a geostrophic flow UG (s), constant on geostrophic cylinders radius s. Its magnitude is fixed by requiring that the Lorentz forces induced by the convecting mode satisfy Taylor's condition. The nonlinear mathematical problem describing the system was developed in an earlier paper (Skinner and Soward, 1988) and the predictions made there are confirmed here. In particular, for small values of the Roberts number q which measures the ratio of the thermal to magnetic diffusivities, two distinct regions can be recognised within the fluid with the outer region moving rapidly compared to the inner. Otherwise, conditions for the onset of instability via the Taylor state (UG 0) do not differ significantly from those appropriate to the static (UG = 0) basic state. The possible disruption of the Taylor states by shear flow instabilities is discussed briefly.  相似文献   

18.
Abstract

An investigation is made of steady thermal convection of a Boussinesq fluid confined in a vertically-mounted rotating cylinder. The top and bottom endwall disks are thermal conductors at temperatures Tt and Tb with δT = Tt ? Tb >0. The vertical sidewall has a finite thermal conductance. A Newtonian heat flux condition is adopted at the sidewall. The Rayleigh number of the fluid system is large to render a boundary layer-type flow. Finite-difference numerical solutions to the full Navier-Stokes equations are obtained. The vertical motions within the buoyancy layer along the sidewall induce weak meridional flows in the interior. Because of the Coriolis acceleration, the meridional flows give rise to azimuthal flows relative to the rotating container. Strong vertical gradients of azimuthal flows exist in the regions near the endwalls. As the stratification effect increases, concentration of flow gradients in thin endwall boundary layers becomes more pronounced. The azimuthal flow field exhibits considerable horizontal gradients. The temperature field develops horizontal variations superposed on the dominant vertical distribution. As either the sidewall thermal conductance or the stratification effect decreases, the temperature distribution tends to the profile varying linearly with height. Comparisons of the sizes of the dynamic effects demonstrate that, in the bulk of flow field, the vertical shear of azimuthal velocity is supported by the horizontal temperature gradient, resulting in a thermal-wind relation.  相似文献   

19.
We present a series of experimental investigations in which a differentially-heated annulus was used to investigate the effects of topography on rotating, stratified flows with similarities to the Earth’s atmospheric or oceanic circulation. In particular, we compare and investigate blocking effects via partial mechanical barriers to previous experiments by the authors utilising azimuthally-periodic topography. The mechanical obstacle used was an isolated ridge, forming a partial barrier, employed to study the difference between partially blocked and fully unblocked flow. The topography was found to lead to the formation of bottom-trapped waves, as well as impacting the circulation at a level much higher than the top of the ridge. This produced a unique flow structure when the drifting flow and the topography interacted in the form of an “interference” regime at low Taylor number, but forming an erratic “irregular” regime at higher Taylor number. The results also showed evidence of resonant wave-triads, similar to those noted with periodic wavenumber-3 topography by Marshall and Read (Geophys. Astrophys. Fluid Dyn., 2015, 109), though the component wavenumbers of the wave-triads and their impact on the flow were found to depend on the topography in question. With periodic topography, wave-triads were found to occur between both the baroclinic and barotropic components of the zonal wavenumber-3 mode and the wavenumber-6 baroclinic component, whereas with the partial barrier two nonlinear resonant wave-triads were noted, each sharing a common wavenumber-1 mode.  相似文献   

20.
Abstract

Some new measurements are presented of the axisymmetric heat transport in a differentially heated rotating fluid annulus. Both rigid and free upper surface cases are studied, for Prandtl numbers of 7 and 45, from low to high rotation rates. The rigid lid case is extended to high rotation rates by suppressing the baroclinic waves, that would normally develop at some intermediate rotation rate, with the use of sloping endwalls.

A parameter P is defined as the square of the ratio of the (non-rotating) thermal sidewall layer thickness to the Ekman layer thickness. For small P the heat transport remains unaffected by the rotation, but as P increases to order unity the Ekman layer becomes thin enough to inhibit the radial mass transport, and hence the heat flux. No explicit Prandtl number dependence is observed. Also this scaling allows the identification of the region in which the azimuthal velocity reaches its maximum. Direct comparisons are drawn with previous experimental and numerical results, which show what can be interpreted as an inhibiting effect of increasing curvature on the heat transport.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号