首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract

To model penetrative convection at the base of a stellar convection zone we consider two plane parallel, co-rotating Boussinesq layers coupled at their fluid interface. The system is such that the upper layer is unstable to convection while the lower is stable. Following the method of Kondo and Unno (1982, 1983) we calculate critical Rayleigh numbers Rc for a wide class of parameters. Here, Rc is typically much less than in the case of a single layer, although the scaling Rc~T2/3 as T → ∞ still holds, where T is the usual Taylor number. With parameters relevant to the Sun the helicity profile is discontinuous at the interface, and dominated by a large peak in a thin boundary layer beneath the convecting region. In reality the distribution is continuous, but the sharp transition associated with a rapid decline in the effective viscosity in the overshoot region is approximated by a discontinuity here. This source of helicity and its relation to an alpha effect in a mean-field dynamo is especially relevant since it is a generally held view that the overshoot region is the location of magnetic field generation in the Sun.  相似文献   

2.
Abstract

Bayly (1993) introduced and investigated the equation (? t + ▽-η ▽2)S = RS as a scalar analogue of the magnetic induction equation. Here, S(r, t) is a scalar function and the flow field v(r, t) and “stretching” function R(r, t) are given independently. This equation is much easier to handle than the corresponding vector equation and, although not of much relevance to the (vector) kinematic dynamo problem, it helps to study some features of the fast dynamo problem. In this note the scalar equation is considered for linear flow and a harmonic potential as stretching function. The steady equation separates into one-dimensional equations, which can be completely solved and therefore allow one to monitor the behaviour of the spectrum in the limit of vanishing diffusivity. For more general homogeneous flows a scaling argument is given which ensures fast dynamo action for certain powers of the harmonic potential. Our results stress the singular behaviour of eigenfunctions in the limit of vanishing diffusivity and the importance of stagnation points in the flow for fast dynamo action.  相似文献   

3.
Abstract

This paper demonstrates the appearance of tangential discontinuities in deformed force-free fields by direct integration of the field equation ? x B = αB. To keep the mathematics tractable the initial field is chosen to be a layer of linear force-free field Bx = + B 0cosqz, By = — B 0sinqz, Bz = 0, anchored at the distant cylindrical surface ? = (x 2 + y 2)1/2 = R and deformed by application of a local pressure maximum of scale l centered on the origin x = y = 0. In the limit of large R/l the deformed field remains linear, with α = q[1 + O(l 2/R 2)]. The field equations can be integrated over ? = R showing a discontinuity extending along the lines of force crossing the pessure maximum. On the other hand, examination of the continuous solutions to the field equations shows that specification of the normal component on the enclosing boundary ? = R completely determines the connectivity throughout the region, in a form unlike the straight across connections of the initial field. The field can escape this restriction only by developing internal discontinuities.

Casting the field equation in a form that the connectivity can be specified explicitly, reduces the field equation to the eikonal equation, describing the optical analogy, treated in papers II and III of this series. This demonstrates the ubiquitous nature of the tangential discontinuity in a force-free field subject to any local deformation.  相似文献   

4.
Multifractal comparison of the outputs of two optical disdrometers   总被引:1,自引:1,他引:0  
ABSTRACT

In this paper a universal multifractals comparison of the outputs of two types of collocated optical disdrometers installed on the roof of the Ecole des Ponts ParisTech is performed. A Campbell Scientific PWS100 which analyses the light scattered by the hydrometeors and an OTT Parsivel2 which analyses the portion of occluded light are deployed. Both devices provide a binned distribution of drops according to their size and velocity. Various fields are studied across a range of scales: rain rate (R), liquid water content (ρ), polarimetric weather radar quantities such the horizontal reflectivity (Zh) and the specific differential phase (Kdp), and drop size distribution (DSD) parameters such as the total drop concentration (Nt) and the mass-weighted diameter (Dm). For both devices, good scaling is retrieved on the whole range of available scales (2?h–30?s), except for the DSD parameters for which the scaling only holds down to few minutes. For R, the universal multifractal parameters are found to equal 1.5 and 0.2 for α and C1, respectively. Results are interpreted with the help of the classical ZhR and RKdp radar relations.
Editor D. Koutsoyiannis; Associate editor E. Volpi  相似文献   

5.
Abstract

The well-established physical and mathematical principle of maximum entropy (ME), is used to explain the distributional and autocorrelation properties of hydrological processes, including the scaling behaviour both in state and in time. In this context, maximum entropy is interpreted as maximum uncertainty. The conditions used for the maximization of entropy are as simple as possible, i.e. that hydrological processes are non-negative with specified coefficients of variation (CV) and lag one autocorrelation. In this first part of the study, the marginal distributional properties of hydrological variables and the state scaling behaviour are investigated. Application of the ME principle under these very simple conditions results in the truncated normal distribution for small values of CV and in a nonexponential type (Pareto) distribution for high values of CV. In addition, the normal and the exponential distributions appear as limiting cases of these two distributions. Testing of these theoretical results with numerous hydrological data sets on several scales validates the applicability of the ME principle, thus emphasizing the dominance of uncertainty in hydrological processes. Both theoretical and empirical results show that the state scaling is only an approximation for the high return periods, which is merely valid when processes have high variation on small time scales. In other cases the normal distributional behaviour, which does not have state scaling properties, is a more appropriate approximation. Interestingly however, as discussed in the second part of the study, the normal distribution combined with positive autocorrelation of a process, results in time scaling behaviour due to the ME principle.  相似文献   

6.
Abstract

A study has been made of a basic state of axisymmetric flow, at large rotational Reynolds numbers, in a double-diffusive stratified fluid contained in a vertically-mounted, differentially-rotating cylindrical cavity. The aim is to describe the qualitative characteristics of the flow of a fluid, the density of which is stratified by two diffusive effects, i.e., temperature and salinity gradients. Attention is confined to situations in which the temperature and salinity gradients make opposing contributions to the overall density profile, the undisturbed stratification being gravitationally stable. Finite difference numerical solutions of the governing Navier-Stokes equations have been obtained using the Boussinesq approximation. The results are presented in a way that illustrates the explicit effects of double-diffusivity when the cavity aspect ratio, height/radius, is O(1). The principal non-dimensional parameters characterizing the flow field are identified. In the interior core, the primary dynamic balance is between the horizontal density gradient and the vertical shear of the prevailing azimuthal velocity. The effective stratification is seen to decrease as the double-diffusivity increases, even if the overall stratification parameter, St, is held constant. The solute field contains a very thin boundary layer structure at large Lewis numbers. The effective stratification increases with the Prandtl number. Results have been derived for extreme values of the cavity aspect ratio. For small cavity aspect ratios, the dominant dynamic ingredients are viscous diffusion and rotation. For large aspect ratios, the bulk of the flow field is determined by the rotating sidewall. In this case, the direct influence of the double-diffusivity is minor.  相似文献   

7.
Abstract

In part I of this study (Fearn, 1983b), instabilities of a conducting fluid driven by a toroidal magnetic field B were investigated. As well as confirming the results of a local stability analysis by Acheson (1983), a new resistive mode of instability was found. Here we investigate this mode in more detail and show that instability exists when B(s) has a zero at some radius s=s c. Then (in the limit of small resistivity) the instability is concentrated in a critical layer centered on s c . The importance of the region where B is small casts some doubt on the validity of the simplifications made to the momentum equation in I. Calculations were therefore repeated using the full momentum equation. These demonstrate that the neglect of viscous and inertial terms when the mean field is strong does not lead to spurious results even when there are regions where B is small.  相似文献   

8.
Variation in the angular velocity Ω of a planetary body is called libration or longitudinal libration when the Ω-axis is fixed in direction. This motion of the body's solid mantle drives motions in its fluid core, either by viscous coupling across the core-mantle interface S, or topographically when S is asymmetric with respect to the Ω-axis, the only case considered in this article. A significant topographically-driven flow is identified having uniform vorticity within S and no component parallel to the Ω-axis. Its dynamic stability depends on the amplitude, Ω 1, of the sinusoidally varying part of Ω and on the ratio, b/a, of the lengths of the principal axes of S, assumed spheroidal. In (Ω 1/Ω 0, b/a) parameter space where Ω 0 is the average Ω, islands are shown to exist where the constant vorticity states are dynamically unstable. These are surrounded by a sea in which they are stable. When the fluid is slightly viscous, a state in the stable sea retains its uniform vorticity structure except in a viscous boundary layer on S in which the flow acquires a component parallel to the Ω-axis. For (Ω 1/Ω 0, b/a) on an island where the uniform vorticity state is unstable, an “alternative flow” exists, which is three-dimensional and is examined here. Assuming that the core is electrically conducting, kinematic dynamos are sought. Uniform vorticity flow appears to be non-regenerative but, when it is stable and viscosity acts to create a sufficiently strong boundary layer flow, dynamo action may occur. It is shown that the alternative flow that exists on an instability island in (Ω 1/Ω 0,?b/a) space can be vigorously regenerative.  相似文献   

9.
Abstract

Results are presented of a numerical study of marginal convection of electrically conducting fluid, permeated by a strong azimuthal magnetic field, contained in a circular cylinder rotating rapidly about its vertical axis of symmetry. To this basic state is added a geostrophic flow UG (s), constant on geostrophic cylinders radius s. Its magnitude is fixed by requiring that the Lorentz forces induced by the convecting mode satisfy Taylor's condition. The nonlinear mathematical problem describing the system was developed in an earlier paper (Skinner and Soward, 1988) and the predictions made there are confirmed here. In particular, for small values of the Roberts number q which measures the ratio of the thermal to magnetic diffusivities, two distinct regions can be recognised within the fluid with the outer region moving rapidly compared to the inner. Otherwise, conditions for the onset of instability via the Taylor state (UG 0) do not differ significantly from those appropriate to the static (UG = 0) basic state. The possible disruption of the Taylor states by shear flow instabilities is discussed briefly.  相似文献   

10.
Abstract

In this paper we analyse the stationary mean energy density tensor Tij = BiBj for the x 2-sphere. This model is one of the simplest possible turbulent dynamos, originally due to Krause and Steenbeck (1967): a conducting sphere of radius R with homogeneous, isotropic and stationary turbulent convection, no differential rotation and negligible resistivity. The stationary solution of the (linear) equation for Tij is found analytically. Only Trr , T θθ and T φφ are unequal to zero, and we present their dependence on the radial distance r.

The stationary solution depends on two coefficients describing the turbulent state: the diffusion coefficient β≈?u2c/3 and the vorticity coefficient γ ≈ ?|?×u|2c/3 where u(r, t) is the turbulent velocity and c its correlation time. But the solution is independent of the dynamo coefficient α≈??u·?×u?τc/3 although α does occur in the equation for Tij . This result confirms earlier conclusions that helicity is not required for magnetic field generation. In the stationary state, magnetic energy is generated by the vorticity and transported to the boundary, where it escapes at the same rate. The solution presented contains one free parameter that is connected with the distribution of B over spatial scales at the boundary, about which Tij gives no information. We regard this investigation as a first step towards the analysis of more complicated, solar-type dynamos.  相似文献   

11.
Abstract

The stability of a zonal shear flow to symmetric baroclinic perturbations is examined when the Ekman number, E, is asymptotically small. It is assumed, following Antar and Fowlis (1982), that the zonal Row is generated by imposing a constant horizontal temperature gradient γ* at the horizontal boundaries, and by maintaining a constant temperature difference δT* between them. The boundaries are at rest relative to a rotating frame.

Features of the neutral stability curve are determined for several ranges of values of δT/E 1/3, where δT = δT*/Hγ* and H is the depth of the fluid layer, and all values of the Prandtl number, [sgrave]. In some cases it is possible to determine the whole curve analytically. The most important feature of the results is that the neutral stability curve is closed.

The results are compared to the numerical integrations of Antar and Fowlis (1982). The qualitative features of the solutions are in accord and the quantitative results are, in most cases, as good as can be expected for E only as small as ~ 10?4. The implications of the results for experimental observations of symmetric baroclinic instability are explored.  相似文献   

12.
A control strategy is proposed for variable damping elements (VDEs) used together with auxiliary stiffness elements (ASEs) that compose a time‐varying non‐linear Maxwell (NMW) element, considering near‐future excitation influence. The strategy first composes a state equation for the structural dynamics and the mechanical balance in the NMW elements. Next, it establishes a cost function for estimating future responses by the weighted quadratic norms of the state vector, the controlled force and the VDEs' damping coefficients. Then, the Euler equations for the optimum values are introduced, and also approximated by the first‐order terms under the autoregressive (AR) model of excitation information. Thus, at each moment tk, the strategy conducts the following steps: (1) identify the obtained seismic excitation information to an AR model, and convert it to a state equation; and (2) determine VDEs' damping coefficients under the initial conditions at tk and the final state at tk+L, using the first‐order approximation of the Euler equations. The control effects are examined by numerical experiments. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

13.
Abstract

A simple nonlinear model is developed for the solar dynamo, in which the real convective spherical shell is approximated by a thin flat slab, and only the back-reaction of the field B on the helicity is taken into account by choosing the simple law α = α(1-ζB 2), where α and ζ are constants, to represent the decrease in generation coefficient ζ with increasing field strength. Analytic expressions are obtained for the amplitude of the field oscillation and its period, T, as functions of the deviation d - dCT of a dynamo number d from its critical value dcr for regeneration. A symmetry is found for the case of oscillations of small constant amplitude: B(t+½T)= -B(t). A Landau equation is obtained that describes the transition to such oscillations.  相似文献   

14.
The dispersion of inertial particles continuously emitted from a point source is analytically investigated in the limit of small but finite inertia. Our focus is on the evolution equation of the particle joint probability density function p(x,?v,?t), x and v being the particle position and velocity, respectively. For arbitrary inertia, position and velocity variables are coupled, with the result that p(x,?v,?t) can be determined by solving a partial differential equation in a 2d-dimensional space, d being the physical-space dimensionality. For small (but nevertheless finite) inertia, (x,?v)-variables decouple and the determination of p(x,?v,?t) is reduced to solve a system of two standard forced advection–diffusion equations in the space variables x. The latter equations are derived here from first principles, i.e., from the well-known Lagrangian evolution equations for position and particle velocity.  相似文献   

15.
Abstract

This paper examines the detailed E 1/4-layer structure of separated flow past a circular cylinder in a low-Rossby-number rotating fluid as the Ekman number E tends to zero. This structure is based on an initial proposal by Page (1987) but with some modifications in response to further evidence, outlined both in this paper and elsewhere, on the behaviour of E 1/4-layer flows in this context. Numerical calculations for flow in an E 1/4 shear layer along the separated free streamline are described and the mass flux from this layer is then used to calculate the higher-order flow within the separation bubble. The flow structure is found to have two forms, depending on the value of the O(1) parameter λ, and these are compared with results from published “Navier-Stokes” type calculations for the flow at small but finite values of E.  相似文献   

16.
A key non-linear mechanism in a strong-field geodynamo is that a finite amplitude magnetic field drives a flow through the Lorentz force in the momentum equation and this flow feeds back on the field-generation process in the magnetic induction equation, equilibrating the field. We make use of a simpler non-linear?α?2-dynamo to investigate this mechanism in a rapidly rotating fluid spherical shell. Neglecting inertia, we use a pseudo-spectral time-stepping procedure to solve the induction equation and the momentum equation with no-slip velocity boundary conditions for a finitely conducting inner core and an insulating mantle. We present calculations for Ekman numbers (E) in the range 2.5× 10?3 to 5.0× 10?5, for?α?=α 0cos?θ?sin?π?(r?ri ) (which vanishes on both inner and outer boundaries). Solutions are steady except at lower E and higher values of?α?0. Then they are periodic with a reversing field and a characteristic rapid increase then equally rapid decrease in magnetic energy. We have investigated the mechanism for this and shown the influence of Taylor's constraint. We comment on the application of our findings to numerical hydrodynamic dynamos.  相似文献   

17.
Abstract

It is found that the ideal magnetohydrodynamic equilibrium of an axisymmetric gravitating magnetically confined plasma with incompressible flows is governed by a second-order elliptic differential equation for the poloidal magnetic flux function containing five flux functions coupled with a Poisson equation for the gravitation potential, and an algebraic relation for the pressure. This set of equations is amenable to analytic solutions. As an application, the magnetic-dipole static axisymmetric equilibria with vanishing poloidal plasma currents derived recently by Krasheninnikov et al. (1999) are extended to plasmas with finite poloidal currents, subject to gravitating forces from a massive body (a star or black hole) and inertial forces due to incompressible sheared flows. Explicit solutions are obtained in two regimes: (a) in the low-energy regime β0 ≈ γ0 ≈ δ0 ≈ ε0 ? 1, where β0, γ0, δ0, and ε0 are related to the thermal, poloidal-current, flow and gravitating energies normalized to the poloidal-magnetic-field energy, respectively, and (b) in the high-energy regime β0 ≈ γ0 ≈ δ0 ≈ ε0 ? 1. It turns out that in the high-energy regime all four forces, pressure-gradient, toroidal-magnetic-field, inertial, and gravitating contribute equally to the formation of magnetic surfaces very extended and localized about the symmetry plane such that the resulting equilibria resemble the accretion disks in astrophysics.  相似文献   

18.
Three-dimensional (3-D) numerical simulations of single turbulent thermal plumes in the Boussinesq approximation are used to understand more deeply the interaction of a plume with itself and its environment. In order to do so, we varied the Rayleigh and Prandtl numbers from Ra?~?105 to Ra?~?108 and from Pr?~?0.025 to Pr?~?70. We found that thermal dissipation takes place mostly on the border of the plume. Moreover, the rate of energy dissipation per unit mass ε T has a critical point around Pr?~?0.7. The reason is that at Pr greater than ~0.7, buoyancy dominates inertia and thermal advection dominates wave formation whereas this trend is reversed at Pr less than ~0.7. We also found that for large enough Prandtl number (Pr?~?70), the velocity field is mostly poloidal although this result was known for Rayleigh–Bénard convection (see Schmalzl et al. [On the validity of two-dimensional numerical approaches to time-dependent thermal convection. Europhys. Lett. 2004, 67, 390--396]). On the other hand, at small Prandtl numbers, the plume has a large helicity at large scale and a non-negligible toroidal part. Finally, as observed recently in details in weakly compressible turbulent thermal plume at Pr?=?0.7 (see Plourde et al. [Direct numerical simulations of a rapidly expanding thermal plume: structure and entrainment interaction. J. Fluid Mech. 2008, 604, 99--123]), we also noticed a two-time cycle in which there is entrainment of some of the external fluid to the plume, this process being most pronounced at the base of the plume. We explain this as a consequence of calculated Richardson number being unity at Pr?=?0.7 when buoyancy balance inertia.  相似文献   

19.
ABSTRACT

In this work, the applicability of 12 solar radiation (RS) estimation models and their impacts on daily reference evapotranspiration (ETo) estimates using the Penman‐Monteith FAO-56 (PMF-56) method were tested under cool arid and semi-arid conditions in Iran. The results indicated that the average increase in accuracy of the ETo estimates by the calibrated RS models, quantified by the decrease in RMSE, was 2.8% and 6.4% for semi-arid and arid climates, respectively. Mean daily deviations in the estimated ETo by the calibrated RS equations in semi-arid climates varied from ?0.283?mm/d-1 for the Glover‐McCulloch model to 0.080?mm/d for the El-Sebaii model, with an average of ?0.109?mm/d-1, and in arid climates, they ranged from ?0.522?mm/d-1 for the Samani model to 0.668?mm/d for the El-Sebaii model, with an average of 0.125?mm/d-1.
Editor D. Koutsyiannis; Associate editor Not assigned  相似文献   

20.
Abstract

The dependence of the recession of the ground water levels and the ground water discharge upon the initial state of the aquifer is examined for deep unconfined aquifers. It is shown that only in the early stages of the recession does the initial state exert a limited influence on the recession. An estimate of the upper limit of the time t 0 for which for t > t 0 the recession becomes effectively independent of the initial state of the aquifer, valid for physically realistic initial states can be gained from inequalities (11) and (12a) and equation (16). t 0 depends essentially on the parameters of the aquifer and it is estimated that for useful aquifers t 0 can not be expected to exceed one month in relatively adverse cases. This explains why empirical recessions often are found to be consistent, of an exponential form.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号