首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The barotropic instability is traditionally viewed as an initial-value problem wherein wave perturbations of a laterally sheared flow in a homogeneous uniformly rotating fluid that temporally grows into vortices. The vortices are capable of mixing fluid on the continental shelf with fluid above the continental slope and adjacent deep-sea region. However, the instability can also be viewed as a boundary-value problem. For example, a laterally sheared coastal flow is perturbed at some location, creating perturbations that grow spatially downstream. This process leads to a time periodic flow that exhibits instability in space. This article first examines the linear barotropic instability problem with real frequency and complex wavenumber. It is shown that there exists a frequency band within which a spatially growing wave is present. It is then postulated that far downstream the spatially unstable flow emerges into a chain of identically axisymmetric vortices. Conservation of mass, momentum and energy fluxes are applied to determine the diameter, spacing and the speed of translation of the vortices.  相似文献   

2.
Abstract

A depth-dependent model for the topographic rectification of tidal currents in a homogeneous rotating fluid is used to examine the dependence of the rectified mean flow on various tidal, topographic and frictional parameters. Friction is parameterized through a vertically-uniform, time-independent vertical eddy viscosity and a bottom stress law applied near the top of the constant stress layer. The model neglects the interaction of mean and tidal currents, assumes uniformity along isobaths, and is closed with the assumption of zero depth-averaged mean flow across isobaths.

In the limit of depth-independence, the model reduces to that considered by Huthnance (1973) and Loder (1980) which, for weak friction, favours anticyclonic mean circulation around shallow regions and Lagrangian flow which is significantly reduced from the Eulerian. With the inclusion of vertical structure, the magnitude of the anticyclonic flow is amplified suggesting that depth-independent models may underestimate the along-isobath flow. For strong friction the direction of the mean flow depends on the orientation of the tidal ellipse relative to the isobaths. The depthindependent model again underestimates the magnitude of the along-isobath flow, but this can be offset with an appropriate reduction of the bottom friction coefficient.

The cross-isobath mean flows are one to two orders of magnitude weaker than the along-isobath flows and generally have more vertical structure. There is also a significant Stokes drift in the cross-isobath direction. Although there is some tendency for the cross-isobath mean bottom current to be down the cross-isobath mean pressure gradient, it appears that it is not generally possible to infer this current from depth-independent models.  相似文献   

3.
We consider an electrically conducting rotating fluid governed by the shallow water magnetohydrodynamic equations with no diffusion. We use an a priori asymptotic technique (the method of geometric optics or ray method) to study weakly nonlinear hydromagnetic waves. These waves are intermediate in length in the following sense: they are much longer than the fluid depth but much shorter than the radius of the earth. The time scale for the waves is much longer than that of the free surface oscillations and the approximation varies on an even longer timescale. The waves we are considering are studied in the beta plane approximation for an ambient magnetic field parallel to the equator which varies in the direction perpendicular to the equator. The leading order approximation gives a dispersion relation for the waves, which are generally found to be confined to bands about the equator as well as in bands at higher and lower latitudes. At the next order of approximation, a conservation law is found for the wave amplitude. We also obtain an equation governing the behavior of the leading order mean azimuthal velocity which is forced to grow linearly with time.  相似文献   

4.
The evolution of localised jets and periodic nonlinear waves in rotating shallow water magnetohydrodynamics (rotating SWMHD) and standard rotating shallow water model (RSW) is compared within the framework of translationally-invariant 1.5-dimensional configurations, which are traditionally used in geophysical fluid dynamics for studying geostrophic adjustment and frontogenesis. Such configurations also allow for exact nonlinear wave solutions in both models. A theory of the magneto-geostrophic adjustment, i.e. adjustment of an arbitrary initial configuration to a state of magneto-geostrophic equilibrium in RSWMHD, is developed and confirmed by numerical simulations with a finite-volume well-balanced code. The code is resolving all kinds of waves in the model and corresponding weak solutions equally well. It is benchmarked by reproducing exact solutions – steady essentially nonlinear Alfvèn and mixed magneto-inertia-gravity waves – and used to demonstrate robustness of these solutions with respect to localised along-wave perturbations. It is also shown how the results on adjustment can be extended to the fully 2-dimensional case.  相似文献   

5.
Abstract

The stability of a plane parallel shear flow with the profile U(z) = tanh z is considered in a rotating system with the axis of rotation in the z-direction. The establishment of the basic flow requires a baroclinic state, but baroclinic effects are suppressed in the stability analysis by assuming a limit of high thermal conductivity. It is shown that the strongest growing disturbance changes from a purely transverse form in the limit of vanishing rotation rate to a nearly longitudinal form as the angular velocity of rotation increases. An analytical solution of the stability equation is obtained for vanishing growth rates of the transverse form of the instability. But, in general, the solution of the problem requires numerical integrations which demonstrate that the preferred direction of the wave vector of the instability is towards the left of the direction of the mean flow.  相似文献   

6.
Abstract

An asymptotic approximation to the solution of the time-dependent linearized equations governing the motion of an incompressible, inviscid rotating fluid of spherical configuration having uniform density, variable depth and a free upper surface is obtained using the ray method without a shallow water assumption. This result is then modified to obtain a ray approximation to the solution of the time-reduced problem and the free oscillations of the fluid are studied. Axisymmetric modes covering the whole sphere and asymmetric modes trapped in both equatorial and non-equatorial regions are discovered, and all these modes are shown to have countably many resonance frequencies. A shallow water limit is defined and this limit of the time-reduced approximation is obtained. Most of the modes of free oscillation are lost in this limit and the limiting axisymmetric modes are shown to be trapped in the equatorial region and are singular at the wave region boundaries. The limiting approximation is compared to previous results obtained under a shallow water assumption.  相似文献   

7.
The differentially heated rotating annulus is a laboratory experiment historically designed for modelling large-scale features of the mid-latitude atmosphere. In the present study, we investigate a modified version of the classic baroclinic experiment in which a juxtaposition of convective and motionless stratified layers is created by introducing a vertical salt stratification. The thermal convective motions are suppressed in a central region at mid-depth of the rotating tank, therefore double-diffusive convection rolls can develop only in thin layers located at top and bottom, where the salt stratification is weakest. For high enough rotation rates, the baroclinic instability destabilises the flow in the top and the bottom shallow convective layers, generating cyclonic and anticyclonic eddies separated by the stable stratified layer. Thanks to this alternation of layers resembling the convective and radiative layers of stars, the planetary’s atmospheric troposphere and stratosphere or turbulent layers at the sea surface above stratified waters, this new laboratory setup is of interest for both astrophysics and geophysical sciences. More specifically, it allows to study the exchange of momentum and energy between the layers, primarily by the propagation of internal gravity waves (IGW). PIV velocity maps are used to describe the wavy flow pattern at different heights. Using a co-rotating laser and camera, the wave field is well resolved and different wave types can be found: baroclinic waves, Kelvin and Poincaré type waves. The signature of small-scale IGW can also be observed attached to the baroclinic jet. The baroclinic waves occur at the thin convectively active layer at the surface and the bottom of the tank, though decoupled they show different manifestation of nonlinear interactions. The inertial Kelvin and Poincaré waves seem to be mechanically forced. The small-scale wave trains attached to the meandering jet point to an imbalance of the large-scale flow. For the first time, the simultaneous occurrence of different wave types is reported in detail for a differentially heated rotating annulus experiment.  相似文献   

8.
Abstract

The stability of a shear flow on a sloping bottom in a homogeneous, rotating system was investigated by means of a laboratory experiment.

The basic flow was driven near a vertical wall of a circular container by a ring-shaped plate that contacted with a free surface of the working fluid and rotated relative to the fluid container. The velocity profile was asymmetric in the radial direction and had only one inflection point. The velocity profile was well expressed by a linear theory for the vertical shear layer.

The effect of the circular geometry was checked by comparing experimental results obtained in two fluid systems in which only the sign of the curvature was opposite and it was confirmed that circular geometry was not essential for the shear flow on the sloping bottom in this experiment.

It was found that the sloping bottom stabilizes the basic flow only when the drift direction of the topographic Rossby wave is opposite to that of the basic flow. The viscous dissipation in both the Ekman layer and the interior region was also important in determining the critical Rossby number.

The eddy fields caused by the instability can be classified into two types: One is the stationary eddy field in which a row of eddies moves along the basic flow without changing form. The other is the flow pattern in which eddies have finite life times and their configuration is not well organized. When the sloping bottom does not stabilize the basic flow, the former flow pattern is realized, otherwise the latter flow pattern appears.

The wave numbers of the eddies in the regular flow pattern were observed as a function of the Rossby number. The relation did not fit to linear preferred modes predicted by an eigenvalue problem.  相似文献   

9.
2004年8月3日近地TC-1卫星在磁尾XGSM~-12RE的等离子体片内,观测到了伴随着高速流的低于离子回旋频率的波,即超低频波(ULF,Ultra Low Frequency).该波垂直分量的振幅在高速流及其振荡减速期间大致相当;而平行分量振幅在高速流时明显大于其振荡减速时. 利用一个扰动双流模型对完全磁化离子横场漂移驱动的电磁不稳定性计算后,预测结果表明:(1)对于垂直分量来说,横场漂移速度与Alfvén速度的比值影响不稳定性增长率和激发波频率,随其比值增加,增长率变大,激发波频率从负值增加到正值.(2)对于平行分量来说,温度各向异性时等离子体热速度与Alfvén速度比值只影响不稳定性增长率和激发波频率,未改变不稳定性模类别;而温度各向同性时离子横场漂移速度与Alfvén速度比值既影响不稳定性模的种类及其分支,又影响激发波频率.进一步将卫星观测到的等离子体密度、温度、整体流速和磁场代入模型方程,进行数值计算与上述预测结果对比后发现:卫星观测中垂直分量的功率谱密度(PSD,Power Spectrum Density)增强时间和频段与理论模型中由β//、β和v/VA引起不稳定性激发的波一致;卫星观测中平行分量的功率谱密度增强时间与理论模型基本相符,但是前者的频率明显地低于后者.因此,除了需考虑平行磁场的离子整体流速对不稳定性激发波频率的可能影响,还需要统计上进一步核实伴随有高速流的ULF波与不稳定性的相关性.  相似文献   

10.
Abstract

The instability of a current with a geostrophic surface density front is investigated by means of a reduced gravity model having a velocity profile with nearly uniform potential vorticity. It is shown that currents are unstable when the mean potential vorticity decreases toward the surface front at the critical point of the frontal trapped waves investigated by Paldor (1983). This instability is identical with that demonstrated by Killworth (1983) in the longwave limit.

The cross-stream component of mass flux and the rates of energy conversions among the five energy forms defined by Orlanski (1968) are also calculated. The main results are as follows, (a) The mass flux toward the surface front is positive near the front and negative around the critical point. The positive mass flux near the front does not vanish at the position of the undisturbed surface front, so that the mean position of the front moves outward and the region of the strong current spreads. (b) The potential energy of the mean flow integrated over the fluid is released through the work done by the force of the pressure gradient of the mean flow on the fluid, and is converted into the kinetic energy of the mean flow. (c) In the critical layer, the mean flow is rapidly accelerated with the growth of the unstable wave. This acceleration is caused by the rapid phase shift of the unstable wave in the critical layer.  相似文献   

11.
The broadband electrostatic turbulence generally observed in the high-latitude ionosphere is a superposition of nonlocal waves of ion-acoustic and ion-cyclotron types. In the presence of a shear of ion parallel velocity, ion-acoustic modes can be induced by an instability emerging due to an inhomogeneous distribution of energy density. This paper is devoted to the studies of excitation of oblique ion-acoustic wave in background configurations with inhomogeneous profiles of both electric field and ion parallel velocity. A numerical algorithm has been developed, and instability was simulated at various parameters of background plasma. The general possibility of oblique ion-acoustic wave generation by a gradient of ion parallel velocity is shown. In this case, the wave spectrum is found to be broadband, which agrees with satellite observations.  相似文献   

12.
考虑波流影响的深水群桩基础桥墩地震反应分析   总被引:2,自引:0,他引:2  
用基于ABAQUS软件为平台的平行计算技术,对考虑波流影响的地基土-群桩-桥墩体系进行三维非线性地震反应数值模拟,土体和墩台以八节点等参单元离散,桩以梁单元离散,采用土体黏塑性记忆型嵌套面本构模型描述土的动力特性,采用动力塑性损伤模型描述混凝土的动力特性;基于Morison公式,采用Stokes五阶波浪理论描述表面波流,波浪力以分布力的形式施加于桥墩之上,分析了考虑和不考虑波流作用时不同地震动作用下群桩基础桥墩的地震反应特性,结果表明:波流作用对桩体加速度反应的影响很小,但对桩体相对位移和弯矩的影响显著,波流作用使桩体弯矩和顺流向的相对位移增大、逆流向的相对位移减小,其影响幅度随流速的增大而增大,波流作用与输入地震动特性密切相关。考虑波流作用对深水大型桥梁群桩基础桥墩地震反应的影响是有必要的。  相似文献   

13.
Abstract

Broad band secondary instability of elliptical vortex motion has been proposed as a principal source of shear-flow turbulence. Here experiments on such instability in an elliptical flow with no shear boundary layer are described. This is made possible by the mechanical distortion in the laboratory frame of a rotating fluid-filled elastic cylinder. One percent ellipticity of a 10 cm diameter cylinder rotating once each second can give rise to an exponentially-growing mode stationary in the laboratory frame. In first order this mode is a sub-harmonic parametric Faraday instability. The finite-amplitude equations represent angular momentum transfer on an inertial time scale due to Reynolds stresses. The growth of this mode is not limited by boundary friction but by detuning and centrifugal stabilization. On average, a generalized Richardson number achieves a marginal value through much of the evolved flow. However, the characteristic flow is intermittent with the cycle: rapid growth, stabilizing momentum transfer from the mean flow, interior re-spin up, and then again. Data is presented in which, at large Reynolds numbers, seven percent ellipticity causes a fifty percent reduction in the kinetic energy of the rotating fluid. In the geophysical setting, this tidal instability in the earth's interior could be inhibited by sub-adiabatic temperature gradients. A near adiabatic region greater than 10 km in height would permit the growth of tidally destabilized modes and the release of energy to three-dimensional disturbances. Such disturbances might play a central role in the geodynamo and add significantly to overall tidal dissipation.  相似文献   

14.
The results of the laboratory and numerical experiments in circular rotating trays with thin layers of a conductive fluid under the MHD generation of small-scale velocity fields are presented. The configurations of constant magnets for MHD generation were determined based on the numerical calculations with shallow water equations. Both the laboratory and numerical experiments with rotating trays demonstrate the emergence of nonaxisymmetric structures and large-scale near-circular vortices caused by the energy transfer from the system of the externally generated small-scale vortices to the large-scale velocity fields under the action of the Coriolis force. The near-circular vortex has areas with differential rotation when the angular velocity of rotation decreases with the radius. The single large-scale vortices and wide jet flows arise in the regimes of subrotation and superrotation relative to the external rotation depending on its angular velocity. The emergence of the flow structures with the azimuthal wave number m = 2 is demonstrated, and their probable relation to the anomalies of the geomagnetic field observed on the Earth’s surface is considered.  相似文献   

15.
Abstract

The linear, normal mode instability of barotropic circular vortices with zero circulation is examined in the f-plane quasigeostrophic equations. Equivalents of Rayleigh's and Fjortoft's criteria and the semicircle theorem for parallel shear flow are given, and the energy equation shows the instability to be barotropic. A new result is that the fastest growing perturbation is often an internal instability, having a finite vertical scale, but may also be an external instability, having no vertical structure. For parallel shear flow the fastest growing perturbation is always an external instability; this is Squire's theorem. Whether the fastest growing perturbation is internal or external depends upon the profile: for mean flow streamfunction profiles which monotonically decrease with radius, the instability is internal for less steep profiles with a broad velocity extremum and external for steep profiles with a narrow velocity extremum. Finite amplitude, numerical model calculations show that this linear instability analysis is not valid very far into the finite amplitude range, and that a barotropic vortex, whose fastest growing perturbation is internal, is vertically fragmented by the instability.  相似文献   

16.
Abstract

The steady second-order motion induced by a first-order wave motion in a homogeneous, viscous and rotating fluid is examined. If the wave motion produces a steady Ekman layer suction by non-linear interactions, this suction must induce a steady component of interior, relative vorticity parallel to the axis of rotation in order to conserve mass. A boundary value problem for the determination of the induced, steady interior mass transport velocity is presented. The mass transport induced by a Kelvin wave is examined as an illustration and possible application of the theory.  相似文献   

17.
We consider an electrically conducting fluid in rotating cylindrical coordinates in which the Elsasser and magnetic Reynolds numbers are assumed to be large while the Rossby number is assumed to vanish in an appropriate limit. This may be taken as a simple model for the Earth's outer core. Fully nonlinear waves dominated by the nonlinear Lorentz forces are studied using the method of geometric optics (essentially WKB). These waves are assumed to be of the form of an asymptotic series expanded about ambient magnetic and velocity fields which vanish on the equatorial plane. They take the form of short wave, slowly varying wave trains. The first-order approximation is sinusoidal and basically the same as in the linear problem, with a dispersion relation modified by the appearance of mean terms. These mean terms, as well the undetermined amplitude functions, are found by suppressing secular terms in a “fast” variable in the second-order approximation. The interaction of the mean terms with the dispersion relation is the primary cause of behaviors which differ from the linear case. In particular, new singularities appear in the wave amplitude functions and an initial value problem results in a singularity in one of the mean terms which propagates through the fluid. The singularities corresponding to the linear ones are shown to develop when the corresponding waves propagate toward the equatorial plane.  相似文献   

18.
The mass transport velocity in a two-layer system is studied theoretically. The wave motion is driven by a periodic pressure load on the free water surface, and mud in the lower layer is described by a power-law rheological model. Perturbation analysis is performed to the second order to find the mean Eulerian velocity. A numerical iteration method is employed to solve the non-linear governing equation at the leading order. The influence of rheological properties on fluid motion characteristics including the flow field, the surface displacement, the mass transport velocity, and the net discharge rates are investigated based on theoretical results. Theoretical analysis shows that under the action of interfacial shearing, a recirculation structure may appear near the interface in the upper water layer. A higher mass transport velocity at the interface does not necessarily mean a higher discharge rate for a pseudo-plastic fluid mud.  相似文献   

19.
The wave-induced velocity and pressure fields beneath a large amplitude internal solitary wave of depression propagating over a smooth, flat, horizontal, and rigid boundary in a shallow two-layer fluid are computed numerically. A numerical ocean model is utilised, the set-up of which is designed and tuned to replicate the previously published experimental results of Carr and Davies (Phys Fluids 18(1):016,601–1–016,601–10, 2006). Excellent agreement is found between the two data sets and, in particular, the numerical simulation replicates the finding of a reverse flow along the bed aft of the wave. The numerically computed velocity and pressure gradients confirm that the occurrence of the reverse flow is a consequence of boundary layer separation in the adverse pressure gradient region. In addition, vortices associated with the reverse flow are seen to form near the bed.  相似文献   

20.
介观尺度孔隙流体流动是地震频段岩石表现出较强速度频散与衰减的主要作用.利用周期性层状孔隙介质模型,基于准静态孔弹性理论给出了模型中孔隙压力、孔隙流体相对运动速度以及固体骨架位移等物理量的数学解析表达式,同时利用Biot理论将其扩展至全频段条件下,克服了传统White模型中介质分界面处流体压力不连续的假设. 在此基础上对准静态与全频段下模型介质中孔隙压力、孔隙流体相对运动速度变化形式及其对弹性波传播特征的影响进行了讨论,为更有效理解介观尺度下流体流动耗散和频散机制提供物理依据.研究结果表明,低频条件下快纵波孔压在介质层内近于定值,慢纵波通过流体扩散改变总孔隙压力, 随频率的增加慢波所形成的流体扩散作用逐渐减弱致使介质中总孔压逐渐接近于快纵波孔压,在较高频率下孔压与应力的二次耦合作用使总孔压超过快纵波孔压.介质中孔隙流体相对运动速度与慢纵波形成的流体相对运动速度变化形式一致;随频率的增加孔隙流体逐渐从排水的弛豫状态过渡到非弛豫状态,其纵波速度-含水饱和度变化形式也从符合孔隙流体均匀分布模式过渡到斑块分布模式,同时介质在不同含水饱和度下的衰减峰值与慢纵波所形成的孔隙流体相对流动速度具有明显的相关性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号