首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

A linear analysis of thermally driven magnetoconvection is carried out with emphasis on its application to convection in the Earth's core. We consider a rotating and self-gravitating fluid sphere (or spherical shell) permeated by a uniform magnetic field parallel to the spin axis. In rapidly rotating cases, we find that five different convective modes appear as the uniform field is increased; namely, geostrophic, polar convective, magneto-geostrophic, fast magnetostrophic and slow magnetostrophic modes. The polar convective (P) and magneto-geostrophic (E) modes seem to be of geophysical interest. The P mode is characterized by such an axisymmetric meridional circulation that the fluid penetrates the equatorial plane, suggesting that generation of quadrapole from dipole fields could be explained by a linear process. The E mode is characterized by a few axially aligned columnar rolls which are almost two-dimensional due to a modified Proudman-Taylor theorem.  相似文献   

2.
3.
ABSTRACT

Magnetic fields of planets, stars and galaxies are generated by self-excitation in moving electrically conducting fluids. Once produced, magnetic fields can play an active role in cosmic structure formation by destabilising rotational flows that would be otherwise hydrodynamically stable. For a long time, both hydromagnetic dynamo action as well as magnetically triggered flow instabilities had been the subject of purely theoretical research. Meanwhile, however, the dynamo effect has been observed in large-scale liquid sodium experiments in Riga, Karlsruhe and Cadarache. In this paper, we summarise the results of liquid metal experiments devoted to the dynamo effect and various magnetic instabilities such as the helical and the azimuthal magnetorotational instability and the Tayler instability. We discuss in detail our plans for a precession-driven dynamo experiment and a large-scale Tayler–Couette experiment using liquid sodium, and on the prospects to observe magnetically triggered instabilities of flows with positive shear.  相似文献   

4.

Linear and nonlinear dynamo action is investigated for square patterns in nonrotating and weakly rotating Boussinesq Rayleigh-Bénard convection in a plane horizontal layer. The square-pattern solutions may or may not be symmetric to up-down reflections. Vertically symmetric solutions correspond to checkerboard patterns. They do not possess a net kinetic helicity and are found to be incapable of kinematic dynamo action at least up to magnetic Reynolds numbers of , 12 000. There also exist vertically asymmetric squares, characterized by rising (descending) motion in the centers and descending (rising) motion near the boundaries, among them such that possess full horizontal square symmetry and others lacking also this symmetry. The flows lacking both the vertical and horizontal symmetries possess kinetic helicity and show kinematic dynamo action even without rotation. The generated magnetic fields are concentrated in vertically oriented filamentary structures. Without rotation these dynamos are, however, always only kinematic, not nonlinear dynamos since the back-reaction of the magnetic field then forces the solution into the basin of attraction of a roll pattern incapable of dynamo action. But with rotation added parameter regions are found where stationary asymmetric squares are also nonlinear dynamos. These nonlinear dynamos are characterized by a subtle balance between the Coriolis and Lorentz forces. In some parameter regions also nonlinear dynamos with flows in the form of oscillating squares or stationary modulated rolls are found.  相似文献   

5.
Abstract

The paper explores some of the many facets of the problem of the generation of magnetic fields in convective zones of declining vigor and/or thickness. The ultimate goal of such work is the explanation of the magnetic fields observed in A-stars. The present inquiry is restricted to kinematical dynamos, to show some of the many possibilities, depending on the assumed conditions of decline of the convection. The examples serve to illustrate in what quantitative detail it will be necessary to describe the convection in order to extract any firm conclusions concerning specific stars.

The first illustrative example treats the basic problem of diffusion from a layer of declining thickness. The second adds a buoyant rise to the field in the layer. The third treats plane dynamo waves in a region with declining eddy diffusivity, dynamo coefficient, and large-scale shear. The dynamo number may increase or decrease with declining convection, with an increase expected if the large-scale shear does not decline as rapidly as the eddy diffusivity. It is shown that one of the components of the field may increase without bound even in the case that the dynamo number declines to zero.  相似文献   

6.
Choosing a simple class of flows, with characteristics that may be present in the Earth's core, we study the ability to generate a magnetic field when the flow is permitted to oscillate periodically in time. The flow characteristics are parameterised by D, representing a differential rotation, M, a meridional circulation, and C, a component characterising convective rolls. The dynamo action of all solutions with fixed parameters (steady flows) is known from earlier studies. Dynamo action is sensitive to these flow parameters and fails spectacularly for much of the parameter space where magnetic flux is concentrated into small regions, leading to high diffusion. In addition, steady flows generate only steady or regularly reversing oscillatory fields and cannot therefore reproduce irregular geomagnetic-type reversal behaviour. Oscillations of the flow are introduced by varying the flow parameters in time, defining a closed orbit in the space ( D,?M ). When the frequency of the oscillation is small, the net growth rate of the magnetic field over one period approaches the average of the growth rates for steady flows along the orbit. At increased frequency time-dependence appears to smooth out flux concentrations, often enhancing dynamo action. Dynamo action can be impaired, however, when flux concentrations of opposite signs occur close together as smoothing destroys the flux by cancellation. It is possible to produce geomagnetic-type reversals by making the orbit stray into a region where the steady flows generate oscillatory fields. In this case, however, dynamo action was not found to be enhanced by the time-dependence. A novel approach is being taken to solve the time-dependent eigenvalue problem where, by combining Floquet theory with a matrix-free Krylov-subspace method, we can avoid large memory requirements for storing the matrix required by the standard approach.  相似文献   

7.
We study generation of magnetic fields, involving large spatial scales, by convective plan-forms in a horizontal layer. Magnetic modes and their growth rates are expanded in power series in the scale ratio, and the magnetic eddy diffusivity (MED) tensor is derived for flows, symmetric about the vertical axis in a layer. For convective rolls we demonstrate that MED is never below molecular magnetic diffusivity. For cell patterns possessing the symmetries of a rectangle, critical values of molecular magnetic diffusivity for the onset of small- and large-scale magnetic field generation are the same. No instances of negative MED in hexagonal cells have been detected. A family of plan-forms has been found numerically, where MED is negative for molecular magnetic diffusivity over the threshold for the onset of small-scale magnetic field generation. However, the region in the parameter space, where large-scale dynamo action is observed, is small.  相似文献   

8.
Abstract

In this paper a method for solving the equation for the mean magnetic energy <BB> of a solar type dynamo with an axisymmetric convection zone geometry is developed and the main features of the method are described. This method is referred to as the finite magnetic energy method since it is based on the idea that the real magnetic field B of the dynamo remains finite only if <BB> remains finite. Ensemble averaging is used, which implies that fields of all spatial scales are included, small-scale as well as large-scale fields. The method yields an energy balance for the mean energy density ε ≡ B 2/8π of the dynamo, from which the relative energy production rates by the different dynamo processes can be inferred. An estimate for the r.m.s. field strength at the surface and at the base of the convection zone can be found by comparing the magnetic energy density and the outgoing flux at the surface with the observed values. We neglect resistive effects and present arguments indicating that this is a fair assumption for the solar convection zone. The model considerations and examples presented indicate that (1) the energy loss at the solar surface is almost instantaneous; (2) the convection in the convection zone takes place in the form of giant cells; (3) the r.m.s. field strength at the base of the solar convection zone is no more than a few hundred gauss; (4) the turbulent diffusion coefficient within the bulk of the convection zone is about 1014cm2s?1, which is an order of magnitude larger than usually adopted in solar mean field models.  相似文献   

9.
Abstract

Dynamo action in a highly conducting fluid with small magnetic diffusivity η is particularly sensitive to the topology of the flow. The sites of rapid magnetic field regeneration, when they occur, appear to be located at the stagnation points or in regions where the particle paths are chaotic. Elsewhere only slow dynamo action is to be expected. Two such examples are the nearly axially symmetric dynamo of Braginsky and the generalisation to smooth velocity fields of the Ponomarenko dynamo. Here a method of solution is developed, which applies to both these examples and is applicable to other situations, where magnetic field lines are close to either closed or spatially periodic contours. Particular attention is given to field generation in the neighbourhood of resonant surfaces where growth rates may be intermediate between the slow diffusive and fast convective time scales. The method is applied to the case of the two-dimensional ABC-flows, where it is shown that such intermediate dynamo action can occur on resonant surfaces.  相似文献   

10.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   

11.
Abstract

This paper discusses dynamo action in generalisations of the Ponomarenko dynamo at large magnetic Reynolds number. The original Ponomarenko dynamo consists of a spiralling flow in which the stream surfaces are concentric cylinders of circular cross section, and the flow depends only on distance from the axis in cylindrical polar coordinates.

In this study, the stream surfaces are allowed to be cylinders of arbitrary cross section, and the flow is only required to be independent of the coordinate along the cylinder axes. For smooth flows alpha and eddy diffusion effects are identified, in terms of the geometry of the stream surfaces, and asymptotic formulae for growth rates in the limit of large magnetic Reynolds number are obtained. Numerical support for these results is presented using direct simulation of dynamo action in selected flows at high conductivity. Finally the case is considered when in spherical polar coordinates the flow is independent of the azimuthal coordinate and the stream surfaces, which are tori, have arbitrary cross sections.  相似文献   

12.
The correlation between geomagnetic activity and the sunspot number in the 11-year solar cycle exhibits long-term variations due to the varying time lag between the sunspot-related and non-sunspot related geomagnetic activity, and the varying relative amplitude of the respective geomagnetic activity peaks. As the sunspot-related and non-sunspot related geomagnetic activity peaks are caused by different solar agents, related to the solar toroidal and poloidal fields, respectively, we use their variations to derive the parameters of the solar dynamo transforming the poloidal field into toroidal field and back. We find that in the last 12 cycles the solar surface meridional circulation varied between 5 and 20 m/s (averaged over latitude and over the sunspot cycle), the deep circulation varied between 2.5 and 5.5 m/s, and the diffusivity in the whole of the convection zone was ~108 m2/s. In the last 12 cycles solar dynamo has been operating in moderately diffusion dominated regime in the bulk of the convection zone. This means that a part of the poloidal field generated at the surface is advected by the meridional circulation all the way to the poles, down to the tachocline and equatorward to sunspot latitudes, while another part is diffused directly to the tachocline at midlatitudes, “short-circuiting” the meridional circulation. The sunspot maximum is the superposition of the two surges of toroidal field generated by these two parts of the poloidal field, which is the explanation of the double peaks and the Gnevyshev gap in sunspot maximum. Near the tachocline, dynamo has been operating in diffusion dominated regime in which diffusion is more important than advection, so with increasing speed of the deep circulation the time for diffusive decay of the poloidal field decreases, and more toroidal field is generated leading to a higher sunspot maximum. During the Maunder minimum the dynamo was operating in advection dominated regime near the tachocline, with the transition from diffusion dominated to advection dominated regime caused by a sharp drop in the surface meridional circulation which is in general the most important factor modulating the amplitude of the sunspot cycle.  相似文献   

13.
Abstract

Magnetic field generation in a continuous medium in processes without self-excitation—the so-called semi-dynamo, involving as essential elements both magnetohydrodynamic processes and the presence of an impressed e.m.f.—has been studied for the case of the topological pumping effect on the magnetic field generation by an impressed e.m.f. operating in a three-dimensional Bénard convection layer.

Under conditions of interest for astrophysical applications the magnetic flux produced can exceed substantially that excited by the e.m.f. in the absence of motion.

The results obtained permitted an evaluation of the general quasi-steady magnetic field of the Sun generated by an azimuthal Coriolis e.m.f. which is active in the outermost layers of the convective envelope, taking into account small-scale convective and turbulent motions. In the polar regions of the Sun this field can reach ~10?1 G.  相似文献   

14.
Abstract

The mean-field effects of cyclonic convection become increasingly complex when the cyclonic rotation exceeds ½-π. Net helicity is not required, with negative turbulent diffusion, for instance, appearing in mirror symmetric turbulence. This paper points out a new dynamo effect arising in convective cells with strong asymmetry in the rotation of updrafts as against downdrafts. The creation of new magnetic flux arises from the ejection of reserve flux through the open boundary of the dynamo region. It is unlike the familiar α-effect in that individual components of the field may be amplified independently. Several formal examples are provided to illustrate the effect. Occurrence in nature depends upon the existence of fluid rotations of the order of π in the convective updrafts. The flux ejection dynamo may possibly contribute to the generation of field in the convective core of Earth and in the convective zone of the sun and other stars.  相似文献   

15.
Abstract

A maintenance mechanism of an approximately linear velocity profile of the Venus zonal flow or superrotation is explored, with the aid of a Reynolds-averaged turbulence modelling approach. The basic framework is similar to that of Gierasch (Meridional circulation and maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 1975, 32, 1038–1044) in the sense that the mechanism is examined under a given meridional circulation. The profile mimicking the observations of the flow is initially assumed, and its maintenance mechanism in the presence of turbulence effects is investigated from a viewpoint of the suppression of energy cascade. In the present work, the turbulent viscosity is regarded as an indicator of the intensity of the cascade. A novelty of this formalism is the use of the isotropic turbulent viscosity based on a non-local time scale linked to a large-scale flow structure. The mechanism is first discussed qualitatively. On the basis of these discussions, the two-dimensional numerical simulation of the proposed model is performed, with an initially assumed superrotation, and the fast zonal flow is shown to be maintained, compared with the turbulent viscosity lacking the non-local time scale. The relationship of the present model with the current general circulation model simulation is discussed in light of a crucial role of the vertical viscosity.  相似文献   

16.
Abstract

We discuss recent developments in the theory of large-scale magnetic structures in spiral galaxies. In addition to a review of galactic dynamo models developed for axisymmetric disks of variable thickness, we consider the possibility of dominance of non-axisymmetric magnetic modes in disks with weak deviations from axial symmetry. Difficulties of straightforward numerical simulation of galactic dynamos are discussed and asymptotic solutions of the dynamo equations relevant for galactic conditions are considered. Theoretical results are compared with observational data.  相似文献   

17.
We examine joint effects of the solar activity and phase of the quasi-biennial oscillation (QBO) on modes of low-frequency variability of tropospheric circulation in the Northern Hemisphere in winter. The winter months (December–March) are stratified by the solar activity into two (below/above median) classes, and each of these classes is subdivided by the QBO phase (west or east). The variability modes are determined by rotated principal component analysis of 500 hPa heights separately in each class of solar activity and QBO phase. Detected are all the modes known to exist in the Northern Hemisphere. The solar activity and QBO jointly affect the shapes, spatial extent, and intensity of the modes; the QBO effects are, however, generally weaker than those of solar activity. For both solar maxima and minima, there is a tendency to the east/west phase of QBO to be accompanied by a lower/higher activity of zonally oriented modes and increased meridionality/zonality of circulation. This means that typical characteristics of circulation under solar minima, including a more meridional appearance of the modes and less activity of zonal modes, are strengthened during QBO-E; on the other hand, circulation characteristics typical of solar maxima, such as enhanced zonality of the modes and more active zonal modes, are more pronounced during QBO-W. Furthermore, the zonal modes in the Euro-Atlantic and Asian sectors (North Atlantic Oscillation, East Atlantic pattern, and North Asian pattern) shift southwards in QBO-E, the shift being stronger in solar maxima.  相似文献   

18.
Abstract

The kinematic dynamo problem is considered for certain steady velocity fields with symmetries that are plausible in a rapidly rotating convective system. By generalizing results proved for the mean field dynamo model by Proctor (1977a), it is shown that for a related “comparison problem” with modified boundary conditions, the eigenvalues are degenerate if there is no axisymmetric mean circulation, with modes of dipole and quadrupole parity excited with equal ease. The comparison problem can be shown to be closely similar to the dynamo problem when there is a region unfavourable to dynamo action surrounding the dynamo region. The near-symmetries found by Roberts (1972) for the mean field model are invoked to suggest that a close correspondence is likely even when this region is absent. It is therefore conjectured that such mean motions may be important in explaining the observed preference for solutions of dipole parity by planetary dynamos.  相似文献   

19.
Abstract

An explicit example of a steady prototype Lortz dynamo is elaborated in terms of a previously derived illustrative, exact, closed form solution to the nonlinear dynamo equations. The eigenvalue character of the dynamo problem is now introduced which simplifies the solution. The magnetic field lines, which lie on circular cylinders, and velocity streamline pattern are then displayed and discussed. Analysis of the magnetic energy balance by way of the Poynting flux reveals the existence of a finite critical cylinder across which zero net magnetic energy flows, thereby proving that the material inside is a self-excited dynamo, despite the fact that the total magnetic energy is unbounded.  相似文献   

20.
We investigate here the fluctuations in the total, open and closed solar magnetic flux (SMF) for the period 1971–1999 by means of the maximum entropy method in the frequency range 5×10−9–10−7 Hz (6 yr to 120 days). We use monthly data for the total, open and closed magnetic solar fluxes. Periodicities found in the series are similar showing that there is some relationship between the fluxes. The most important finding of this work is the existence of fluctuations at around 1.3 and 1.7 yr in the SMF with alternating importance during consecutive even and odd solar cycles. These fluctuations are directly related with variations present in cosmic rays, solar wind parameters and geomagnetic activity indexes. A quasi-triennial periodicity previously found in sunspots and other solar phenomena is also of importance. The SMF is generated by the action of the solar dynamo; therefore, it is through the magnetic flux that the solar dynamo influences several heliospheric phenomena.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号