首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

The linear problem of the onset of convection in rotating spherical shells is analysed numerically in dependence on the Prandtl number. The radius ratio η=r i/r o of the inner and outer radii is generally assumed to be 0.4. But other values of η are also considered. The goal of the analysis has been the clarification of the transition between modes drifting in the retrograde azimuthal direction in the low Taylor number regime and modes traveling in the prograde direction at high Taylor numbers. It is shown that for a given value m of the azimuthal wavenumber a single mode describes the onset of convection of fluids of moderate or high Prandtl number. At low Prandtl numbers, however, three different modes for a given m may describe the onset of convection in dependence on the Taylor number. The characteristic properties of the modes are described and the singularities leading to the separation with decreasing Prandtl number are elucidated. Related results for the problem of finite amplitude convection are also reported.  相似文献   

2.
Abstract

Finite amplitude solutions for convection in a rotating spherical fluid shell with a radius ratio of η=0.4 are obtained numerically by the Galerkin method. The case of the azimuthal wavenumber m=2 is emphasized, but solutions with m=4 are also considered. The pronounced distinction between different modes at low Prandtl numbers found in a preceding linear analysis (Zhang and Busse, 1987) is also found with respect to nonlinear properties. Only the positive-ω-mode exhibits subcritical finite amplitude convection. The stability of the stationary drifting solutions with respect to hydrodynamic disturbances is analyzed and regions of stability are presented. A major part of the paper is concerned with the growth of magnetic disturbances. The critical magnetic Prandtl number for the onset of dynamo action has been determined as function of the Rayleigh and Taylor numbers for the Prandtl numbers P=0.1 and P=1.0. Stationary and oscillatory dynamos with both, dipolar and quadrupolar, symmetries are close competitors in the parameter space of the problem.  相似文献   

3.
The effects of rotation and a toroidal magnetic field on the preferred pattern of small amplitude convection in spherical fluid shells are considered. The convective motions are described in terms of associated Legendre functions Pl|m| (cos θ). For a given pair of Prandtl number P and magnetic Prandtl number Pm the physically realized solution is represented either by m = 0 or |m| = l depending on the ratio of the rotation rate Λ to the magnetic field amplitude H. The case of m = 0 is preferred if this ratio ranges below a critical value, which is a function of the shell thickness, and |m| = l otherwise.  相似文献   

4.
5.
Abstract

The problem of the removal of the degeneracy of the patterns of convective motion in a spherically symmetric fluid shell by the effects of rotation is considered. It is shown that the axisymmetric solution is preferred in sufficiently thick shells where the minimum Rayleigh number corresponds to degree l = 1 of the spherical harmonics. In all cases with l > 1 the solution described by sectional spherical harmonics Yl l (θ,φ) is preferred.  相似文献   

6.
Abstract

Convection in a rotating spherical shell has wide application for understanding the dynamics of the atmospheres and interiors of many celestial bodies. In this paper we review linear results for convection in a shell of finite depth at substantial but not asymptotically large Taylor numbers, present nonlinear multimode calculations for similar conditions, and discuss the model and results in the context of the problem of solar convection and differential rotation. Detailed nonlinear calculations are presented for Taylor number T = 105, Prandtl number P = 1, and Rayleigh number R between 1 |MX 104 and 4 |MX 104 (which is between about 4 and 16 times critical) for a shell of depth 20% of the outer radius. Sixteen longitudinal wave numbers are usually included (all even wave numbers m between 0 and 30) the amplitudes of which are computed on a staggered grid in the meridian plane.

The kinetic energy spectrum shows a peak in the wave number range m = 12–18 at R = 104, which straddles the critical wave number m = 14 predicted by linear theory. These are modes which peak near the equator. The spectrum shows a second strong peak at m = 0, which represents the differential rotation driven by the peak convective modes. As R is increased, the amplitude of low wave numbers increases relative to high wave numbers as convection fills in in high and middle latitudes, and as the longitudinal scale of equatorial convection grows. By R = 3 |MX 104, m = 8 is the peak convective mode. There is a clear minimum in the total kinetic energy at middle latitudes relative to low and high, well into the nonlinear regime, representing the continued dominance of equatorial and polar modes found in the linear case. The kinetic energy spectrum for m > 0 is maintained primarily by buoyancy work in each mode, but with substantial nonlinear transfer of kinetic energy from the peak modes to both lower and higher wave numbers.

For R = 1 to 2 |MX 104, the differential rotation takes the form of an equatorial acceleration, with angular velocity generally decreasing with latitude away from the equator (as on the sun) and decreasing inwards. By R = 4 |MX 104, this equatorial profile has completely reversed, with angular velocity increasing with depth and latitude. Also, a polar vortex which has positive rotation relative to the reference frame (no evidence of which has been seen on the sun) builds up as soon as polar modes become important. Meridional circulation is quite weak relative to differential rotation at R = 104, but grows relative to it as R is increased. This circulation takes the farm of a single cell of large latitudinal extent in equatorial regions, with upward flow near the equator, together with a series of narrower cells in high latitudes. It is maintained primarily by axisymmetric buoyancy forces. The differential rotation is maintained at all R primarily by Reynolds stresses, rather than meridional circulation. Angular momentum transport toward the equator for R = 1–2 |MX 104 maintains the equatorial acceleration while radially inward transport maintains the opposite profile at R = 4 |MX 104.

The total heat flux out the top of the convective shell always shows two peaks for the range of R studied, one at the equator and the other near the poles (no significant variation with latitude is seen on the sun), while heat flux in at the bottom shows only a polar peak at large R. The meridional circulation and convective cells transport heat toward the equator to maintain this difference.

The helicity of the convection plus the differential rotation produced by it suggest the system may be capable of driving a field reversing dynamo, but the toroidal field may migrate with lime in each cycle toward the poles and equator, rather than just toward the equator as apparently occurs on the sun.

We finally outline additions to the physics of the model to make it more realistic for solar application.  相似文献   

7.
8.
Abstract

A spherical αω-dynamo is studied for small values of the viscous coupling parameter ε ~ v1/2, paying attention particularly to large dynamo numbers. The present study is a follow-up of the work by Hollerbach et al. (1992) with their choice of α-effect and Archimedean wind including also the constraint of magnetic field symmetry (or antisymmetry) due to equatorial plane. The magnetic field scaled by ε1/2 is independent of ε in the solutions for dynamo numbers smaller than a certain value of D b (the Ekman state) which are represented by dynamo waves running from pole to equator or vice-versa. However, for dynamo numbers larger than D b the solution bifurcates and subsequently becomes dependent on ε. The bifurcation is a consequence of a crucial role of the meridional convection in the mechanism of magnetic field generation. Calculations suggest that the bifurcation appears near dynamo number about 33500 and the solutions for larger dynamo numbers and ε = 0 become unstable and fail, while the solutions for small but non-zero ε are characterized by cylindrical layers of local maximum of magnetic field and sharp changes of geostrophic velocity. Our theoretical analysis allows us to conclude that our solution does not take the form of the usual Taylor state, where the Taylor constraint should be satisfied due to the special structure of magnetic field. We rather obtained the solution in the form of a “weak” Taylor state, where the Taylor constraint is satisfied partly due to the amplitude of the magnetic field and partly due to its structure. Calculations suggest that the roles of amplitude and structure are roughly fifty-fifty in our “weak” Taylor state solution and thus they can be called a Semi-Taylor state. Simple estimates show that also Ekman state solutions can be applicable in the geodynamo context.  相似文献   

9.
Abstract

Numerical simulations of thermal convection in a rapidly rotating spherical fluid shell heated from below and within have been carried out with a nonlinear, three-dimensional, time-dependent pseudospectral code. The investigated phenomena include the sequence of transitions to chaos and the differential mean zonal rotation. At the fixed Taylor number T a =106 and Prandtl number Pr=1 and with increasing Rayleigh number R, convection undergoes a series of bifurcations from onset of steadily propagating motions SP at R=R c = 13050, to a periodic state P, and thence to a quasi-periodic state QP and a non-periodic or chaotic state NP. Examples of SP, P, QP, and NP solutions are obtained at R = 1.3R c , R = 1.7 R c , R = 2R c , and R = 5 R c , respectively. In the SP state, convection rolls propagate at a constant longitudinal phase velocity that is slower than that obtained from the linear calculation at the onset of instability. The P state, characterized by a single frequency and its harmonics, has a two-layer cellular structure in radius. Convection rolls near the upper and lower surfaces of the spherical shell both propagate in a prograde sense with respect to the rotation of the reference frame. The outer convection rolls propagate faster than those near the inner shell. The physical mechanism responsible for the time-periodic oscillations is the differential shear of the convection cells due to the mean zonal flow. Meridional transport of zonal momentum by the convection cells in turn supports the mean zonal differential rotation. In the QP state, the longitudinal wave number m of the convection pattern oscillates among m = 3,4,5, and 6; the convection pattern near the outer shell has larger m than that near the inner shell. Radial motions are very weak in the polar regions. The convection pattern also shifts in m for the NP state at R = 5R c , whose power spectrum is characterized by broadened peaks and broadband background noise. The convection pattern near the outer shell propagates prograde, while the pattern near the inner shell propagates retrograde with respect to the basic rotation. Convection cells exist in polar regions. There is a large variation in the vigor of individual convection cells. An example of a more vigorously convecting chaotic state is obtained at R = 50R c . At this Rayleigh number some of the convection rolls have axes perpendicular to the axis of the basic rotation, indicating a partial relaxation of the rotational constraint. There are strong convective motions in the polar regions. The longitudinally averaged mean zonal flow has an equatorial superrotation and a high latitude subrotation for all cases except R = 50R c , at this highest Rayleigh number, the mean zonal flow pattern is completely reversed, opposite to the solar differential rotation pattern.  相似文献   

10.
This paper presents a study of high Rayleigh number (up to 200 times supercritical) axisymmetrical convection in a spherical shell with an aspect ratio relevant for the Earth's lower mantle. Both bottom-heated and internal heated cases have been considered. Computations have been carried out for an infinite Prandtl number isoviscous fluid with free slip isothermal boundary conditions. The first part of the paper is devoted to the influence of the resolution on the accuracy of the numerical results. It is shown that the resolution strongly influences the onset of time dependence. Recent methods of non-linear physics have been used to prove that the time dependence and the chaotic behaviors of the solutions are real ones. From these results we can confirm that convection is chaotic, in this particular geometry, even for Rayleigh numbers 200 times critical. Aperiodic boundary layer instabilities are found to be incapable of breaking up the large-scale flow, owing to the shear of the global circulation. Spectral analysis of the power associated with the thermal anomalies shows that there is an upward cascade of energy, due to small-scale chaotic instabilities, from l = 2 to l = 4–6 at the bottom boundary, in agreement with new seismic observations at the core-mantle boundary [1–3].  相似文献   

11.
12.
Abstract

Models of differentially rotating compressible deep spherical shells are computed according to the method of Belvedere and Paternò (1977): the heat transport is entirely convective, small-scale motions are parametrized by a thermal diffusivity and a kinematic viscosity, and the limit of slow rotation and large viscosity is considered.

In order to adapt the resulting differential rotation to the observed equatorial acceleration of the Sun, the heat transport must be more effective in the vicinity of the equator. In all models the latitude dependence of the transport coefficient induces meridional circulation in the form of a large cell, with rising material at high latitudes and sinking material near the equator. On top of this cell, one or two thin countercells develop in a minority of cases. Large pole-equator temperature differences and meridonal velocities at the surface are obtained when the Prandtl number is 1. But values of, say, 1/10 are sufficiently small to allow the models to be applied to the Sun. In general an angular velocity increasing with depth is found, and the surfaces of constant angular velocity are inclined towards greater depth and higher latitude.  相似文献   

13.
Abstract

This paper develops further a convection model that has been studied several times previously as a very crude idealization of planetary core dynamics. A plane layer of electrically-conducting fluid rotates about the vertical in the presence of a magnetic field. Such a field can be created spontaneously, as in the Childress—Soward dynamo, but here it is uniform, horizontal and externally-applied. The Prandtl number of the fluid is large, but the Ekman, Elsasser and Rayleigh numbers are of order unity, as is the ratio of thermal to magnetic diffusivity. Attention is focused on the onset of convection as the temperature difference applied across the layer is increased, and on the preferred mode, i.e., the planform and time-dependence of small amplitude convection. The case of main interest is the layer confined between electrically-insulating no-slip walls, but the analysis is guided by a parallel study based on illustrative boundary conditions that are mathematically simpler.  相似文献   

14.

Mushy layers arise and are significant in a number of geophysical contexts, including freezing of sea ice, solidification of magma chambers and inner-core solidification. A mushy layer is a region of solid and liquid in phase equilibrium which commonly forms between the liquid and solid regions of a solidifying system composed of two or more constituents. We consider the convective instability of a plane mushy layer which advances steadily upwards as heat is withdrawn at a uniform rate from the bottom of a eutectic binary alloy. The solid which forms is assumed to be composed entirely of the denser constituent, making the residual liquid within the mush compositionally buoyant and thus prone to convective motion. In this article we focus on the large-scale mush mode of instability, arguing that the 'boundary-layer' mode is not amenable to the standard stability analysis, because convective motions occur on that scale for any non-zero value of the Rayleigh number. We quantify the minimum critical Rayleigh number and determine the structure of the convective modes of motion within the mush and the associated deflections of the mush-melt and mush-solid boundaries. This study of convective perturbations differs from previous analyses in two ways; the inhibition of motion and deformation of the mush-melt interface by the stable stratification of the overlying melt is properly quantified and deformation of the mush-solid interface is permitted and quantified. We find that the mush-melt interface is almost unaffected by convection while significant deformation of the mush-solid interface occurs. We show that each of these effects causes significant (unit-order) changes in the predicted critical Rayleigh number. The marginal modes depend on three dimensionless parameters: a scaled eutectic temperature, τ e (which characterizes the eutectic temperature relative to the depression of the liquidus), a scaled superheat, τ (which measures the amount by which the temperature of the incoming melt exceeds the liquidus temperature) and the Stefan number, S (which measures the latent heat of crystallization). To survey parameter space, we focus on seven cases, a standard case having S = τ = τ e = 1, and six others in which one of the parameters is either large or small compared with unity: a nearly pure case (τ e = 100; having little of the light constituent), the large superheat limit (τ→ ∞), a case of large latent heat (S = 100), the near eutectic limit (τ e → 0), a case of small superheat (τ = 0.01) and the case of zero latent heat (S = 0). The critical Rayleigh number and the associated wavelength of the convection pattern are determined in each case. The eigenvector for each case is presented in terms of the streamlines and the isolines of the perturbation temperature and solid fraction.  相似文献   

15.
Abstract

An isochemical uni-phase model of whole mantle convection has been developed in terms of which factors influencing the onset of time dependent chaotic behavior may be assessed. The model is spherical but restricted in generality to the analysis of axisymmetric solutions. In this paper we have employed it to examine the impact of compressibility and sphericity on the nature and onset of time dependence. Particular attention has been given to an examination of the impact that the onset of time dependence has upon the power law relation that connects the heat transfer (represented by the Nusselt number) to the strength of the thermal forcing (represented by the Rayleigh number). In order to obtain these results very extensive numerical simulations were required and the results themselves should be rather useful in the context of models of the thermal history of the planet.  相似文献   

16.
Convection in the Earth's core is driven much harder at the bottom than the top. This is partly because the adiabatic gradient steepens towards the top, partly because the spherical geometry means the area involved increases towards the top, and partly because compositional convection is driven by light material released at the lower boundary and remixed uniformly throughout the outer core, providing a volumetric sink of buoyancy. We have therefore investigated dynamo action of thermal convection in a Boussinesq fluid contained within a rotating spherical shell driven by a combination of bottom and internal heating or cooling. We first apply a homogeneous temperature on the outer boundary in order to explore the effects of heat sinks on dynamo action; we then impose an inhomogeneous temperature proportional to a single spherical harmonic Y 2² in order to explore core-mantle interactions. With homogeneous boundary conditions and moderate Rayleigh numbers, a heat sink reduces the generated magnetic field appreciably; the magnetic Reynolds number remains high because the dominant toroidal component of flow is not reduced significantly. The dipolar structure of the field becomes more pronounced as found by other authors. Increasing the Rayleigh number yields a regime in which convection inside the tangent cylinder is strongly affected by the magnetic field. With inhomogeneous boundary conditions, a heat sink promotes boundary effects and locking of the magnetic field to boundary anomalies. We show that boundary locking is inhibited by advection of heat in the outer regions. With uniform heating, the boundary effects are only significant at low Rayleigh numbers, when dynamo action is only possible for artificially low magnetic diffusivity. With heat sinks, the boundary effects remain significant at higher Rayleigh numbers provided the convection remains weak or the fluid is stably stratified at the top. Dynamo action is driven by vigorous convection at depth while boundary thermal anomalies dominate in the upper regions. This is a likely regime for the Earth's core.  相似文献   

17.
Abstract

Models of a differentially rotating compressible convection zone are calculated, considering the inertial forces in the poloidal components of the equations of motion. Two driving mechanisms have been considered: latitude dependent heat transport and anisotropic viscosity. In the former case a meridional circulation is induced initially which in turn generates differential rotation, whereas in the latter case differential rotation is directly driven by the anisotropic viscosity, and the meridional circulation is a secondary effect.

In the case of anisotropic viscosity the choice of boundary conditions has a big influence on the results: depending on whether or not the conditions of vanishing pressure perturbation are imposed at the bottom of the convection zone, one obtains differential rotation with a fast (≥ 10 ms?1) or a slow (~ 1 ms?1) circulation. In the latter case the rotation law is mainly a function of radius and the rotation rate increases inwards if the viscosity is larger in radial direction than in the horizontal directions.

The models with latitude dependent heat transport exhibit a strong dependence on the Prandtl number. For values of the Prandtl number less than 0.2 the pole-equator temperature difference and the surface velocity of the meridional circulation are compatible with observations. For sufficiently small values of the Prandtl number the convection zone becomes globally unstable like a layer of fluid for which the critical Rayleigh number is exceeded.  相似文献   

18.
Abstract

A simple nonlinear model is developed for the solar dynamo, in which the real convective spherical shell is approximated by a thin flat slab, and only the back-reaction of the field B on the helicity is taken into account by choosing the simple law α = α(1-ζB 2), where α and ζ are constants, to represent the decrease in generation coefficient ζ with increasing field strength. Analytic expressions are obtained for the amplitude of the field oscillation and its period, T, as functions of the deviation d - dCT of a dynamo number d from its critical value dcr for regeneration. A symmetry is found for the case of oscillations of small constant amplitude: B(t+½T)= -B(t). A Landau equation is obtained that describes the transition to such oscillations.  相似文献   

19.
Fluid flow exerts a critical impact on the convection of thermal energy in geological media, whereas heat transport in turn affects fluid properties, including fluid dynamic viscosity and density. The interplay of flow and heat transport also affects solute transport. To unravel these complex coupled flow, heat, and solute transport processes, here, we present a theory for the idealized scale‐dependent Poiseuille flow model considering a constant temperature gradient (?T) along a single fracture, where fluid dynamic viscosity connects with temperature via an exponential function. The idealized scale‐dependent model is validated based on the solutions from direct numerical simulations. We find that the hydraulic conductivity (K) of the Poiseuille flow either increases or decreases with scales depending on ?T > 0°C/m or ?T < 0°C/m, respectively. Indeed, the degree of changes in K depends on the magnitude of ?T and fracture length. The scale‐dependent model provides an alternative explanation for the well‐known scale‐dependent transport problem, for example, the dispersion coefficient increases with travel distance when ?T > 0°C/m according to the Taylor dispersion theory, because K (or equivalently flux through fractures) scales with fracture length. The proposed theory unravels intertwined interactions between flow and transport processes, which might shed light on understanding many practical geophysical problems, for example, geothermal energy exploration.  相似文献   

20.
Abstract

Small amplitude two-dimensional Boussinesq convection in a plane layer with stress-free boundaries rotating uniformly about the vertical is studied. A horizontally unbounded layer is modelled by periodic boundary conditions. When the centrifugal force is balanced by an appropriate pressure gradient the resulting equations are translation invariant, and overstable convection can take the form of travelling waves. In the Prandtl number regime 0.53 < [sgrave] < 0.68 such solutions are preferred over the more usual standing waves. For [sgrave] < 0.53, travelling waves are stable provided the Taylor number is sufficiently large.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号