首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 69 毫秒
1.
Weekly phytoplankton samples were taken from western Hong Kong (Lamma) from Jan. 1997 to Dec. 1999 and from Port Shelter in Eastern Hong Kong from January 1998 to December 1999. During that time diatom blooms occurred repeatedly at both sites but never in synchrony. One species would bloom at one site and then weeks later it or another species would bloom at the other site; while the 1998 red tide of the mucus producing dinoflagellateGymnodinium mikimotoi occurred at both sites. It first occurred at the Port Shelter site in March and did not appear at the Lamma site until April. With the single exception of this species, no other dinoflagellate reached bloom concentrations at the Lamma site. In addition, dinoflagellate abundance at the Lamma site was significantly lower (P<0.05) than that at the Port Shelter site. This was correlated with a significantly higher turbidity (i. e. low Secchi transparency) and higher turbulence (stronger currents) at the Lamma site. Annual variation in surface temperature correlated with total surface phytoplankton abundance at both our sample sites. Phytoplankton abundance increased in spring as water temperatures warmed. In fall, as surface water temperatures began to decline and the monsoon rains became less frequent there was a reduction in phytoplankton abundance associated with the reduction in temperature and light. Because so many variables co-occur with temperature (e. g. the amount of rainfall light intensity and light duration etc.) it is not possible to cite temperature as the causal factor associated weth controlling phytoplankton abundance at our two sample sites. Our data support the rather controversial notion that percentage-wise, there are relatively more harmful bloom forming species in nutrient-rich coastal waters than there are in the world's oceans. 16% of the dinoflagellate species and 10.3% of the diatom species observed at our two sample sites were classed as harmful. These percentages were higher than those cited by Sournia (1995) for the worlds oceans (9.6% and 6.8% respectively). This raises the possibility that there are relatively more toxic species in the nutrient-rich coastal waters of the world than there are in the mid ocean nutrient-poor areas of the world. Some reasons for this are briefly discussed.  相似文献   

2.
Phytoplankton abundance was found to be positively correlated with seasonal changes of seawater temperature in Port Shelter and Lamma Channel, Hong Kong in 1998. Rising water temperature from around 20°C to 25°C coincided with an increase in phytoplankton abundance at both locations. Heavy rains from June to September reduced salinity from 30 to 20, but the decrease in salinity was not correlated with a decline in phytoplankton abundance. In spring 1998, over 0.6×106 cells dm-3 and 0.1×106 cells dm-3 of the...  相似文献   

3.
A bloom of the dinoflagellate Scrippsiella trochoidea was detected for the first time in inner Tolo Harbor,Hong Kong in 2 000. Water samples were collected at eight stations along a transect passing through a red tide patch for microscopic analysis of phytoplankton composition and high-performance liquid chromatography(HPLC) analysis of phytoplankton pigments. During the bloom,the density of dinoflagellates was 1.1×106 cells L-1 within the patch and 8.6×105 cells L-1 outside the patch where the phytoplankto...  相似文献   

4.
A bloom of the dinoflagellate Scrippsiella trochoidea was detected for the first time in inner Tolo Harbor, Hong Kong in 2 000. Water samples were collected at eight stations along a transect passing through a red tide patch for microscopic analysis of phytoplankton composition and high-performance liquid chromatography (HPLC) analysis of phytoplankton pigments. During the bloom, the density of dinoflagellates was 1.1×106 cells L−1 within the patch and 8.6×105 cells L−1 outside the patch where the phytoplankton community was dominated by diatoms. After the bloom the S. trochoidea began to decrease in density and was replaced by diatoms as the dominating bloom-causing organisms at all stations, and the density of dinoflagellates at most stations was less than 1.0 × 106 cells L−1. The status of S. trochoidea as the causative species of the bloom was indicated by the presence of peridinin, the marker pigment for dinoflagellates. The shift from dinoflagellates to diatoms was marked by the decline of peridinin and the prevalence of fucoxanthin. Phytoplankton pigment markers also revealed the presence of other minor phytoplankton assemblages such as cryptomonads and blue-green algal.  相似文献   

5.
INTRODUCTIONPhosphorusisakeynutritiveelementforthegrowthofmarinephytoplankton .Recently ,be causeofenvironmentalpollution ,theeutrophicationproblemsincoastalandoceanicwatershavebe comemoreandmoreserious.Theenvironmentecologicalresponseinthelong termtothef…  相似文献   

6.
The individual or combined ef fect of water temperature and silicate on seasonal shift of dominant diatom species in a drinking water reservoir in China was studied in this paper. These ef fects were analyzed based on the field investigation of temporal dynamics in species composition and abundance of phytoplankton and environmental factors from September 2015 to August 2016. We firstly found that six dominant diatom species( Fragilaria nanana, Achnanthidium catenatum, Aulacoseira ambigua, Ulnaria ulna, Cyclotella meneghiniana and Asterionella formosa(Class Bacillariophyceae)), which accounted for98.7% of the total abundance of diatoms and 46.8% of the total abundance of phytoplankton, showed an obvious seasonal succession. Then significant driving factors for seasonal shift of the dominant diatom species were selected by Redundancy Analysis. The result showed that water temperature and silicate were the main environmental factors af fecting the growth of diatoms on temporal scales. Next, the regressions of water temperature and silicate and dominant diatom abundance were fitted in Generalized Additive Model separately, and the smoothers of water temperature and diatom species suggested that the dominant diatom species adapted to dif ferent optimum temperature ranges, which corresponded with the growth of seasonal changes. A positive linear correlation between silicate and diatom abundance was generated by Generalized Additive Model. Finally, the ordinal controls of water temperature and silicate on the growth of diatoms were analyzed on temporal scales specifically. We suggested that water temperature and silicate controlling the growth of diatoms in order. Diatoms grow well only when the two controlling factors simultaneously satisfy the growth conditions; as limiting factors, the two factors played their respective limiting roles in turn on temporal scales.  相似文献   

7.
This study on the distribution of phosphate and its relation to phytoplankton biomass in Western Xiamen Harbor using marine ecosystem enclosures to isolate the culture water from the tidal currents and salinity changes outside indicated that the phytoplankton biomass variation closely related to dissolved inorganic phosphorus (DIP) in the seawater as described by the equation: [Chl-a]=A×e−B[PO4]. The biomass changes lagged by about two days the corresponding DIP. The research also dealt with the minimal DIP concentration for stopping diatom bloom and the possible maximal diatom biomass was estimated from the DIP external concentration in the seawater. The threshold of DIP initiatingSkeletonema costatum red tide was calculated for use as an index to forecast its red tides. In addition, the relationships between a dinoflagellate red tide and nutrients are discussed. The results showed that the multiplication of dinoflagellate was not entirely dependent on the nutrients in the seawater. Project 39570145 supported by the NSFC and Fujian Science Foundation (No. D94010).  相似文献   

8.
To explore the spatial-temporal distribution of the phytoplankton community and evaluate the combined effects of marine resource exploitation, net-collected phytoplankton and physical-chemical parameters were investigated in the Xiangshan Bay during the four seasons of 2010. A total of eight phyla, 97 genera, and 310 species were found, including 232 diatom species, 45 dinoflagellate species and 33 other taxa. The phytoplankton abundances presented a significant (P<0.001) seasonal difference with the average of 60.66×104 cells/m3. Diatoms (mainly consisting of Coscinodiscus jonesianus, Cerataulina pelagica, Skeleto n ema costatum, and genus Chaetoceros) dominated the phytoplankton assemblage in all seasons. We found great spatio-temporal variation in community composition based on the multidimensional scaling and similarity analysis. Canonical correspondence analysis show that temperature, nutrition, illumination, and salinity were the main variables associated with microalgal assemblage. Compared with the previous studies, an increase in phytoplankton abundance and change in the dominant species coincided with increased exploitation activities in this bay (e.g. operation of coastal power plants, intensive mariculture, tidal flat reclamation, and industrial and agricultural development). The present findings suggest that the government should exercise caution when deciding upon developmental patterns in the sea-related economy.  相似文献   

9.
Cadmium(Cd) mainly derived from anthropogenic emissions can be transported through atmospheric pathway to marine ecosystem,affecting the phytoplankton community and primary productivity.In this study,we identified the toxicity threshold of Cd for phytoplankton under seawater conditions of the coastal East China Sea(ECS) through both laboratory and in situ mesocosm incubation experiments.The mesocosm experiment showed that Cd in low concentration(0.003 μg per μg chl a) was conducive to the growth of natural community and increased chl a productivity.In high concentration(0.03 μg per μg chl a) Cd acted as an inhibiting factor which decreased the total chl a productivity.The diatom community was found to be more sensitive to Cd toxicity than dinoflagellate,as the low concentration Cd showed toxicity to diatom but enhanced dinoflagellate growth.We noticed that the soluble Cd estimated from atmosphere deposition to the coastal ECS was below the toxicity threshold and the Cd deposition might promote phytoplankton growth in this region.In our laboratory experiments,adding Cd,similar to aerosol deposition,stimulated the growth of both dominant algal species Prorocentrum donghaiense Lu(dinoflagellate) and Skeletonema costatum(diatom).Adding Cd on a higher level inhibited the growth of both the species,but Skeletonema costatum seemed obviously more sensitive to toxicity.This indicates the potential impact of atmospheric deposition Cd on phytoplankton community succession in the ECS.  相似文献   

10.
We measured the concentrations and distribution of major polyamines(spermine, putrescine and spermidine) in seawater during successive spring algal blooms in an area of frequent harmful blooms in the East China Sea. Spermine, putrescine, and spermidine concentrations were analyzed by high performance liquid chromatography and ranged from 1–64, 7–81, and 0–19 nmol/L. Spermine was present at the highest concentrations, followed by putrescine and spermidine. In late April, when a diatom bloom dominated by Skeletonema costatum dispersed, polyamine concentrations increased, presumably as a result of diatom decomposition. In early May, when a dinoflagellate bloom dominated by Prorocentrum donghaiense occurred, the polyamine concentration decreased from the level seen in late April. The abundant polyamines that decomposed and were released during the diatom bloom in late April may have promoted the growth of P. donghaiense, resulting in its dominance.  相似文献   

11.
Abundance,biomass and composition of the ice algal and phytoplank-ton communities were investigated in the southeastern Laptev Sea in spring 1999.Diatoms dominated the algal communities and pennate diatoms dominated the dia-tom population.12 dominant algal species occurred within sea ice and underlyingwater column,including Fragilariopsis oceanica,F.cylindrus,Nitzschiafrigida,N.promare,Achnanthes taeniata,Nitzschia neofrigida,Naviculapelagica,N.vanhoef fenii,N.septentrionalis,Melosira arctica,Clindrothecaclosterium and Pyrarnimonas sp.The algal abundance of bottom 10 cm sea icevaried between 14.6 and 1562.2×10~4 ceils l~(-1)with an average of 639.0×10~4cells l~(-1),and the algal biomass ranged from 7.89 to 2093.5μg C l~(-1)with an av-erage of 886.9μg C l~(-1),which were generally one order of magnitude higherthan those of sub-bottom ice and two orders of magnitude higher than those ofunderlying surface water.The integrated algal abundance and biomass of lower-most 20 cm ice column were averagely 7.7 and 12.2 times as those of upper 20 mwater column,respectively,suggesting that the ice algae might play an importantrole in maintaining the coastal marine ecosystem before the thawing of sea ice.Icealgae influenced the phytoplankton community of the underlying water column.However,the“seeding”of ice algae for phytoplankton bloom was negligible be-cause of the iow phytoplankton biomass within the underlying water column.  相似文献   

12.
To better understand the spatial-temporal variation in phytoplankton community structure and its controlling factors in Jiaozhou Bay,Qingdao,North China,four seasonal sampling were carried out in 2017.The phytoplankton community structure and various environmental parameters were examined.The phytoplankton community in the bay was composed of mainly diatoms and dinoflagellates,and several other species of Chrysophyta were also observed.Diatoms were the most dominant phytoplankton group throughout the year,except in spring and winter,when Noctiluca scintillans was co-dominant.High Si/N ratios in summer and fall reflect the high dominance of diatoms in the two seasons.Temporally,the phytoplankton cell abundance peaked in summer,due mainly to the high temperatures and nutrient concentrations in summer.Spatially,the phytoplankton cell abundance was higher in the northern part of the bay than in the other parts of the bay in four seasons.The diatom cell abundances show significant positive correlations with the nutrient concentrations,while the dinoflagellate cell abundances show no correlation or a negative correlation with the nutrient concentrations but a significant positive correlation with the stratification index.This discrepancy was mainly due to the different survival strategies between diatoms and dinoflagellates.The Shannon-Wiener diversity index(H')values in the bay ranged from 0.08 to 4.18,which fell in the range reported in historical studies.The distribution pattern of H' values was quite different from that of chlorophyll a,indicating that the phytoplankton community structure might have high biomass with a low diversity index.Compared with historical studies,we believe that the dominant phytoplankton species have been changed in recent years due mainly to the changing environment in the Jiaozhou Bay in recent 30 years.  相似文献   

13.
In order to depict the distribution of diatom fossils in surface sediments and to establish a reliable reference data for further paleoenvironmental study in the Changjiang(Yangtze) River estuary and its adjacent waters, the diatom fossils from 34 surface sediment samples and their relationship with environmental variables were analyzed by principal component analysis and redundancy correspondence analysis. The diversity and abundance of diatom fossils were analyzed. Some annual average parameters of the overlying water(salinity, temperature, turbidity, dissolved oxygen, depth, dissolved inorganic nitrogen,dissolved inorganic phosphate and dissolved inorganic silicate) were measured at each sampling site. A total of 113 diatom taxa and one silicoflagellate species were identified in the investigation area. Diatom fossils were better preserved in fine sediments. The absolute abundance of diatom fossils did not significantly dif fer between inshore and of fshore areas, the species diversity decreased from inshore to of fshore. This may be because high nutrients and low salinity promoted the growth of more brackish species in coastal waters. The diatom taxa were divided into three groups, on the basis of their response and indication to environmental changes. For example, Actinocyclus ehrenbergii and Cyclotella stylorum were dominant in coastal waters(Group 1 and Group 3) with high nutrients and low salinity; the relative abundances of Paralia sulcata and Podosira stelliger were significantly higher in of fshore sites(Group 2, average 39.5%),which were characterized by high salinity and deep water. Four environmental variables(salinity, dissolved inorganic nitrogen, temperature and water depth) explained the composition and distribution of diatom taxa independently( P 0.05), this finding can be applied in further paleoenvironmental reconstruction research in this area.  相似文献   

14.
One new marine oligotrich ciliate, Omegastrombidium hongkongense n. sp., was isolated from a bloom of Noctiluca scuntillans near Port Shelter, Hong Kong. The morphology and infraciliature of this new species were studied on both living and protargol-stained specimens. Its phylogenetic position was discussed based on the sequence of the small subunit rRNA gene. O. hongkongense is different from its congeners with special characters. The cells are usually heart-shaped, and the cell size usually is (20–35) × (20–30) μm in vivo. Its deep buccal cavity extends obliquely to about 1/2 of cell length. It shows prominent apical protrusion. The adoral zone of membranelles is divided into 17–19 collar membranelles and four buccal membranelles. It has one ball-like macronucleus. The girdle kinety forms a closed loop which obliquely surrounds the body. The ventral kinety and thigmotactic membranelles are not observed. The SSU rRNA sequence of O. hongkongense was close to those of Strombidium paracalkinsi and Varistrombidium kelum with approximately 99% similarity. In the phylogenetic trees, O. hongkongense can be grouped with O. elegans and V. kielum species with very low support (16% ML).  相似文献   

15.
16.
The spatial distribution of siliceous microfossils (diatoms and silicoflagellates) in the surface sediments was mapped at 113 sites in the Yellow Sea and sea areas adjacent to the Changjiang (Yangtze) River, China. In total, 267 diatom taxa and two silicoflagellate species were identified from the sediments. The spatial variations in abundance and diversity were classified into three distinct geographic patterns using Q mode clustering: a south-north geographic pattern, a coastal-offshore pattern and a unique pattern in the Changjiang River mouth. The south-north geographic pattern was related to the spatial variations in sea temperature. Coscinodiscus oculatus, a warm-water species, indicated these variations by a gradual decrease in abundance from the south to the north. The coastal-offshore pattern was in response to the spatial variations in salinity. Cyclotella stylorum, Actinocyclus ehrenbergii and Dictyocha messanensis, the dominant brackish species in coastal waters, significantly decreased at the isobaths of approximately 30 m, where the salinity was higher than 31. Paralia sulcata and Podosira stelliger indicated the impact of the Yellow Sea Warm Current in the central Yellow Sea. The unique pattern in the Changjiang River mouth showed the highest species diversity but lower abundance, apparently because: freshwater input can significantly increase the proportion of brackish species; nutrients can supply the growth of phytoplankton; and high sedimentation rates can dilute the microfossil abundance in the sediments. Our results show that an integration of environmental factors (e.g., nutrient levels, sedimentation rate, sea temperature, salinity and water depth) determined the spatial characteristics of the siliceous microfossils in the surface sediments.  相似文献   

17.
The scyphozoan Aurelia aurita (Linnaeus) sp. l., is a cosmopolitan species-complex which blooms seasonally in a variety of coastal and shelf sea environments around the world. The effects of different microalgal species on the growth of newly-released Aurelia sp.1 ephyrae were studied under laboratory conditions. We fed ephyrae with four different microalgal species (diatom, autotrophic dinoflagellate, heterotrophic dinoflagellate, and chlorophyta) plus Artemia nauplii for 12-24 d at 18°C. Results showed that the growth rate diverged significantly for Artemia nauplii compared to other food types. In addition, there was no significant variation between the growth rates for Skeletonema costatum and Prorocentrum donghaiense, and no significant variation was found in the growth rates for N. scintillans and P. subcordiformis. Artemia nauplii could support the energy requirement for the newly-released ephyrae to develop to meduase, and the ephyrae with Artemia nauplii showed a significant average growth rate of 25.85% d?1. Newly-released ephyrae could grow slightly with some species of microalgae in the earliest development stage. Chain diatom Skeletonema costatum and autotrophic dinoflagellate Prorocentrum donghaiense, could not support the growth of the ephyrae, while heterotrophic dinoflagellate Noctiluca scintillans and chlorophyta Platymonas subcordiformis could support the growth of the ephyrae. However, none of the ephyrae fed with the tested phytoplankton could mature to medusae.  相似文献   

18.
I Introduction Phytoplankton play an important role in the primary production of ocean (Ning et al., 1995). They are impor-tant biological mediators of carbon turnover in seawater ecosystems (Zhu et al., 1993). Phytoplankton in Jiaozhou Bay have been preliminarily studied on the subjects of community structure, primary productivity and carbon budget (Qian et al., 1983; Guo et al., 1992; Jiao et al., 1994). It has been found that seasonal variation of phytoplankton cell abundance presents w…  相似文献   

19.
One of the water source areas of the South-to-North Water Diversion Project is the Danjiangkou Reservoir (DJKR). To understand seasonal variation in phytoplankton composition, abundance and distribution in the DJKR area before water diversion, as well as to estimate potential risks of water quality after water diversion, we conducted an investigation on phytoplankton in the DJKR from August 2008 to May 2009. The investigation included 10 sampling sites, each with four depths of 0.5, 5, 10, and 20 m. In this study, 117 taxa belonging to 76 genera were identified, consisting of diatoms (39 taxa), green algae (47 taxa), blue-green algae (19 taxa), and others (12 taxa). Annual average phytoplankton abundance was 2.01 × 106 ind./L, and the highest value was 14.72 × 106 ind/L (at site 3 in August 2008). Phytoplankton abundance in front of the Danjiangkou Dam (DJKD) was higher than that of the Danjiang Reservoir Basin. Phytoplankton distribution showed a vertical declining trend from 0.5 m to 20 m at most sites in August 2008 (especially at sites of 1, 2, 4 and 10), but no distinct pattern in other sampling months. In December 2008 and March 2009, Stephanodiscus sp. was the most abundant species, amounting to 55.23% and 72.34%, respectively. We propose that high abundance of Stephanodiscus sp. may have contributed greatly to the frequent occurrence of Stephanodiscus sp. blooms in middle-low reaches of the Hanjiang River during the early spring of 2009. In comparison with previous studies conducted from 1992 to 2006, annual average phytoplankton density, green algae and blue-green algae species, as well as major nutrient concentrations increased, while phytoplankton diversity indices declined. This indicates a gradual decline in water quality. More research should be conducted and countermeasures taken to prevent further deterioration of water quality in the DJKR.  相似文献   

20.
We describe the phytoplankton dynamics and structure in Xiangxi Bay, Three Gorges Reservoir. Samples were collected monthly in the surface waters between August 2007 and July 2008. We identified 10 principle functional groups. C-strategists and S/R-strategists with a wide range of tolerance dominated the phytoplankton assemblage. Seasonal variation was related to water column stability because of changes in hydraulic operation in October, January, and May. Functional group C (Asterionella formosa) and P (Aulacoseria granulata) dominated in August and September, whereas group Lo (Peridiniopsis niei) was the most abundant between February and April, forming a dinoflagellate bloom. Group B (Stephanodiscus hantzschii), X2 (Komma acudata), and Y (Cryptomonas erosa) were present throughout most of the year but were most abundant in late spring. A cyanobacterial bloom occurred from June to July, during which group M (Microcystis aeruginosa, M. wesenbergii) and H1 (Anabaena flos-aquae) were dominant. Green algae, characterized by group G (Eudorina sp., Pandorina sp., Pyramidomonas sp.) and J (Pediastrum spp., Coelastrum spp., Scenedesums spp.), were abundant after the bloom degraded. This sequence was corroborated by canonical correspondence analysis (CCA). The summary sequence of functional groups resulting from CCA was: C/P → Lo → H1/M/J/G. The dynamics of the phytoplankton community may be explained by the stability of water column, irradiance, water temperature, and nutrient structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号