首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
We have conducted an initial search for discrete preflare brightenings as observed in soft X-radiation by Yohkoh. The Yohkoh images allow us to identify, to within a few arc seconds, the location of a preflare event relative to the succeeding flare. Our initial motivation in this study was to search for early coronal brightenings leading to flare effects, as had been suggested by earlier studies; thus we concentrated on Yohkoh limb events. We find no evidence for such early coronal brightenings. Between 15% and 41% of the 131 suitable events matched our criteria for preflare brightening: the same active region; brightening within one hour of the flare peak; preflare brightness less than 30% of the flare peak. In the great majority of the preflare cases, we found that physically separate nearby structures brightened initially. Often these structures appeared to share a common footpoint location with the flare brightening itself. In a few cases the preflare could have occurred in exactly the same structure as the flare.  相似文献   

2.
The two-dimensional Van Tend and Kuperus (1978) scenario for pre-flare energy build-up is extended to a fully three-dimensional model and applied to the 16 May, 1981 flare observed at Debrecen. It is shown that there is plenty of free energy (1033 erg) available to explain the ensuing large two-ribbon flare. This estimate is an order of magnitude larger than the simple estimate made by Van Tend, as a result of the three-dimensional character of the present model. It is further confirmed that the global form of the preflare circuit is decisive for determining the amount of energy stored in the preflare configuration, while the internal structure of the filament is of little importance. This is in accordance with the similar claims of Alfvén and Van Tend and Kuperus.Order of magnitude estimates are derived for all the lumped circuit parameters of the preflare filament-return current circuit; self-inductance, resistance, current strength, and applied voltage. It is found that the model gives correct predictions for the independently observed photospheric flow velocity and current strength in filaments.NAS/NRC Resident Research Associate.  相似文献   

3.
A comprehensive survey of Skylab S-054 soft X-ray images was performed to investigate the characteristics of coronal enhancements preceding solar flares. A search interval of 30 min before flare onset was used. A control sample was developed and tests of the statistical results performed. X-ray images with preflare enhancements were compared with high resolution H images and photospheric magnetograms.The results are as follows: preflare X-ray enhancements were found in a statistically significant number of the preflare intervals, and consisted of one to three loops, kernels or sinuous features per interval. Typically, the preflare feature was not at the flare site and did not reach flare brightness. There was no systematically observed time within the preflare interval for the preflare events to appear and no correlation of preflare event characteristics with the subsequent flare energy. Gas pressures of several preflare features were calculated to be on the order of several dyne cm–2, typical of active region loops, not flares. These results suggest that observations with both high spatial resolution and low coronal temperature sensitivity are required to detect these small, low pressure enhancements that preceded the smaller flares typical of the Skylab epoch. H brightenings were associated with nearly all of the preflare X-ray enhancements. Changing H absorption features in the form of surges or filament activations were observed in about half of the cases. These results do not provide observational support for models which involve preheating of the flare loop, but they are consistent with some current sheet models which invoke the brightening of structures displaced from the flare site tens of min before onset.  相似文献   

4.
S. W. Kahler 《Solar physics》1979,62(2):347-357
X-ray images from the AS&E telescope on Skylab are used to investigate coronal conditions in solar active regions during the 20-min periods preceding the X-ray onsets of small flares. The preflare or precursor phase is defined as a phase with a characteristic length or time scale significantly different from that of the rise phase. We show that there is no observational evidence of a requirement for a coronal preflare heating phase with a time scale longer than 2 min for small flares characterized by one or two loops. In 18 out of 25 cases the flaring X-ray structure was not the brightest feature in the preflare active region. The electron densities are estimated for preflare loops.  相似文献   

5.
Fisher  G. H. 《Solar physics》1987,113(1-2):307-311

We explore the dynamics of chromospheric condensations driven by evaporation during the impulsive phase of solar flares. Specifically, we find that the maximum chromospheric downflow speed obeys the approximate relation υd= 0.4 (Fch)1/3, where F is that part of the flare energy flux driving chromospheric evaporation, and ϱch is the mass density in the preflare chromosphere just below the preflare transition region. This implies that chromospheric downflows as measured by Hα asymmetries may be a powerful probe of flare energetics.

  相似文献   

6.
The preflare activity of a plage filament is analysed from H observations made with the Multichannel Subtractive Double Pass Spectrograph (MSDP) of the Meudon Solar Tower. The June 22, 1980 event is studied and interpreted in terms of preflare heating of a filament, connected to the rise of emerging flux, and the relative approach of pores of different magnetic polarity, prior to the onset of a two-ribbon flare.The region with enhanced magnetic field, around the filament, begins to brighten slowly 20 min before the triggering of the flare, in the center of H. Filament dark material begins to rise rapidly while the brightest point on one side drifts towards it, 6 min before the onset of the two-ribbon flare. Simultaneously the absorbing material separates from the remaining part of the filament.In the discussion, we suggest that most of the observed features may be the consequence of emergence of new magnetic flux and the related reconnection processes.  相似文献   

7.
MacQueen  R.M.  Hendrickson  M.A.  Woods  J.C.  Lecinski  A.R.  Elmore  D.F.  White  O.R. 《Solar physics》2000,191(1):85-96
The intensity of a sample of large, high-contrast and isolated dark points has been observed with full-disk images in the light of Hei 1083 nm from the Chromospheric Helium line Intensity Photometer (CHIP) on Mauna Loa, Hawaii. Temporal variations in the intensity encompassing a broad range of time scales have been recorded. Long-term changes in the intensity, although highly variable, are characterized by e-folding times on the order of 5 h. Superposed on these variations are frequent intensity variations, which occur over time scales ranging from the typical observing cadence of 3 min, to tens of minutes. Microflares-involving intensity changes of at least 50% over periods of minutes are observed frequently. Rapid cadence ( min) observations reveal differences between rise and decay times and shorter-term variations in the intensity profiles of these microflares.  相似文献   

8.
The preflare phase of the flare SOL2011-08-09T03:52 is unique in its long duration, in that it was covered by the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) and the Nobeyama Radioheliograph, and because it showed three well-developed soft X-ray (SXR) peaks. No hard X-rays (HXR) are observed in the preflare phase. Here we report that no associated radio emission at 17 GHz was found either, despite the higher sensitivity of the radio instrument. The ratio between the SXR peaks and the upper limit of the radio peaks is higher by more than one order of magnitude than the ratio in regular flares. The result suggests that the ratio between acceleration and heating in the preflare phase was different than in regular flares. Acceleration to relativistic energies, if any, occurred with lower efficiency.  相似文献   

9.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

10.
Prefiare conditions, changes and events are loosely categorized as distinct, evolutionary or statistical. Distinct preflare phenomena are those for which direct physical associations with flares are implied. Also, they are not known to occur in a like manner during the absence of flares. These include the early stage of filament eruptions within active centers, preflare vortical structures, some transient X-ray emitting features, 5303 Å accelerating coronal arches, and increases in circular polarization at cm wavelengths. Evolutionary preflare changes are considered to be any long-term effect that may be related to the flare build-up even though the same changes may occur in the absence of flares. This category covers the development of current sheets or strongly sheared magnetic fields, evolving magnetic features, emerging flux regions, the development of satellite fields around sunspots, the evolution of reverse polarity field configurations, the merging of adjacent active centers, sunspot motions and the development of velocity patterns. Statistical preflare changes logically include both distinct and evolutionary preflare changes. However, in addition, there are preflare conditions and events that are not necessarily linked to the flare in either a direct physical or indirect evolutionary way. Such parameters or events that may only be statistically significant are certain magnetic field properties, the brightness of active centers at various wavelengths, the previous occurrence of flares and subflares, increased turbulence in filaments and certain radio events.  相似文献   

11.
We present results of a study of photospheric horizontal motions at the initial and main phases of the solar flare which happened on September 4, 1990, near the solar limb. The flare was accompanied by matter ejection. Spectra of the flare were obtained using the AZU-26 horizontal solar telescope at the MAO NAS (Terskol observatory). We found variations of the matter motion velocity’s value and direction at different stages of the photosphere during the flare development. The velocity changed in a range from −4 to 2 km/s. Comparisons of the obtained data with variations of the chromospheric radial velocities showed that the horizontal matter motions in the photosphere and chromosphere are mostly directed toward the observer but at particular time moments their direction changed. At two different knots, the time shift of the photospheric velocities is different. The highest velocities were observed at the main phase of the flare. At the initial phase of the flare, in the matter ejection region, we note a velocity increase compared with its preflare value and at the flare knots.  相似文献   

12.
A flare event occurred which involved the disappearance of a filament near central meridian on 29 August 1973. The event was well observed in X-rays with the AS & E telescope on Skylab and in H at BBSO. It was a four-ribbon flare involving both new and old magnetic inversion lines which were roughly parallel. The H, X-ray, and magnetic field data are used to deduce the magnetic polarities of the H brightenings at the footpoints of the brightest X-ray loops. These magnetic structures and the preflare history of the region are then used to argue that the event involved a reconnection of magnetic field lines rather than a brightening in place of pre-existing loops. The simultaneity of the H brightening onsets in the four ribbons and the apparent lack of an eruption of the filament are consistent with this interpretation. These observations are compared to other studies of filament disappearances. The preflare structures and the alignment of the early X-ray flare loops with the H filament are consistent with the schematic picture of a filament presented first by Canfield et al. (1974).  相似文献   

13.
Pulsars show intensity variations over timescales ranging from a few microseconds to a few years. Short-term intensity variations,i.e. those having timescales of a few minutes to a few hours had been difficult to study as their timescales are similar to those due to interstellar scintillations. We present here a method to separate the autocorrelation function of the short-term broadband intensity variations from that of the interstellar scintillations and thus overcome the above difficulty. The method assumes that the intrinsic variations are correlated over a bandwidth much larger than the decorrelation bandwidth for scintillations. Hence the ratio of the power in the variations due to the two causes depends on the bandwidth used. By applying the method to the intensity variations of 24 pulsars, we show that the presence of short-term intrinsic variations is very common in the radiation of pulsars. Quasi-periodicities were detected in the intensity variations of many pulsars, but their origin is not clear.  相似文献   

14.
Su Qing-Rui 《Solar physics》1982,75(1-2):229-236
In this paper, we extend B. C. Low's study on nonlinear force-free magnetic fields. Based on Low's mathematical method, a revised boundary-value problem of the two-dimensional nonlinear force-free magnetic field is solved analytically. The solution shows that higher magnetic loops evolve towards preflare loops when the gradient of longitudinal magnetic field at the photospheric level and the angle (shear) included between the magnetic field line and magnetic neutral line increase with time. The density, temperature and the current density are higher in the preflare loops than in the high-lying magnetic loops. We believe it is the loops that provide conditions for the eruption of the flare.The original has been published in the Acta Astronomica Sinica 21 (1980), 152, in Chinese. The present paper completes the discussion and revises some of the preliminary results.  相似文献   

15.
In order to interpret the observed center to limb variations of spectrum and polarization of microwave impulsive bursts, gyro-synchrotron emission from nonthermal electrons trapped in a magnetic dipole field is computed. The theoretical spectrum and polarization are consistent with observed ones if we put an outer boundary of the radio source at a layer of 100-60 G or (7–9) × 104 km in height. Rather small observed center-limb variations in intensity and polarization are attributed to the distribution of , an angle between the magnetic field and the direction of observer, in the radio source emitting the burst, though the intensity and polarization depend strongly on especially at small values of .  相似文献   

16.
G. H. Fisher 《Solar physics》1982,113(1-2):307-311
We explore the dynamics of chromospheric condensations driven by evaporation during the impulsive phase of solar flares. Specifically, we find that the maximum chromospheric downflow speed obeys the approximate relation d = 0.4 (F/ ch )1/3, where F is that part of the flare energy flux driving chromospheric evaporation, and ch is the mass density in the preflare chromosphere just below the preflare transition region. This implies that chromospheric downflows as measured by H asymmetries may be a powerful probe of flare energetics.  相似文献   

17.
We present the results of a study of the evolution of 3 February, 1986 flare at meter-decameter wavelengths using the two dimensional imaging observations made with the Clark Lake multifrequency radioheliograph. The flare was complex and produced various types of meter-decameter bursts. The preflare activity was observed in the form of type III bursts some tens of minutes prior to the impulsive onset. From the positional analysis of the preflare and impulsive phase type III bursts and other measured characteristics we discuss the characteristics of energy release and possible magnetic field configurations in the vicinity of energy release region. From positional and temporal studies of the flare continuum and type II burst in relation to the microwave and hard X-ray emissions, we discuss the possible magnetic field structures in which the accelerated particles are confined or along which they propagate. We develop a schematic model of the flaring region based upon our study.On leave from Indian Institute of Astrophysics, Kodaikanal, India.  相似文献   

18.
The February 5, 1986 flare-related radio continuum depression is studied, compared with other noise storm depression events and discussed in the framework of current type I storm models. The influence of flare plasma flow or shocks and of superthermal electrons on noise storm radiation is considered. The presence of fast drifting emission features just before and during the decrease of the intensity, the association between the depression onset and the microwave burst maximum, the simultaneous appearance of the intensity minimum over a broad spectral range as well as preflare evidence of an interconnection of the flare site and the noise storm source are arguments for a preference of the role of beams of superthermal electrons. We distinguish abrupt and slow depressions (Figure 5). The abrupt depressions are in agreement with Melrose's (1980) predictions. Slow depressions can only be understood by invoking the diffusion of super-thermal electrons through the magnetic field carrying the storm source.  相似文献   

19.
Measurements of maximum magnetic flux, minimum intensity, and size are presented for 12 967 sunspot umbrae detected on the National Aeronautics and Space Administration/National Solar Observatory (NASA/NSO) spectromagnetograms between 1993 and 2004 to study umbral structure and strength during the solar cycle. The umbrae are selected using an automated thresholding technique. Measured umbral intensities are first corrected for center-to-limb intensity dependence. Log-normal fits to the observed size distribution confirm that the size-spectrum shape does not vary with time. The intensity – magnetic-flux relationship is found to be steady over the solar cycle. The dependence of umbral size on the magnetic flux and minimum intensity are also independent of the cycle phase and give linear and quadratic relations, respectively. While the large sample size does show a low-amplitude oscillation in the mean minimum intensity and maximum magnetic flux correlated with the solar cycle, this can be explained in terms of variations in the mean umbral size. These size variations, however, are small and do not substantiate a meaningful change in the size spectrum of the umbrae generated by the Sun. Thus, in contrast to previous reports, the observations suggest the equilibrium structure, as manifested by the invariant size-magnetic field relationship, as well as the mean size (i.e., strength) of sunspot umbrae do not significantly depend on the solar-cycle phase.  相似文献   

20.
De Moortel  I.  Hood  A.W.  Ireland  J.  Walsh  R.W. 《Solar physics》2002,209(1):89-108
In this paper, we give a detailed discussion of the parameters of longitudinal oscillations in coronal loops, described in Paper I. We found a surprising absence of correlations between the measured variables, with the exception of a relation between the estimated damping length and the period of the intensity variations. Only for 2 out of the 38 cases presented in Paper I did we find a significant perturbation in the 195 Å TRACE data. The loops supporting the propagating disturbances were typically stable, quiescent loops and the total luminosity of the analyzed structures generally varied by no more than 10%. The observed density oscillations are unlikely to be flare-driven and are probably caused by an underlying driver exciting the loop footpoints. It was demonstrated that the rapid damping of the perturbations could not simply be explained as a consequence of the decreasing intensity along the loops. However, we found that (slightly enhanced) thermal conduction alone could account for the observed damping lengths and wavelengths, and, additionally, explain the correlation between propagation period and damping length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号