首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
任留东  陈炳蔚 《地质通报》2002,21(7):397-404
沿北喜马拉雅(拉轨岗日山脉)分布一条变质-花岗岩带,其变质级别沿垂直于走向方向呈高低起伏变化,而不是单调递增或递减。花岗岩与围岩以和谐过渡为主,岩体不同部位的矿物、岩石成分均有相当程度的变化,熔融程度较低;而高喜马拉雅花岗岩是低共熔的结果。北喜马拉雅变质-花岗岩带与高喜马拉雅结晶岩相比,从变质作用到岩浆活动均有很大的相似性。本文认为,二者形成的构造环境相似,相时间上又有一定的差异。  相似文献   

2.
喜马拉雅淡色花岗岩   总被引:62,自引:33,他引:29  
在青藏高原南部的喜马拉雅地区,分布有两条世界瞩目的淡色花岗岩带。南带主要沿高喜马拉雅和特提斯喜马拉雅之间的藏南拆离系(STDS)分布,俗称高喜马拉雅淡色花岗岩带,构成喜马拉雅山的主体。北带淡色花岗岩位于特提斯喜马拉雅单元内,又被称之为特提斯喜马拉雅淡色花岗岩带。这些花岗岩多以规模不等的岩席形式侵入到周边沉积-变质岩系之中,或者呈岩株状产出于变质穹窿的核部。岩体本身大多岩性均匀,变形程度不等,但岩体边缘可见较多的围岩捕虏体,并在部分情况下见及围岩的接触变质作用,反映它们的异地侵位特征。上述两带中的淡色花岗岩在矿物组成和岩石类型上表现为惊人的相似性,主要由不同比例的石英、钾长石、斜长石、黑云母(5%)、白云母、电气石和石榴石等构成二云母花岗岩、电气石花岗岩和石榴石花岗岩三大主要岩石类型。从不同地区的野外观察来看,二云母花岗岩为喜马拉雅淡色花岗岩的主体岩石类型,而电气石花岗岩和石榴石花岗岩主要以规模不等的脉体形式赋存于二云母花岗岩之中,反映前两者晚期侵位的特征。地球化学特征上,这些花岗岩具有高Si、Al、K,低Ca、Mg、Fe、Ti的特点,接近花岗岩的低共熔点组分。绝大多数淡色花岗岩具有较高的含铝指数,属于过铝花岗岩。微量元素表现为较大的变化范围,但总体上表现为富集大离子亲石元素K、Rb和放射性元素U,而不同程度亏损Ba、Th、Nb、Sr、Ti等元素。稀土元素总量总体上明显低于世界上酸性岩的平均丰度,且绝大部分表现为轻-中等程度的稀土元素分馏和不同程度的Eu负异常。传统认为,喜马拉雅淡色花岗岩是原地-近原地侵位的纯地壳来源的低熔花岗岩。但本文通过分析提出,该花岗岩可能是从一种高温的花岗岩浆演化而来,其岩浆源区的性质或成因类型目前还难以确定。该岩浆在上升侵位的过程中曾经历过大规模地壳物质的混染,并发生了高度分离结晶作用。因此,喜马拉雅淡色花岗岩首先是一种高分异型的花岗岩,是真正意义上的异地深成侵入体,而并不是原地或半原地的部分熔融体。这种以大规模地壳混染和结晶分异作用为特征的花岗岩系,在花岗岩的研究内容中还未被充分地讨论。以前根据相关信息认为这些岩石来自于沉积岩部分熔融的结论,只是较多地注意到了后期地壳混染和结晶分异作用的特征。即使这些岩石的原始岩浆将来被证明真的来源于沉积岩系的部分熔融,那以前的结论也只能说是"歪打正着"。根据形成年龄和地质-地球化学特征,本文将这些花岗岩划分为原喜马拉雅(44~26Ma)、新喜马拉雅(26~13Ma)和后喜马拉雅(13~7Ma)三大阶段。其中第一阶段对应印度-亚洲汇聚而导致的大陆碰撞造山作用,而后两个阶段同加厚的喜马拉雅-青藏高原碰撞造山带拆沉作用有关,对应青藏高原的全面隆升。根据这些淡色花岗岩的岩石与地球化学特征,我们还不能支持青藏高原存在广泛的中地壳流动的模型。相反,俯冲的高喜马拉雅岩系在深部的部分熔融及随该岩系折返而发生的分离结晶作用可很好地解释淡色花岗岩所具有的系列特征。  相似文献   

3.
北喜马拉雅出露一系列片麻岩穹窿,这些穹窿被形成于27.5~10Ma的淡色花岗岩侵入.淡色花岗岩的岩石类型为二云母花岗岩,它们的主量元素组成为SiO2=70.97%~74.54%、K2O+Na2O=6.27%~8.09%、K2O/Na2O=0.91~1.36及A/CNK=1.10~1.33.然而,它们在微量元素组成上呈现出较大的变化:Rb=(41~322)×10-6、Sr=(26~139)×10-6、Ba=(135~594)×10-6、(La/Yb)N=0.97~17.31、Eu/Eu=0.29~0.72.北喜马拉雅淡色花岗岩的主量元素和微量元素组成特征类似于高喜马拉雅中新世的二云母花岗岩,而在Ti、Mg、Ca、Ba含量和Rb/Sr比值上明显不同于高喜马拉雅中新世的电气石-白云母花岗岩.北喜马拉雅淡色花岗岩(87Sr/86Sr)t=0.7344~0.8503(t=10Ma),εNd(10Ma)=-12.5~-19.3,与高喜马拉雅淡色花岗岩无明显差异.在岩石成因上,北喜马拉雅和高喜马拉雅中新世淡色花岗岩均起因于构造减压作用,由此导致白云母发生脱水反应诱发高喜马拉雅结晶岩系的深熔.但北喜马拉雅淡色花岗岩形成的地质背景明显不同于高喜马拉雅淡色花岗岩,前者具有较长的时间跨度,开始形成于喜马拉雅渐新世的地壳增厚期,之后形成于中新世穹窿片麻岩的折返时期,而高喜马拉雅淡色花岗岩与中新世高喜马拉雅结晶岩系的构造挤出作用有关.因此,北喜马拉雅和高喜马拉雅淡色  相似文献   

4.
喜马拉雅淡色花岗岩世界瞩目,具有重要的理论研究和找矿意义,但是其成因争议较大。本文统计了两千余件样品的全岩主微量地球化学、Sr-Nd-Pb-Hf同位素、锆石/独居石/磷钇矿等副矿物原位U-Pb年龄和锆石Hf同位素等,试图全面地总结喜马拉雅淡色花岗岩的研究进展和现状。喜马拉雅淡色花岗岩分为南北两带,北带花岗岩主要出露于特提斯喜马拉雅和片麻岩穹隆中,而南带花岗岩主要发育在高喜马拉雅顶部和东-西构造结中。从北往南,成岩时代逐渐变新;南北两带均以二云母花岗岩和(石榴石-电气石)白云母花岗岩为主,两期(始新世和中新世)中-基性岩脉和埃达克质岩主要在北带中发育。新生代岩浆活动分为5个阶段:49~40 Ma、39~29 Ma、28~15 Ma、14~7 Ma、6~0.7 Ma,分别主要与新特提斯洋壳板片断离、印度陆壳板片的低角度俯冲、断离或回撤、南北向撕裂(裂谷)和东西构造结的快速隆升有关。喜马拉雅淡色花岗岩起源于高喜马拉雅杂岩系的不一致(不平衡)部分熔融,并经历了矿物分离结晶的高分异演化。淡色花岗岩属于强过铝质岩石,具有高Si、K、Na,低Ca、Fe、Mg、Ti、Mn,高的Rb/Sr、Y/Ho值,低的Th/U、Nb/Ta、Zr/Hf、K/Rb值,稀土元素总量较低,负Eu异常明显的地球化学特征。随着成岩时代变新,Sr-Nd-Pb-Hf等同位素都指示岩浆源区中古老地壳物质的占比逐步增加。喜马拉雅淡色花岗岩/伟晶岩中Li、Be、W、Sn、Ta、Cs和Rb等稀有元素的富集系数大于10,伟晶岩属于典型的LCT型伟晶岩。喜马拉雅新生代淡色花岗岩带有望成为一条新的世界级的Li-Be-Sn-W-Ta稀有金属成矿带。  相似文献   

5.
吴福元  王汝成  刘小驰  谢磊 《岩石学报》2021,37(11):3261-3276
喜马拉雅地区淡色花岗岩广泛分布,但相关的稀有金属成矿问题长期被学术界忽略,因为传统观点认为,这些花岗岩是高喜马拉雅变质岩系原地部分熔融而成。但自提出该地区淡色花岗岩高度结晶分异成因模式后,与这些花岗岩演化相关的稀有金属成矿问题引起各方重视,并在铍和铌钽的矿化研究方面取得显著进展。尽管如此,锂的成矿作用研究和资源寻找并没有取得大的突破。本期《岩石学报》报道的喜马拉雅中部琼嘉岗和热曲锂辉石伟晶岩及珠峰前进沟锂电气石-锂云母伟晶岩的发现,充分说明喜马拉雅地区锂资源前景广阔,表明喜马拉雅有望在近期内成为我国稀有金属资源的大型接替基地。根据目前的进展,喜马拉雅地区未来稀有金属成矿作用应加强如下方面的研究:1)加大区内淡色花岗岩岩石学与岩石成因研究力度,厘定它们岩浆结晶分异的程度与成矿潜力;2)对北喜马拉雅穹窿和岩体开展接触变质与围岩蚀变研究,以寻找热液交代型稀有金属矿床;3)加强高喜马拉雅地区藏南拆离系与花岗岩侵位关系的研究,以判断分异岩浆及成矿伟晶岩的赋存部位。近期应集中力量围绕普士拉一带的藏南拆离系、韧性变形的肉切村群地层和淡色花岗岩-伟晶岩等开展联合攻关研究,以期在锂资源上取得更大的突破。  相似文献   

6.
长期以来,西藏喜马拉雅带以发育较多金、金锑及铅锌多金属矿为显著特色,而稀有金属矿未曾列入主流找矿方向。近年来,该带由于铍、锂等稀有金属矿的重要找矿新发现而备受广大学者关注,其相应的成矿作用研究亦有较大进展。本文在喜马拉雅带已有地质找矿成果及科学研究资料的基础上,对该带新发现的稀有金属矿勘查与研究进展进行了总结。本文提出:喜马拉雅带主要发育有伟晶岩型锂-铍矿、锡石-硫化物型锡-铍矿、矽卡岩型铍-锡-钨矿、矽卡岩型铍-铌-钽矿、钠长石花岗岩型铍-铌-钽矿、热液脉型萤石-铍矿6种稀有金属矿化类型,其中伟晶岩型锂-铍矿及锡石-硫化物型锡-铍矿最具经济意义上的找矿价值。这些稀有金属成矿作用均与中新世淡色花岗岩浆活动密切相关,属于岩浆高度结晶分异的产物,是印度-亚洲大陆碰撞造山成矿作用中的新成员,并构成了喜马拉雅带与淡色花岗岩相关的稀有金属矿成矿系列。为指导找矿勘查,今后喜马拉雅稀有金属成矿作用研究应加强如下几方面:(1)高分异淡色花岗岩-伟晶岩岩相分带与相应的稀有金属分带;(2)锂-铍-铌-钽-钨-锡共生分离机制;(3)喜马拉雅式稀有金属矿成矿模式与勘查模型;(4)稀有金属与铅锌-金锑成矿作用的关系。喜马拉雅带新发现的稀有金属成矿作用大部分靠近我国边境地区,通过进一步的勘查评价工作有望形成西藏地区具有战略意义的稀有金属成矿带。  相似文献   

7.
印度/亚洲碰撞形成的喜马拉雅增生地体由特提斯-喜马拉雅(THM)、高喜马拉雅(GHM)、低喜马拉雅(LHM)和次喜马拉雅(SHM)亚地体组成。通过喜马拉雅增生地体中变质基底和盖层的组成、变质演化、变形机制与形成时代的对比,确定高喜马拉雅(GHM)亚地体北缘的藏南拆离断裂(STD)向北延伸于特提斯-喜马拉雅(THM)亚地体之下,与形成在大于650°C温度、具有自南向北剪切滑移性质的康马-拉轨岗日拆离带(KLD)相连,深部地壳局部熔融、物质上涌造成的花岗岩侵位,使康马-拉轨岗日拆离带隆起,形成康马-拉轨岗日穹隆带。在高喜马拉雅(GHM)亚地体北部(普兰-吉隆-聂拉木-亚东一带)的变质基底与盖层之间发现EW向近水平的高喜马拉雅韧性拆离构造(GHD),以发育EW向拉伸线理、缓倾的糜棱面理及具有自西向东水平滑移为特征;而在GHM南部靠近主中央冲断裂(MCT)北侧发育具有挤压转换性质的韧性走滑-逆冲断层。高喜马拉雅亚地体从南到北具有由逆冲→斜向逆冲→EW向伸展→斜向伸展→SN向伸展的连续变形和转换的特征,是在现代喜马拉雅垂向挤出和侧向挤出的耦合造山机制下综合变形的响应。喜马拉雅地体中的东西向和南北向拆离构造的存在为喜马拉雅现代造山机制再讨论提供了基础。  相似文献   

8.
印度/亚洲碰撞形成的喜马拉雅增生地体由特提斯-喜马拉雅(THM)、高喜马拉雅(GHM)、低喜马拉雅(LHM)和次喜马拉雅(SHM)亚地体组成.通过喜马拉雅增生地体中变质基底和盖层的组成、变质演化、变形机制与形成时代的对比,确定高喜马拉雅(GHM)亚地体北缘的藏南拆离断裂(STD)向北延伸于特提斯-喜马拉雅(THM)亚地体之下,与形成在大于650℃温度、具有自南向北剪切滑移性质的康马-拉轨岗日拆离带(KLD)相连,深部地壳局部熔融、物质上涌造成的花岗岩侵位,使康马-拉轨岗日拆离带隆起,形成康马-拉轨岗日穹隆带.在高喜马拉雅(GHM)亚地体北部(普兰-吉隆-聂拉木-亚东一带)的变质基底与盖层之间发现EW向近水平的高喜马拉雅韧性拆离构造(GHD),以发育EW向拉伸线理、缓倾的糜棱面理及具有自西向东水平滑移为特征;而在GHM南部靠近主中央冲断裂(MCT)北侧发育具有挤压转换性质的韧性走滑-逆冲断层.高喜马拉雅亚地体从南到北具有由逆冲→斜向逆冲→EW向伸展→斜向伸展→SN向伸展的连续变形和转换的特征,是在现代喜马拉雅垂向挤出和侧向挤出的耦合造山机制下综合变形的响应.喜马拉雅地体中的东西向和南北向拆离构造的存在为喜马拉雅现代造山机制再讨论提供了基础.  相似文献   

9.
印度/亚洲碰撞形成的喜马拉雅增生地体由特提斯-喜马拉雅(THM)、高喜马拉雅(GHM)、低喜马拉雅(LHM)和次喜马拉雅(SHM)亚地体组成.通过喜马拉雅增生地体中变质基底和盖层的组成、变质演化、变形机制与形成时代的对比,确定高喜马拉雅(GHM)亚地体北缘的藏南拆离断裂(STD)向北延伸于特提斯-喜马拉雅(THM)亚地体之下,与形成在大于650℃温度、具有自南向北剪切滑移性质的康马-拉轨岗日拆离带(KLD)相连,深部地壳局部熔融、物质上涌造成的花岗岩侵位,使康马-拉轨岗日拆离带隆起,形成康马-拉轨岗日穹隆带.在高喜马拉雅(GHM)亚地体北部(普兰-吉隆-聂拉木-亚东一带)的变质基底与盖层之间发现EW向近水平的高喜马拉雅韧性拆离构造(GHD),以发育EW向拉伸线理、缓倾的糜棱面理及具有自西向东水平滑移为特征;而在GHM南部靠近主中央冲断裂(MCT)北侧发育具有挤压转换性质的韧性走滑-逆冲断层.高喜马拉雅亚地体从南到北具有由逆冲→斜向逆冲→EW向伸展→斜向伸展→SN向伸展的连续变形和转换的特征,是在现代喜马拉雅垂向挤出和侧向挤出的耦合造山机制下综合变形的响应.喜马拉雅地体中的东西向和南北向拆离构造的存在为喜马拉雅现代造山机制再讨论提供了基础.  相似文献   

10.
殷勇  殷先明 《岩石学报》2009,25(5):1239-1252
埃达克岩是以往20年中特别引起人们兴趣和关注的与成矿有关的中酸性岩浆岩之一,而喜马拉雅型花岗岩是最近提出来的也与地壳加厚有关的花岗岩类。本文的研究表明,在西秦岭北缘存在印支期的埃达克岩和喜马拉雅型花岗岩,而且它们均与金、铜、钼等成矿作用有关。研究表明,本区阿姨山和德乌鲁-黑河地区的埃达克岩和喜马拉雅型花岗岩具有较高的Mg#数值,可能是加厚地壳底部幔源岩浆和壳源岩浆混合形成的,而温泉和柴家庄地区的埃达克岩和喜马拉雅型花岗岩Mg#低,应当是加厚的下地壳部分熔融形成的。文中介绍了西秦岭北带斑岩铜-钼-金矿带的地质背景,讨论了埃达克岩和喜马拉雅型花岗岩的特征及其与成矿作用的关系,提出了进一步找矿工作的建议。研究表明,三叠纪时期的西秦岭造山带地壳厚度大,岩浆活动频繁,找矿潜力巨大,是我国新一轮的铜钼金找矿区之一,发展前景很大。  相似文献   

11.
Most carbonatites occur in relatively stable, intra\|plate areas but some are found to occur in near to plate margins and may be linked with plate separation (Woolley, 1989). Although many carbonatites have been discovered to occur in the orogenic belts in recent years, most of these rocks are related to post\|orogenic magmatism, that is, the rocks occur in the specially extensional setting. Therefore it is unusual that such magmatic rocks occur in the typical convergent environment. Here we report carbonatites and associated ultramafic and mafic rocks in the core of the eastern Himalayan syntaxis. The eastern Himalayan syntaxis consists of three tectonic units: the Gangdise, the Yarlung Zangbo, and the Himalayan units, each of which is bounded by faults (Liu & Zhong, 1997). The Himalayan unit, the northernmost exposed part of the Indian plate, is divided into two complexes, the amphibolite facies complex in the south and the granulite facies complex in the north. The granulite facies complex in the Himalayan unit have been argued to experience high\|pressure metamorphism and represent materials buried to upper\|mantle depths (Liu & Zhong, 1997). The carbonatites and associated ultramafic and mafic rocks only occur in the granulite facies rocks and are divided into two belts: northern and southern belts.The northern belt extends at least 30km, and is about 20km in width. The southern belt extends several kilometers, and is 3km or so in width. Each belt consists mainly of differently compositional dykes, extending parallel to gneissosity of granulite facies gneiss. Carbonatitic agglomerates are observed in the northern belt. From the center of carbonatite dykes to country rocks, five types of rock are observed: the center parts of carbonatites, the rim parts of carbonatites, ultramafic and mafic rocks, altered rocks and country rocks. The gneissosity of country rock was deformed by intrusion of dykes.  相似文献   

12.
宁蒗地区喜山期斑岩带受近南北向的包都-波罗弧形断裂带控制,由壳幔混源型岩浆被动侵位而成,总体上呈向北逐渐倾伏的趋势。该斑岩带斑岩属钙碱性系列、中酸性岩类。通过对该斑岩带各斑岩体(群)地质特征、岩石化学特征的综合分析,表明其为含铜斑岩或铜(钼)斑岩,具良好的成矿前景。  相似文献   

13.
The geology and tectonics of the Himalaya has been reviewed in the light of new data and recent studies by the author. The data suggest that the Lesser Himalayan Gneissic Basement (LHGB) represents the northern extension of the Bundelkhand craton, Northern Indian shield and the large scale granite magmatism in the LHGB towards the end of the Palæoproterozoic Wangtu Orogeny, stabilized the early crust in this region between 2-1.9 Ga. The region witnessed rapid uplift and development of the Lesser Himalayan rift basin, wherein the cyclic sedimentation continued during the Palæoproterozoic and Mesoproterozoic. The Tethys basin with the Vaikrita rocks at its base is suggested to have developed as a younger rift basin (~ 900 Ma ago) to the north of the Lesser Himalayan basin, floored by the LHGB. The southward shifting of the Lesser Himalayan basin marked by the deposition of Jaunsar-Simla and Blaini-Krol-Tal cycles in a confined basin, the changes in the sedimentation pattern in the Tethys basin during late Precambrian-Cambrian, deformation and the large scale granite activity (~ 500 ± 50 Ma), suggests a strong possibility of late Precambrian-Cambrian Kinnar Kailas Orogeny in the Himalaya. From the records of the oceanic crust of the Neo-Tethys basin, subduction, arc growth and collision, well documented from the Indus-Tsangpo suture zone north of the Tethys basin, it is evident that the Himalayan region has been growing gradually since Proterozoic, with a northward shift of the depocentre induced by N-S directed alternating compression and extension. During the Himalayan collision scenario, the 10–12km thick unconsolidated sedimentary pile of the Tethys basin (TSS), trapped between the subducting continental crust of the Indian plate and the southward thrusting of the oceanic crust of the Neo-Tethys and the arc components of the Indus-Tangpo collision zone, got considerably thickened through large scale folding and intra-formational thrusting, and moved southward as the Kashmir Thrust Sheet along the Panjal Thrust. This brought about early phase (M1) Barrovian type metamorphism of underlying Vaikrita rocks. With the continued northward push of the Indian Plate, the Vaikrita rocks suffered maximum compression, deformation and remobilization, and exhumed rapidly as the Higher Himalayan Crystallines (HHC) during Oligo-Miocene, inducing gravity gliding of its Tethyan sedimentary cover. Further, it is the continental crust of the LHGB that is suggested to have underthrust the Himalaya and southern Tibet, its cover rocks stacked as thrust slices formed the Himalayan mountain and its decollement surface reflected as the Main Himalayan Thrust (MHT), in the INDEPTH profile.  相似文献   

14.
西藏冈底斯地块中新生代中酸性侵入岩特征与构造环境   总被引:4,自引:0,他引:4  
冈底斯地块上的中新生代中酸性岩浆活动,是北部班公湖一怒江和南部雅鲁藏布两个特提斯演化及其后的陆内汇聚碰撞造山和后造山伸展等大地构造事件的完整记录。地块上的中酸性岩浆活动可划分为三个带,其中北部岩带岩浆岩形成于燕山期,其类型从早期的Ⅰ型到中期的过渡型再演化为晚期的S型,分别形成于板块俯冲-缝合-碰撞等构造条件下,是北部班公湖一怒江特提斯演化的集中反映。中部和南部岩浆岩带则集中体现了南部雅鲁藏布特提斯时空演化的完整经历,其中,南部岩带岩体以燕山晚期为主,喜山早期次之,成因及形成环境与特提斯洋壳向北俯7中作用密切相关(燕山晚期),同时俯冲结束后的同碰撞条件下的岩浆活动在该岩带内也有明显的反映(喜山早期);中部岩带岩体以喜山早期为主,燕山晚期次之,岩体大部分为同碰撞环境下岩浆活动的产物,它表征了随着洋壳板块向北俯冲程度的加深和强度的加剧,岩浆活动中心在不断向北迁移,并最终缝合碰撞的过程。因此,该岩带内岩浆岩主要形成于俯冲的晚阶段及缝合后的同碰撞条件下。喜山晚期的小斑岩体实际上广泛出露于整个冈底斯地块上,它反映的是该区在经历了碰撞造山后发生的陆内伸展的构造过程。  相似文献   

15.
在喜马拉雅碰撞造山带中,石榴石是变泥质岩的主要造岩矿物,也是花岗岩或淡色体的重要副矿物,保存了有关地壳深熔作用的关键信息,是揭示大型碰撞造山带中-下地壳物质的物理和化学行为的重要载体。在喜马拉雅造山带内,新生代花岗质岩石(淡色花岗岩和混合岩中的淡色体)含两类石榴石,大多数为岩浆型石榴石,自形-半自形,不含包裹体,但淡色体中含有港湾状的混合型石榴石。岩浆型石榴石具有以下地球化学特征:(1)从核部到边部,显示了典型的"振荡型"生长环带;(2)富集HREE,亏损LREE,从核部到边部,Hf、Y和HREE含量降低;(3)显著的Eu负异常;(4)相对于源岩中变质石榴石,Mn和Zn的含量显著增高。岩相学和地球化学特征都表明:变泥质岩熔融形成的熔体(淡色体)捕获了源岩的变质石榴石,熔体与石榴石反应导致大部分元素的特征被改变,只在核部保留了源岩的部分信息。同时,在花岗质熔体结晶过程中,形成少量的岩浆型石榴石。这些石榴石摄取了熔体中大量的Zn,浓度显著升高,在斜长石和锆石同步分离结晶作用的共同影响下,石榴石中Eu为明显负异常,Hf、Y和HREE浓度从核部到边部逐渐降低。上述数据和结果表明,花岗岩中石榴石的矿物化学特征记录了精细的有关花岗岩岩浆演化的重要信息。  相似文献   

16.
Petrology of high-pressure granulites from the eastern Himalayan syntaxis   总被引:36,自引:0,他引:36  
The eastern Himalayan syntaxis, situated at the eastern terminus of the Himalayas, is the least-known segment of the Himalayas. Recent research in this area has revealed that the syntaxis consists of the Gangdise, the Yarlung Zangbo, and the Himalayan units, each of which is bounded by faults. The Himalayan unit, the northernmost exposed part of the Indian plate, mainly contains amphibolite facies rocks, marked by the assemblages staurolite+kyanite+plagioclase+biotite+muscovite±sillimanite and garnet+amphibole+plagioclase, in the south; to the north, low- to medium-pressure granulite grade pelitic gneisses and marbles are present and are characterized by the assemblages garnet+sillimanite+K-feldspar+plagioclase or antiperthite+biotite+quartz±spinel±cordierite±orthopyroxene in gneisses, and anorthite+diopside±wollastonite and plagioclase+diopside+quartz+phlogopite+calcite in marbles. Within this unit, the Namula thrust system is a series of moderately north-dipping structures that displaced the granulite facies rocks southwards over the amphibolite facies rocks. High-pressure granulites occur as relics within these granulite facies rocks and contain garnet–kyanite granulite and garnet clinopyroxenite. The peak assemblage of the garnet–kyanite granulite includes garnet (core part)+kyanite+ternary feldspar+quartz+rutile. Sillimanite+garnet (rim part)+K-feldspar+ oligoclase+ilmenite+biotite and spinel+albite+biotite or spinel+cordierite±orthopyroxene, which are coronas around sillimanite and garnet, are retrograde products of this peak assemblage. Another peak assemblage includes very-high-Ca garnet (CaO 32–34 wt%, Alm10±Grs>80) and diopside (CaO 22–24 wt%), scapolite, meionite, quartz, and accessory Al-bearing titanite (Al2O3 4–4.5 wt%). The diopside has kink bands. Partial or complete breakdown of Ca-rich garnet during post-peak metamorphism produced pseudomorphs and coronas consisting of fine-grained symplectic intergrowths of hedenbergite and anorthite. Thermobarometric estimates in combination with reaction textures, mineral compositions, and recent experimental studies indicate that these peak assemblages were formed at P=c. 1.7–1.8 GPa, T =c. 890 °C, and the retrograde assemblages experienced near-isothermal decompression to P=0.5±0.1 GPa, T =850±50 °C. The whole-rock compositions indicate that marble and pelite are plausible candidates for the protoliths. These facts suggest the following (1) sedimentary rocks were transported to upper-mantle depths and equilibrated at those conditions to form these high-pressure granulites, which were then emplaced into the crust quickly. During the rapid exhumation of these rocks, the earlier high-pressure assemblages were overprinted by the later low- to medium-pressure assemblages, that is, the high-pressure granulite belt formed in the syntaxis. (2) The Namula thrust system is an important tectonic boundary in the syntaxis, or even in the Higher Himalaya more generally.  相似文献   

17.
喜马拉雅造山带是地球上海拔最高、规模最大的陆陆板块俯冲碰撞带在这条长达2 500 km的板块边界上,近年来多次发生破坏性地震,造成大规模的滑坡、房屋倒塌等次生灾害,给人民生命和财产安全造成严重的威胁。分别选取尼泊尔喜马拉雅、喜马拉雅东构造结和喜马拉雅西构造结地区近期发生的3个地震震群作为研究实例,基于中国科学院青藏高原研究所在研究区架设的区域流动地震台站记录的波形资料,对地震的震源位置和震源机制解进行计算。结果表明,在尼泊尔喜马拉雅地区,主喜马拉雅逆冲断裂是大地震的主要发震构造;东构造结地区的地震以逆冲和走滑型为主,表明印度板块向北东方向的逆冲推覆和青藏高原向东南逃逸的侧向挤出是该地区的主要构造背景;西构造结地区中深源地震多发,揭示了高角度大陆深俯冲的几何形态。  相似文献   

18.
MAIN CENTRAL THRUST ZONE IN THE KATHMANDU AREA, CENTRAL NEPAL, AND ITS TECTONIC SIGNIFICANCE1 AritaK ,LallmeyerRD ,TakasuA .TectonothermalevolutionoftheLesserHimalaya ,Nepal:constraintsfrom 4 0 Ar/3 9AragesfromtheKathmandunappe[J].TheIslandArc ,1997,6 :372~ 384. 2 RaiSM ,GuillotS ,LeFortP ,etal.Pressure temperatureevolutionintheKathmanduandGosainkundregions ,CentralNepal[J].JourAsianEarthSci ,1998,16 :2 83~ 2 98. 3 SchellingD ,KArita .…  相似文献   

19.
Himalayan orogenic belt is the highest and largest continental collision and subduction zone on the Earth. The Himalayan orogenic belt has produced frequent large earthquakes and caused several geohazards due to landslides and housing collapse, having an impact on the safety of life and property along a length of over 2500 km. Here we took three earthquake clusters as examples, which occurred at Nepal Himalaya, eastern Himalayan syntaxis and western Himalayan syntaxis, respectively. Here we calculated the earthquake locations and fault plane solutions based on the waveform data recorded by seismic stations deployed in source areas by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences. We found that at the Nepal Himalayan, the Main Himalayan Thrust is the major tectonic structure for large earthquakes to occur. At the eastern Himalayan syntaxis, most earthquakes are of the reverse or strike-slip faulting. The major tectonic feature is the combination of the NE-dipping thrust with the southeastern escape of the Tibetan plateau. At the western Himalayan syntaxis, intermediate-depth earthquakes are active. These observations reveal the geometry of the deep subduction of the continental plate with steep dipping angle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号