首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文讨论了等离子体湍流对电子加速的两种模型:(1)假定在空间中存在一个空间均匀的等离子体湍流区,当具有一定初始分布的电子束通过此湍流区时,研究湍流场对电子束的加速过程;(2)在某一封闭的区域中,存在着具有一定初始分布和空间均匀的等离子体,当某种类型的等离子体波突然传入此等离子体区,然后考察此区中电子的加速过程。在这两种模型中,可能存在着某种电子消失机制。假定湍谱是幂指数形式,我们给出了不同类型湍流扩散系数的普遍形式。利用较简单的数学方法,求解了包括消失过程的一维准线性动力学方程,对于给定的初始分布,得出了分布函数的解析解,并给出了平均能量时间关系的表达式。另外,对于特定的湍谱指数,解出了当平行电场和湍流同时存在时的分布函数。最后,对所得结果进行了数值分析和讨论。  相似文献   

2.
Possible effects of signal reception from different electrojet heights in a skewness of auroral coherent spectra are studied assuming that the “inherent” spectral line due to plasma turbulence is of type-2 and symmetrical. For reasonable ionospheric parameters, the altitude integrated spectra are expected to be skewed negatively for positive mean Doppler shift, in agreement with radar observations at small aspect angles. However, the spectra could be skewed positively if the turbulent layer or the electron density profile is shifted to high altitudes of \sim120 km. This change of spectral shape will not be observed experimentally if, at the same time, either the electron collision frequency is enhanced or the “inherent” spectral width is increased. Observational results are discussed in view of the predictions given.  相似文献   

3.
Two field tests were completed to compare the performance of an electromagnetic current meter (ECM) with that of an acoustic Doppler velocimeter (ADV) in gravel‐bed rivers. Research was particularly motivated by the need to measure flow properties in highly energetic turbulent flows. Measurements were made at two field sites, one at moderate velocities (up to 70 cm/s) and with moderate turbulence intensities (10–20% of mean flow), and the other in an area of non‐uniform flow that included locations with fast mean velocities (up to 1.75 m/s) and high turbulent intensities (up to 50% of mean flow). Comparison of means, standard deviations, turbulent kinetic energy and Reynolds shear stress confirm the general agreement between the ECMs and ADVs. The general agreement is subject to limitations associated with the sample volume and frequency response of the instruments, and only applies within restricted velocity (up to ≈1.25 m/s) and turbulence intensity ranges (up to ≈0·125 m/s). At higher turbulence intensities, spectral analysis showed anomalous behavior of the ADV signal, especially in the vertical velocity component. Quadrant analysis of the Reynolds stress suggests that these problems occur predominantly in quadrants 1 and 3. Errors in ADV measurements were estimated using four different methods: one that utilized the characteristic noise floor in spectral plots, one based on internal ADV measurements of signal correlation and two techniques that aggregate errors related to various sub‐factors. Estimates were divergent at high flows. Techniques that rely on sub‐factors appeared to underestimate the impact of high turbulence on signal quality. The key conclusion for future field applications is that the older ECM technology provides the more reliable estimates of flow parameters in high turbulence. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
In an electrically conducting fluid, two types of turbulence with a preferred direction are distinguished: planar turbulence, in which every velocity in the turbulent ensemble of flows has no component in the given direction; and two-dimensional turbulence, in which every velocity in the turbulent ensemble is invariant under translation in the preferred direction. Under the additional assumptions of two-scale and homogeneous turbulence with zero mean flow, the associated magnetohydrodynamic alpha- and beta-effects are derived in the second-order correlation approximation (SOCA) when the electrically conducting fluid occupies all space. Limitations of the SOCA are well known, but alpha- and beta-effects of a turbulent flow are useful in interpreting the dynamo effects of the turbulence. Two antidynamo theorems, which establish necessary conditions for dynamo action, are shown to follow from the special structures of these alpha- and beta-effects. The theorems, which are analogues of the laminar planar velocity and two-dimensional antidynamo theorems, apply to all turbulent ensembles with the prescribed alpha- and beta-effects, not just the planar and two-dimensional ensembles. The mean magnetic field is general in the planar theorem but only two-dimensional in the two-dimensional theorem. The two theorems relax the previous restriction to turbulence which is both two-dimensional and planar. The laminar theorems imply decay of the total magnetic field for any velocity of the associated turbulent ensemble. However, the mean-field theorems are not fully consistent with the laminar theorems because further conditions beyond those arising from the turbulence must be imposed on the beta-effect to establish decay of the mean magnetic field. In particular, negative turbulent magnetic diffusivities must be restricted. It is interesting that there is no inconsistency in the alpha-effects. The failure of the SOCA with the two-scale approximation to simply preserve the laminar antidynamo theorems at the beta-effect level is a further demonstration of the restricted validity of the theory and shows that negative diffusivity effects derived by approximation methods must be treated cautiously.  相似文献   

5.
Electromagnetic current meters (EMCMs) are frequently used to gather turbulent velocity records in rivers and estuaries. Experience has shown that, on occasion, the output of these sensors can be affected by contamination from various noise sources. These noises may be limited to narrow bands of frequencies and thus fail to produce conspicuous increases in observed signal variance. Such ‘narrow-band’ noises can be difficult to identify from simple inspection of signal traces or variance levels, yet degrade estimates of turbulence statistics, in particular covariances (used to calculate Reynolds shear stress). This paper demonstrates the usefulness of spectral analysis to detect and characterize narrow-band noise components in turbulent flow records. Statistical principles underlying the use of spectral analysis for noise detection are briefly reviewed. Examples of u and v velocity spectra and cospectra are then presented from actual EMCM velocity records from flume and field deployments that were found to be contaminated by such noises. The sensitivity of the shear stress estimates to even minor noise levels is demonstrated. The use of spectral analysis to correct variance (turbulence intensity) and covariance (shear stress) estimates obtained from records contaminated by narrow-band noise is also illustrated.  相似文献   

6.
解析研究了磁层顶磁岛结构时间演化的非线性过程;推导出磁岛宽度的解析式和磁岛发生分叉、混沌的条件;论证了磁重联生成的磁岛有不稳定平衡结构,外扰作用会破坏该结构,使磁岛出现突变和混沌;说明了中小尺度太阳风脉动易使磁岛破碎,导致磁场湍动重联,形成小尺度结构.  相似文献   

7.
We present detailed observations of internally generated turbulence in a sheared, stratified natural flow, as well as an analysis of the external factors leading to its generation and temporal variability. Multi-month time series of vertical profiles of velocity, acoustic backscatter (0.5 Hz), and turbulence parameters were collected with two moored acoustic Doppler current profilers (ADCPs) in the Hudson River estuary, and estuary-long transects of water density were collected 30 times. ADCP backscatter is used for visualization of coherent turbulent structures and evaluation of surface wave biases to the turbulence measurements. Benefits of the continuous long-term turbulence record include our capturing: (1) the seasonality of turbulence due to changing riverflow, (2) hysteresis in stratification and turbulence over the fortnightly cycle of tidal range, and (3) intermittent events such as breaking internal waves. Internal mixing layers (IMLs) are defined as turbulent regions above the logarithmic velocity layer, and the bottom boundary layer (BBL) is defined as the continuously turbulent range of heights above the bed. A cross-correlation analysis reveals how IML and BBL turbulence vary with stratification and external forcing from tidal range, river flow, and winds. Turbulence in both layers is maximal at spring tide and minimal when most stratified, with one exception—IML turbulence at a site with changing channel depth and width is maximal at times of maximum stratification and freshwater input.  相似文献   

8.
Abstract

A maintenance mechanism of an approximately linear velocity profile of the Venus zonal flow or superrotation is explored, with the aid of a Reynolds-averaged turbulence modelling approach. The basic framework is similar to that of Gierasch (Meridional circulation and maintenance of the Venus atmospheric rotation. J. Atmos. Sci. 1975, 32, 1038–1044) in the sense that the mechanism is examined under a given meridional circulation. The profile mimicking the observations of the flow is initially assumed, and its maintenance mechanism in the presence of turbulence effects is investigated from a viewpoint of the suppression of energy cascade. In the present work, the turbulent viscosity is regarded as an indicator of the intensity of the cascade. A novelty of this formalism is the use of the isotropic turbulent viscosity based on a non-local time scale linked to a large-scale flow structure. The mechanism is first discussed qualitatively. On the basis of these discussions, the two-dimensional numerical simulation of the proposed model is performed, with an initially assumed superrotation, and the fast zonal flow is shown to be maintained, compared with the turbulent viscosity lacking the non-local time scale. The relationship of the present model with the current general circulation model simulation is discussed in light of a crucial role of the vertical viscosity.  相似文献   

9.
2002年夏季长白山天池火山区的地震活动研究   总被引:24,自引:8,他引:24       下载免费PDF全文
2002年6月以来,长白山天池火山区的地震活动明显增加. 本文利用2002年夏季布设在长白山天池火山区15套宽频带流动地震台站的记录资料,对天池火山区的地震活动进行了研究. 地震观测结果表明,2002年夏季长白山天池火山日平均地震发生频次超过30次. 地震主要位于长白山天池西南部和东北部两个区域,震源深度较浅,离地表的深度一般小于5km. 天池西南部和东北部的地震,b值存在较大的差异. 火山区地震记录的频谱分析和时频分析结果表明,这些地震主要为火山构造型地震. HSZ和DZD等台站地震记录中丰富的低频成分,可能与台站附近的局部介质或断层带有关. 我们认为2002年夏季频繁发生的地震和小震震群活动是由火山深部活动诱发的局部断裂活动引起.  相似文献   

10.
O. Yagci  M. S. Kabdasli 《水文研究》2008,22(21):4310-4321
In this experimental study, measurements were conducted to explore the impacts of different forms of individual natural vegetative elements within the flow domain on velocity and turbulence characteristics. All the experiments were performed in a flume measuring 26 m in length, 0·98 m in width and 0·85 m in depth, and real tree saplings were utilized to represent the vegetation element. In order to analyse this commonly observed nature phenomenon in floodplains, trees with wide trunks were classified into three groups on the basis of their volume versus height relation. Throughout the velocity measurements three acoustic Doppler velocimeters were employed. Time‐averaged velocity, streamwise and vertical turbulence intensities and turbulent kinetic energy parameters were examined. Additionally, a formulation that gives the velocity profile at a certain distance downstream of vegetation was introduced and the validity of the proposed formulation was checked with experimental data. It is seen that despite their porous structures, the presence of vegetation considerably disturbs the flow field and dissipates a remarkable amount of energy by turbulence. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
The effect of turbulent flow structures on saltation sand transport was studied during two convective storms in Niger, West Africa. Continuous, synchronous measurements of saltation fluxes and turbulent velocity fluctuations were made with a sampling frequency of 1 Hz. The shear stress production was determined from the vertical and streamwise velocity fluctuations. The greatest stress-bearing events were classified as turbulent structures, with sweep, ejection, inward interaction, and outward interaction described according to the quadrant technique. The classified turbulent structures accounted for 63·5 per cent of the average shear stress during the first storm, and 56·0 per cent during the second storm. The percentage of active time was only 20·6 per cent and 15·8 per cent, respectively. High saltation fluxes were associated with sweeps and outward interactions. These two structures contribute positively (sweeps) and negatively (outward interactions) to the shear stress, but have in common that the streamwise velocity component is higher than average. Therefore, the horizontal drag force seems primarily responsible for saltation sand transport, and not the shear stress. This was also reflected by the low correlation coefficients (r) between shear stress and saltation flux (0·12 and 0·14, respectively), while the correlation coefficients between the streamwise velocity component and saltation flux were much higher (0·65 and 0·57, respectively). © 1998 John Wiley & Sons, Ltd.  相似文献   

12.
13.
Two datasets of turbulence velocities collected over different bedform types under contrasting experimental conditions show similarity in terms of velocity‐intermittency characteristics and suggest a universality to the velocity‐intermittency structure for flow over bedforms. One dataset was obtained by sampling flow over static bedforms in different locations, and the other was based on a static position but mobile bedforms. A flow classification based on the velocity‐intermittency behaviour is shown to reveal some differences from that based on an analysis of Reynolds stresses, boundary layer correlation and turbulent kinetic energy. This may be attributed to the intermittency variable, which captures the local effect of individual turbulent flow structures. Locations in the wake region or the outer layer of the flow are both shown to have a velocity‐intermittency behaviour that departs from that for idealized wakes or outer layer flow because of the superposition of localized flow structures generated by bedforms. The combined effect of this yields a velocity‐intermittency structure unique to bedform flow. The use of a time series of a single velocity component highlights the potential power of our approach for field, numerical and laboratory studies. The further validation of the velocity‐intermittency method for non‐idealized flows undertaken here suggests that this technique can be used for flow classification purposes in geomorphology, hydraulics, meteorology and environmental fluid mechanics. © 2014 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.  相似文献   

14.
根据波浪影响下水质点运动速度的频谱分布特征,本文提出了一种用于分离水体波浪轨道流速与紊动流速的分离方法.该方法仅需通过一台流速仪对水体瞬时流速进行高频测量,便可对水体波浪—紊动流速进行分离,实现受波浪影响水体的紊动分析.通过验证,频谱分析法不仅能够用于实验室中规则波浪条件下水体波浪—紊动流速的分离,还能够对野外不规则波...  相似文献   

15.
We consider an unforced, incompressible, turbulent magnetofluid constrained by concentric inner and outer spherical surfaces. We define a model system in which normal components of the velocity, magnetic field, vorticity, and electric current are zero on the boundaries. This choice allows us to find a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity and current. The model dynamical system represents magnetohydrodynamic (MHD) turbulence in a spherical domain and is analyzed by the methods similar to those applied to homogeneous MHD turbulence. We find a statistical theory of ideal (i.e. no dissipation) MHD turbulence analogous to that found in the homogeneous case, including the prediction of coherent structure in the form of a large-scale quasistationary magnetic field. This MHD dynamo depends on broken ergodicity, an effect that is enhanced when total magnetic helicity is increased relative to total energy. When dissipation is added and large scales are only weakly damped, quasiequilibrium may occur for long periods of time, so that the ideal theory is still pertinent on a global scale. Over longer periods of time, the selective decay of energy over magnetic helicity further enhances the effects of broken ergodicity. Thus, broken ergodicity is an essential mechanism and relative magnetic helicity is a critical parameter in this model MHD dynamo theory.  相似文献   

16.
A number of observations showing enhanced ion acoustic echoes observed by means of incoherent scatter radars have been reported in the literature. The Received power is extremely enhanced by up to 1 or 2 orders of magnitude above usual values, and it is mostly contained in one of the two ion acoustic lines. This spectral asymmetry and the intensity of the received signal cannot be resolved by the standard analysis procedure and often causes its failure. As a result, and in spite of a very clear spectral signature, the analysis is unable to fit the plasma parameters inside the regions of ion acoustic turbulence. We present European Incoherent Scatter radar (EISCAT) observations of large ion outflows associated with the simultaneous occurrence of enhanced ion acoustic echoes. The ion fluxes can reach 1014 m–2 s–1 at 800 km altitude. From the very clear spectral signatures of these echoes, a method is presented to extract estimates of the electron temperature and the ion drift within the turbulent regions. It is shown that the electron gas is strongly heated up to 11 000 K. Also electron temperature gradients of about 0.02 K/m exist. Finally, the estimates of the electron temperature and of the ion drift are used to study the possible implications for the plasma transport inside turbulent regions. It is shown that strong electron temperature gradients cause enhancement of the ambipolar electric field and can account for the observed ion outflows.  相似文献   

17.
Wavelet analysis of turbulence in cirrus clouds   总被引:1,自引:0,他引:1  
Two flights of the UK Meteorological Offices Hercules aircraft through daytime frontal cirrus around Scotland have been analysed using wavelet analysis on the vertical velocity time-series from the horizontal runs. It is shown that wavelet analysis is a useful tool for analysing the turbulence data in cirrus clouds. It finds the largest scales involved in producing turbulence, as does Fourier analysis, such as the 2-km spectral peaks corresponding to convective activity during flight A283. Wavelet spectra have the added advantage that the position is shown, and so they identify smaller-scale, highly localised processes such as the production of turbulent kinetic energy by the breaking of Kelvin-Helmholtz waves due to the vertical shear in the horizontal wind. These may be lost in Fourier spectra obtained for long time-series, though they contribute something to the average spectral density at the appropriate scale. The main disadvantage of this technique is that only octave frequency bands are resolved.  相似文献   

18.
A large-eddy simulation study has been undertaken to investigate the turbulent structure of open-channel flow in an asymmetric compound channel. The dynamic sub-grid scale model has been employed in the model, with the partial cell treatment being implemented using a Cartesian grid structure to deal with the floodplain. The numerical model was used to predict the: primary velocity and secondary currents, boundary shear stress, turbulence intensities, turbulent kinetic energy, and Reynolds stresses. These parameters were compared with experimental measurements published in the literature, with relatively close agreement being obtained between both sets of results. Furthermore, instantaneous flow fields and large-scale vortical structures were predicted and are presented herein. These vortical structures were found to be responsible for the significant lateral exchange of mass and momentum in compound channels.  相似文献   

19.
Multiscale analysis of vegetation surface fluxes: from seconds to years   总被引:2,自引:0,他引:2  
The variability in land surface heat (H), water vapor (LE), and CO2 (or net ecosystem exchange, NEE) fluxes was investigated at scales ranging from fractions of seconds to years using eddy-covariance flux measurements above a pine forest. Because these fluxes significantly vary at all these time scales and because large gaps in the record are unavoidable in such experiments, standard Fourier expansion methods for computing the spectral and cospectral statistical properties were not possible. Instead, orthonormal wavelet transformations are proposed and used. The are ideal at resolving process variability with respect to both scale and time and are able to isolate and remove the effects of missing data (or gaps) from spectral and cospectral calculations. Using the spectra, we demonstrated unique aspects in three appropriate ranges of time scales: turbulent time scales (fractions of seconds to minutes), meteorological time scales (hour to weeks), and seasonal to interannual time scales corresponding to climate and vegetation dynamics. We have shown that: (1) existing turbulence theories describe the short time scales well, (2) coupled physiological and transport models (e.g. CANVEG) reproduce the wavelet spectral characteristics of all three land surface fluxes for meteorological time scales, and (3) seasonal dynamics in vegetation physiology and structure inject strong correlations between land surface fluxes and forcing variables at monthly to seasonal time scales. The broad implications of this study center on the possibility of developing low-dimensional models of land surface water, energy, and carbon exchange. If the bulk of the flux variability is dominated by a narrow band or bands of modes, and these modes “resonate” with key state and forcing variables, then low-dimensional models may relate these forcing and state variables to NEE and LE.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号