首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Cretaceous Research》2012,33(6):705-722
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

2.
Two shallow water late Cenomanian to early Turonian sequences of NE Egypt have been investigated to evaluate the response to OAE2. Age control based on calcareous nannoplankton, planktic foraminifera and ammonite biostratigraphies integrated with δ13C stratigraphy is relatively good despite low diversity and sporadic occurrences. Planktic and benthic foraminiferal faunas are characterized by dysoxic, brackish and mesotrophic conditions, as indicated by low species diversity, low oxygen and low salinity tolerant planktic and benthic species, along with oyster-rich limestone layers. In these subtidal to inner neritic environments the OAE2 δ13C excursion appears comparable and coeval to that of open marine environments. However, in contrast to open marine environments where anoxic conditions begin after the first δ13C peak and end at or near the Cenomanian–Turonian boundary, in shallow coastal environments anoxic conditions do not appear until the early Turonian. This delay in anoxia appears to be related to the sea-level transgression that reached its maximum in the early Turonian, as observed in shallow water sections from Egypt to Morocco.  相似文献   

3.
Oceanic anoxic events are clues to ocean processes and are correlation datums. In North America only OAE 1a and 2 are well documented. Based on a low-resolution sampling program, a multi-proxy geochemical approach constrained by a biostratigraphic framework was utilized to identify OAE 1d in the upper part of the upper Albian Mesilla Valley Formation near El Paso, Texas. Chronostratigraphic and biostratigraphic evidence indicate that the OAE 1d event in the Mesilla Valley section is located in the lower part of the upper Albian–Cenomanian Ovoidinium verrucosum zone, which correlates with the uppermost Albian Parathalmanninella appenninica and Stoliczkaia dispar zones. The chronostratigraphic age of the geochemical event in the Mesilla Valley Formation is uppermost Albian (97.39–97.30 Ma).The classic geochemical signatures for OAEs are enriched total organic carbon (TOC) concentrations and coupled positive δ13C excursions. OAE 1d at this location records TOC values ranging from 0.25 to 0.69 wt.% throughout the Mesilla Valley Formation, where TOC increases during the OAE (21.0–40.0 m) to more than 0.40 wt.%. Interestingly, the organic matter in the Mesilla Valley is dominantly type III, which indicates a pervasive terrigenous source. Although marine organic matter is abundant from the base into the middle of the proposed OAE interval, it is progressively replaced by terrestrial material above the OAE section during progradation. The δ13Corganic values record a positive δ13C shift of +1.6‰ from −26.41 to −24.80‰ across the stratigraphic interval from 21.0 to 40.0 m, which correlates with OAE 1d.Mn and Fe geochemistry suggest the depositional conditions of the Mesilla Valley Formation were dominated by anoxic and possibly Fe-rich bottom waters, specifically during the time period associated with the OAE 1d event. This interpretation is supported by the presence of Fe enrichment recorded by FeTotal/Al and FeHighly Reactive/FeT with the lack of Fepyrite/FeHighly Reactive associated with Mn depletion.  相似文献   

4.
Upper Barremian-Lower Aptian sediments of the Sarcheshmeh and Sanganeh formations in the Kopet Dagh area, northeast Iran were studied with regard to their calcareous nannofossil content and their δ13Ccarb signal. The sediments are composed mainly of marlstones, argillaceous limestones and limestones. Based on the occurrence of biostratigraphic index taxa, the calcareous nannofossil zones NC5, NC6 and the NC7A Subzone were recognised. The calcareous nannofossils and the δ13Ccarb data enable recognition of the early Aptian Oceanic Anoxic Event 1a (OAE 1a). The deposits of the OAE 1a interval are characterised by the rarity of nannoconids and a sharp negative δ13Ccarb excursion (1.36‰), followed by an abrupt positive δ13Ccarb excursion of 4-5‰; both events have been recognised elsewhere in OAE 1a deposits in the Tethys. In the OAE 1a interval, the relative abundance of Watznaueria barnesiae/Watznaueria fossacincta is higher (more than 40%) than that of Biscutum spp., Discorhabdus spp. and Zeugrhabdotus spp., which indicates dissolution. In the upper part of the section, the higher relative abundance of mesotrophic and oligotrophic taxa (Watznaueria spp. and nannoconids respectively) and the enhanced relative abundance of eutrophic taxa (Biscutum spp., Discorhabdus spp., Zeugrhabdotus spp.) is indicative of an environment with slightly increased nutrient content. The presence of warm water taxa (Rhagodiscus asper and nannoconids) and the absence of cool water taxa (Repagulum and Crucibiscutum) suggest warm surface-water conditions.  相似文献   

5.
The Cenomanian–Turonian boundary was characterized by distinctive positive carbon isotope excursions that were related to the formation of widespread oceanic anoxia. High-resolution geochemical proxies (TOC, CaCO3, δ13Corg, and δ13Ccarb) obtained from bulk rock, planktic foraminifers, and inoceramids from four marine marlstone-dominated stratigraphic sections in the Western Canada Sedimentary Basin (WCSB) were used to establish a regional carbon isotope stratigraphic framework and to investigate paleoenvironmental variability in four different depositional settings. Compared to background δ13Corg, (<−27‰) and δ13Ccarb (<2‰) values which were correlative to stable isotope excursions during Oceanic Anoxic Event (OAE) II worldwide, the δ13Corg (>24‰), and δ13Ccarb (>4‰) derived from inoceramid prisms in the studied sections within WCSB, were elevated during the Late Cenomanian–Early Turonian. During this interval, TOC and CaCO3 values which increased sporadically to >40% and 7%, respectively, were not consistent enough to be used for stratigraphic correlations. Based on the δ13Corg excursions, two bentonite beds were regionally correlated across this portion of the Western Interior Seaway (WIS). The eruption associated with the “Red” bentonite occurred approximately coeval with the maximum δ13Corg-excursion during OAE II in the Neocardioceras juddii Zone, whereas the “Blue” bentonite coincides with the termination of OAE II in the latest Watinoceras devonense zone. During the Late Cenomanian–Early Turonian in the WCSB, benthic foraminifers were sparse or totally absent, indicating the existence of fully anoxic bottom-water conditions. Planktic foraminifera were common in the well-oxygenated surface waters. A benthic oxic zone characterized by several agglutinated species occurs in the eastern part of the WSCB at the beginning of OAE II in the Sciponoceras gracile zone. The termination of the OAE II in the WCSB coincides with the first occurrence of small ammonites (Subprionocyclus sp.) in the western part of the basin.  相似文献   

6.
At the southern margin of the Tethys, the Es Souabaa area recorded traces of Oceanic Anoxic Event 2 (OAE2) around the Cenomanian-Turonian boundary (C/Tb). The dark, laminated, filament- and pyrite-bearing limestones represent the typical facies of this event. In terms of sedimentary environment, these features reflect a transgressive drowning that had induced hypoxia in these sedimentary environments. Such conditions favored the deposition and preservation of organic matter of marine origin, the distribution of which was controlled by paleogeography and halokinetic tectonics at that period. The OAE2 reached a climax between the last upper Cenomanian occurrence of Rotalipora cushmani and the lower Turonian occurrence of Whiteinella praehelvetica. Positive shift of the δ13C excursion along with relatively high total organic carbon (TOC) contents during OAE2 both indicate palaeo-environmental modifications enhanced by a significant change in primary marine productivity. Meanwhile, negative δ18O peaks in carbonates reflect increasing temperatures. Comparison of the data from this study with those from the neighboring Kalaat Senan section (Tunisia) suggests close similarities of events, although OAE2 is much more enhanced in Algeria.  相似文献   

7.
The paper reports lithological and geochemical data on the stratigraphic interval corresponding to the Paleocene/Eocene Thermal Maximum (PETM) event in the Paleogene section of Eastern Crimea (Nasypnoe section). The section is located on the western continuation of the sublatitudinal profile consisting of 15 PETM sections spanning the area from Crimea to Tajikistan (over 2500 km). It is shown that PETM sediments have the negative δ13C and δ18O isotope excursions and are enriched in kaolinite, which is typical of most sections of this interval around the world. At the same time, the extremely low content of organic matter (OM) in sediments of the Nasypnoe section makes them sharply different from the highly carbonaceous rocks of the PETM interval in Central and Eastern Caucasus, and Central Asian regions. This is correlated with the low contents of many chemical elements in the studied rocks, and their extremely high contents in the highly carbonaceous rocks of the easterly sections. Thus, Eastern Crimea in the end of the Paleocene?beginning of the Eocene was occupied by the low-bioproductive marine paleobasin, whereas the coeval paleobasin in Central Asia was characterized by extremely high bioproductivity owing to the presence of significant amount of phosphorus.  相似文献   

8.
We evaluated the structure of planktonic communities and paleoenvironmental conditions throughout the Cenomanian–Turonian Oceanic Anoxic Event (OAE2) by studying bulk geochemical properties and the molecular isotopic composition of source-specific hydrocarbons from organic-rich sediments deposited in an intrashelf basin at the Levant Platform, central Jordan. High concentrations of desmethyl and 4-methylsteranes as well as dinosteranes indicate that marine algae including dinoflagellates were the main primary producing organisms. The presence of 2-methylhopanes and 13C-enriched hopanes, in addition to isotopically enriched aryl isoprenoids, evidenced the contribution of cyanobacteria and green sulfur bacteria, respectively. Additionally, variable but fairly low δ15N values during OAE2 suggest the occurrence of diazotrophy as a likely important process fueling primary production during OAE2 in this stratified/anoxic continental platform. Variations in the relative contribution of biomarkers revealed changes in planktonic communities associated with sea level change and water column stratification. OAE2 was characterized by strong stratification, anoxic bottom waters and a deep chemocline, as evidenced by high gammacerane and homohopane indices and the absence of photic zone euxinia (PZE) markers, respectively. However, the presence of isorenieratane and its derivatives in post-OAE black shales points to a shoaling of the chemocline and to PZE. This interval was also characterized by an exceptionally high abundance of chlorophyll-derived pristane and phytane (up to 2 mg g?1 TOC), likely as a result of highly enhanced primary production and organic matter preservation. Remarkably, this high productivity event co-occurs with an exceptionally high abundance of calcispheres reported elsewhere to be part of a global bio-event.  相似文献   

9.
In this paper, we present an integrated study of the macrofauna (Cephalopoda), microfauna (Ostracoda and Foraminifera), microflora (Pithonella, Dinoflagellata, Acritarcha and Prasinophyta) and geochemical signals (carbon δ13C and oxygen δ18O stable isotopes) of the upper Cenomanian and lower Turonian succession in Puentedey, Iberian Trough, Spain. This palaeontological and geochemical study has enabled us to identify numerous species of cephalopods (29), ostracods (19), benthic foraminifers (31), planktonic foraminifers (15), dinoflagellates (63), and acritarchs and prasinophytes (11), and to recognise two positive excursions of the δ13C signal related to the OAE2 (in the Metoicoceras geslinianum and the Spathites (Jeanrogericeras) subconciliatus zones, respectively). Variations of these macrofaunal, microfaunal, microfloral and geochemical signals have been interpreted to identify important events of the palaeoenvironmental evolution of the inner platform of the Iberian Trough during the studied interval of the Late Cretaceous. Benthic ecosystems were severely affected by the establishment of the Oceanic Anoxic Event 2 (OAE2) at the end of the late Cenomanian. This event is evidenced by the depletion of calcareous microfauna (benthic calcareous free intervals, BCFI) and the survival of opportunistic microfauna (platycopic ostracods and textulariid foraminifers). The response was different for microflora (dinoflagellates and acritarchs), which were less affected by the anoxic event.  相似文献   

10.
Detailed studies of a new, complete Marl Slate core in South Yorkshire have provided information on isotopic (δ13C, δ18O, δ34S) and geochemical variations (trace elements and C/S ratio) which enable the formulation of a model for carbonate and sulphide precipitation in the Late Permian Zechstein Sea. Calcite and dolomite are intimately associated; the fine lamination, organic character and absence of benthos in the sediments are indicative of anoxic conditions. Lithologically the core can be divided into a lower, predominantly sapropelic Marl Slate (2 m) and an upper Transition Zone (0·65 m) of alternating sapropel and calcite-rich and dolomite-rich carbonates. C/S ratios are 2·22 for the Marl Slate and 1·72 for the Transition Zone respectively, both characteristic of anoxic environments. δ18O in the carbonates shows a large and systematic variation closely mirrored by variations in calcite/dolomite ratio. The results suggest a fractionation factor equivalent to a depletion of 3·8% for 18O and 1·5% for 13C in calcite. The δ34S values of pyrite are isotopically light (mean value = - 32·7%) suggesting a fractionation factor for the Marl Slate of almost 44%, typical of anoxic basins. The results are related to stratification in the early Zechstein Sea. Calcite was precipitated in oxic upper layers above the halocline. Below the oxic/anoxic boundary framboidal pyrite was precipitated, resulting in lower sulphate concentration and elevated Mg/Ca ratio (due to calcite precipitation). As a result of this, dolomite formation occurred below the oxic/anoxic interface, within the anoxic water column and in bottom sediments. Variations in calcite/dolomite ratios, and isotopic variations, are thus explained by fluctuations in the relative level of the oxic/anoxic boundary in the Zechstein Sea.  相似文献   

11.
Free and sulfur-bound biomarkers in sediments deposited in the northern proto North Atlantic (Newfoundland Basin, ODP Site 1276) during the Cenomanian–Turonian oceanic anoxic event 2 (OAE-2) were studied. The δ13C records of phytane and lycopane confirmed the stratigraphic position of the positive carbon isotope excursion associated with OAE-2, previously reported for total organic carbon (TOC) and β,β-homohopane. Sediments before and after the OAE-2 interval were poor in organic matter (OM) and comprised numerous gravity flow deposits. The interval itself was composed of pelagic sediments with occasionally a much higher TOC content of up to 12.7%. The OAE-2 sediments were characterized by a low amount of terrestrial OM since the dominant biological sources of the biomarkers were aquatic in origin. High hopane, pentamethylicosane (PMI), and squalane abundances in the OM-rich sediments pointed to a relatively high input of prokaryotes, partly derived from cyanobacteria, as suggested by the occasional occurrence of 2-methylhopanes. PMI comprised both the regular and irregular isomer and changes in the δ13C of PMI are thought to reflect contributions from methanogenic and methanotrophic archea. The high relative concentration of lycopane indicated that bottom water conditions were anoxic during large parts of the OAE-2 interval. In one horizon, trace amounts of isorenieratane provided evidence for the occasional occurrence of photic zone anoxia. Taken together, the data imply that oceanic anoxia, and probably also high productivity, reached the northernmost part of the proto-North Atlantic during OAE-2, albeit that photic zone anoxia was much less common than in the southern proto-North Atlantic.  相似文献   

12.
Micropalaeontological and isotopic studies of the upper Cenomanian turbiditic/hemipelagic sediments from the High-Tatric unit (Central Western Carpathians; Polish part of the Tatra Mountains) has been undertaken to characterize the sedimentary conditions in the Tatric basin, a part of the Western Tethys, related to the interval preceding the late Cenomanian oceanic anoxic event (OAE2). The deposition of these sediments, including organic-rich layers (TOC up to 0.7%), corresponds to the Rotalipora cushmani foraminiferal Zone. Microfacial, foraminiferal and palynological analyses show that the sea floor was located at upper bathyal depths and the water column was poorly oxygenated. The intrabasinal carbonate material indicates moderate primary productivity with rare periods of upwellings. The scarcity of marine fossils in redeposited material and features of carbonate lithoclasts suggest very low productivity in the nearshore surface water, most probably due to a low-density hyposaline cap as surface runoff from the southern margin of the basin. The carbon isotopic study documents the negative values of δ13Ccarb in the whole section as an effect of transfer of isotopically light carbon sourced from various sources. Such negative values of δ13Ccarb are characteristic of the upper Cenomanian sediments, deposited in relatively shallow water basins, characterized by input of terrestrial organic matter and/or carbonate particles known from the Western Interior sections, the Atlantic coastal plain, the northwestern African margin, the eastern margin of the Apulian Platform and shelf sediments in the NW Europe and Tethyan Himalayas. Most probably, all of these events could be related to the global sea level fluctuations that occurred ca. 95.5–94.5 Ma comparing with the Haq (2014) eustatic curve.  相似文献   

13.
The Dariyan Formation (southwestern Iran) records the characteristic features of an oceanic anoxic event with organic- and radiolarian-rich hemipelagic intervals. A biostratigraphic study based on benthic and planktonic foraminifers provides an early Aptian age for the organic-rich succession and an Aptian age for the entire Dariyan Formation in this area. In this study, we report the first stable carbon isotope curve for the Dariyan Formation which is characterized by a pronounced negative spike (reaching ?2?‰) at the base of the section followed by a subsequent positive excursion (4?‰) and a plateau with values fluctuating around 3?‰. The integration of the δ13C record with the previously published litho- and biostratigraphy provides the characteristic features of the oceanic anoxic events (OAE) 1a interval. This detailed curve improved the stratigraphic resolution in this area and allowed the establishment of a temporal framework which showed good correlations with other OAE 1a sections worldwide. High production of organic matter and abundance of radiolarians and planktonic foraminifers suggest high-nutrient fluxes and meso- to eutrophic conditions at the time of deposition of the organic-rich interval of the Dariyan Formation. This is in agreement with enhanced greenhouse conditions. The facies distribution (from shallow to deep water environments) and the paleogeography of Arabian Plate during the early Aptian suggest that increasing continental runoff was a primary trigger of high trophic level conditions. Redox conditions, estimated from manganese (Mn) behavior, indicate dysoxic to anoxic conditions within the basin during OAE 1a.  相似文献   

14.
The carbon and nitrogen isotope composition of organic matter has been widely used to trace biogeochemical processes in marine and lacustrine environments. In order to reconstruct past environmental changes from sedimentary organic matter, it is crucial to consider potential alteration of the primary isotopic signal by bacterial degradation in the water column and during early diagenesis in the sediments.In a series of oxic and anoxic incubation experiments, we examined the fate of organic matter and the alteration of its carbon and nitrogen isotopic composition during microbial degradation. The decomposition rates determined with a double-exponential decay model show that the more reactive fraction of organic matter degrades at similar rates under oxic and anoxic conditions. However, under oxic conditions the proportion of organic matter resistent to degradation is much lower than under anoxic conditions. Within three months of incubation the δ13C of bulk organic matter decreased by 1.6‰ with respect to the initial value. The depletion can be attributed to the selective preservation of 13C-depleted organic compounds. During anoxic decay, the δ15N values continuously decreased to about 3‰ below the initial value. The decrease probably results from bacterial growth adding 15N-depleted biomass to the residual material. In the oxic experiment, δ15N values increased by more then 3‰ before decreasing to a value indistinguishable from the initial isotopic composition. The dissimilarity between oxic and anoxic conditions may be attributed to differences in the type, timing and degree of microbial activity and preferential degradation. In agreement with the anoxic incubation experiments, sediments from eutrophic Lake Lugano are, on average, depleted in 13C (−1.5‰) and 15N (−1.2‰) with respect to sinking particulate organic matter collected during a long-term sediment trap study.  相似文献   

15.
The Cenomanian-Turonian oceanic anoxic event(C/T OAE) is developed in southern Tibet.Organic geochemical study of the Cenomanian-Turonian sediments from the Gamba and Tingri aress shows that the mid-Cretaceous black shales in southern Tibet are enriched in organic carbon.Te molecular analyses of organic matter indicate marine organic matter was derived from algae and bacteria.In the Gamba area,the organic matter is characterized by abundant tricyclic terpanes and pregane,which are predominant in 191 and 217 mass chromatograms,respectively,Pristane/phytane(Pr/Ph)ratios in the C/T OAE sediments are less than 1, demonstrating the domination of phytane.The presence of carotane can be regarded as a special biomarker indicating oxygen depletion in the C/T OAE sediments in the Tethyan Himalayas.In anoxic sediments,β-carotane and γ-carotane are very abundant.The β-and γ-carotane ratios relative to nC17 in the Cenomanian-Turonian anoxic sediments vary from 32.28-42.87and 5.10-11.01.  相似文献   

16.
Cenomanian/Turonian boundary (upper Sarvak Formation) benthic foraminiferal assemblages were analyzed to reconstruct oxygen level, primary productivity, and water turbulence in the Izeh Zone, Zagros Basin. The interplay between environmental perturbations during the Oceanic Anoxic Event 2 (OAE2) and regional tectonic activities in the Zagros Basin resulted in formation of various benthic foraminiferal assemblages in the study section. The OAE2 interval at the region of study starts with extinction of rotaliporids at the onset of δ13C positive excursion (peak “a”), which is associated with population of infaunal benthic foraminifera (especially Bolivina alata). The following interval at the onset of Whiteinella archaeocretacea Biozone is characterized by the total absence of benthic taxa and dominance of planoheterohelicids (“Heterohelix shift”) in the black shale strata, indicating expansion of oxygen minimum zone and unhospitable conditions for both benthic and planktic foraminifera. The upper part of OAE2 interval (including δ13C peaks “b” and “c”) coincides with harbinger of Neo-Tethys closure in the Arabian Plate, causing a compressional tectonic regime, and creation of uplifted terrains in the basin. The relative sea level started to locally fall in this succession, which was accompanied by a better ventilation of seafloor, lower TOC contents, and reappearance of benthic foraminifera.  相似文献   

17.
New drill cores from the Lower Aptian historical stratotype at Roquefort-La Bédoule (SE France) provide continuous high-resolution geochemical and isotope records which closely track the onset of OAE 1a in a subtropical intra-shelf basin (South Provençal Basin). The drilling operation recovered a total of 180 m of undisturbed sediments in three holes. The lowermost 67 m correspond to the Bedoulian (core LB1) and are here analyzed in high-resolution using geochemical proxies (stable carbon isotopes, stable oxygen isotopes, and carbonate content) and foraminiferal biostratigraphy. Pervasive bioturbation through core LB1 suggests mostly oxygenated bottom water conditions with transient dysoxic episodes, as shown by higher pyrite and glauconite concentrations within the marlstones. Unprecedented resolution over the negative δ13C excursion preceding OAE 1a (segment C3) reveals a characteristic double trough extending over ∼5.5 m in core LB1. This long-lasting negative excursion was possibly linked to multiple pulses of enhanced CO2 release to the atmosphere. Estimated sedimentation rates of 1.6–2 cm/kyr indicate that the negative δ13C excursion lasted >200 kyr, while the main positive carbon isotope shift (segment C4) had a duration of >300 kyr. Fluctuations in δ18O suggest transient episodes of climate warming and cooling at the northern margin of the Tethys or even on a more global scale prior to the onset of OAE 1a.  相似文献   

18.
In the North Atlantic DSDP/IPOD cores, carbon isotope data on the bulk carbonates show significant fluctuations. In sediments now exposed on land coeval fluctuations in the carbon isotope concentrations are also recorded in pelagic and epeiric facies. For instance, in the Upper Cretaceous chalks of the Paris Basin, there is a major break at the Cenomanian-Turonian boundary. At this time, the manganese content of the chalks was also at a maximum and consequently a positive relation can be demonstrated between δ13C and manganese concentrations. The same positive correlation is also recorded in many pelagic limestones.In the North Atlantic cores, carbon isotope events are related to the black shale facies and to global oceanic anoxic events and one can suppose that in sediments deposited on the continental margins they are also related to mildly anoxic conditions. Considering the manganese geochemistry in carbonate rocks, a high manganese content in such a reducing environment can be found in the sediments only if the Mn concentration of the interstitial solutions are abnormally high. As a high Mn content in marine pore waters is believed to originate from hydrothermal process, Mn and δ13C positive excursions are ultimately related to mid-oceanic ridge activity and to a closely connected phenomenon, the great transgressive pulses during which mid-depth waters may have been anoxic. Consequently, major Mn and carbon isotope events would seem to be useful tools in paleooceanographic reconstructions.  相似文献   

19.
Early concretionary and non-concretionary siderites are common in subsurface Triassic sandstones and mudrocks of the Rewan Group, southern Bowen Basin. A detailed petrological and stable isotopic study was carried out on these siderites in order to provide information on the depositional environment of the host rocks. The siderites are extremely pure, containing 85–97 mol% FeCO3, and are commonly enriched in manganese. δ13C (PDB) values are highly variable, ranging from - 18·4 to +2·9‰, whereas δ18O (PDB) values are very consistent, ranging from - 14·0 to - 10·2‰ (mean= - 11·9 ± 1·0‰). The elemental and oxygen isotopic composition of the siderites indicates that only meteoric porewaters were involved in siderite formation, implying that host rocks accumulated in totally non-marine environments. The carbon isotopic composition of the siderites is interpreted to reflect mixing of bicarbonate/carbon dioxide generated by methane oxidation and methanogenesis. Very low δ13C values demonstrate that, contrary to current views, highly 13C-depleted siderite can be produced at shallow burial depths in anoxic non-marine sediments.  相似文献   

20.
The formation of authigenic Ca-rich rhodochrosite (ACR) in sapropelic sediments of the Gotland Basin, Baltic Sea, is governed by deepwater renewal processes whereby saline water from the North Atlantic flushes the brackish anoxic Baltic Deeps. The carbon and oxygen isotopic compositions of these Mn-carbonates suggest that ACR formation takes place just below the sediment surface and that dissolved compounds from the deepwater column, such as water and bicarbonate molecules, were incorporated in ACR during authigenesis. Porewaters near the sediment surface display δ18O values of −5.4‰ (VSMOW) and are generally depleted in 18O, compared to the oxygen isotopic composition of water in equilibrium with Mn-carbonate solid solutions (ACR δ18O values are −4.6‰). This suggests that early burial diagenetic processes significantly modify the initial isotopic composition of water during Mn-carbonate formation. The reduction of sulfate having δ18O values of +8.4‰ accounts for a permanent enrichment of porewater 18O and observed δ18O values at depth equal to −4.6‰. However, this process does not explain the observed disequilibrium in the oxygen isotopic composition between water and ACR close to the sediment surface where Mn-carbonate formation takes place. Based on isotopic mass balance calculations, we suggest that MnO2 with δ18O values of +8.9‰ released oxygen enriched in 18O into the anoxic porewaters close below the sediment surface. This process should occur after oxygenation events during deepwater renewal when MnO2 accumulates at the surface of anoxic sediments. Manganese carbonates formed in these waters display δ18O values of ∼1.0‰ heavier than values expected solely from the initial deepwater composition. This quantitatively explains the discrepancy between paleosalinities calculated from ACR δ18O based on Mn-carbonate/water isotopic equilibrium fractionation and direct observations for the same period. Our results emphasize the important role of microbial MnO2 reduction during rhodochrosite authigenesis and suggest that Mn(II) activity, rather than alkalinity, is the limiting component for sedimentary Mn-carbonate formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号