首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 725 毫秒
1.
Data derived from monthly sediment traps in Sihailongwan, a maar lake in northeastern China, yielded a detailed record of seasonal sediment fluxes. Sediment fluxes correspond to seasonal climatic variations. The diatom flux shows two distinct peaks in September and November, whereas the flux of chrysophyte stomatocysts shows a maximum in May. The blooms of diatoms may be related to the subsequent deepening of the thermocline in September and lake overturn in spring and November, and influx of nutrient-rich groundwater sometime after the onset of the summer monsoon. The fluxes of organic matter and siliciclastics show a distinct seasonal pattern. They are varying between 0.03 and 0.56 g m−2 d−1 and reach a maximum in May. Quartz in the trap samples indicates that the siliciclastic matter may originate from distant aeolian sources. Sediment trap data and thin section investigations confirm the seasonality of Lake Sihailongwan sediments. Dark-colored layer, which mainly consists of valves of Cyclotella comta, might be deposited during autumn, and then is followed by a light-colored mixed layer starting with siliciclastics deposited after ice-out. The varved sediments in the U-shaped Lake Sihailongwan represent a sensitive siliciclastic and geochemical archive of paleoenvironmental variability in this data-sparse area. Detailed investigations of varved sediments should provide decadal to annual records of seasonal sediment flux and its relation to climatic parameters. Especially the diatomaceous layer is regarded to indicate summer climatic fluctuations, while the thick siliciclastic layer could be an indictor of dust events.  相似文献   

2.
白雪  陈旭 《地理科学进展》2022,41(2):351-360
金藻孢囊是金藻生殖过程的特有产物,在淡水环境中广泛存在,其硅质外壳易在沉积物中保存。金藻孢囊的孔、领、环带以及表面纹饰特征是其鉴定分类的主要依据。金藻孢囊对水环境变化响应敏感,因而被广泛应用于水环境变化研究中,包括古温度和古水文重建、水体富营养化和酸化评估等领域。已有的研究主要集中在北美和欧洲地区,其他区域研究相对较少。相比于其他生物指标,金藻孢囊鉴定相对复杂,不利于其广泛应用。因此,未来应优化金藻孢囊鉴定分类方法,提高鉴定统计效率。其次,加强金藻孢囊的现代过程调查,尤其在欧洲和北美以外的地区,以揭示全球不同地区金藻孢囊多样性及其生态属性。在此基础上,加强金藻孢囊在泥炭地环境演变、生物地理学等研究领域的应用。  相似文献   

3.
The seasonality of physical, chemical, and biological water variables is a major characteristic of temperate, dimictic lakes. Yet, few investigations have considered the potential information that is encoded in seasonal dynamics with respect to the paleolimnological record. We used a one-year sequence of diatoms obtained from sediment traps and water samples, as well as the sedimentary diatom record covering the past ca. 1000 years in Bates Pond, Connecticut (USA), to investigate which variables influence the seasonal distribution of diatoms and how this can be used for the interpretation of the fossil record. The seasonal patterns in diatom assemblages were related to stratification and, to a lesser extent, to nitrate, silica, and phosphorus. During mixing periods in spring and autumn, both planktonic and benthic species were collected in the traps, while few lightly silicified, spindle-shaped planktonic diatoms dominated during thermal stratification in summer. Changes in fossil diatom assemblages reflected human activity in the watershed after European settlement and subsequent recovery in the 20th century. A long-term trend in diatom assemblage change initiated before European settlement was probably related to increased length of mixing periods during the Little Ice Age, indicated by the increase of taxa that presently grow during mixing periods and by application of a preliminary seasonal temperature model. We argue that the analysis of seasonal diatom dynamics in temperate lakes may provide important information for the refinement of paleolimnological interpretations. However, investigations of several lakes and years would be desirable in order to establish a more robust seasonal data set for the enhancement of paleolimnological interpretations.  相似文献   

4.
Relatively little is known about past cold-season temperature variability in high-Alpine regions because of a lack of natural cold-season temperature proxies as well as under-representation of high-altitude sites in meteorological, early-instrumental and documentary data sources. Recent studies have shown that chrysophyte stomatocysts, or simply cysts (sub-fossil algal remains of Chrysophyceae and Synurophyceae), are among the very few natural proxies that can be used to reconstruct cold-season temperatures. This study presents a quantitative, high-resolution (5-year), cold-season (Oct–May) temperature reconstruction based on sub-fossil chrysophyte stomatocysts in the annually laminated (varved) sediments of high-Alpine Lake Silvaplana, SE Switzerland (1,789 m a.s.l.), since AD 1500. We first explore the method used to translate an ecologically meaningful variable based on a biological proxy into a simple climate variable. A transfer function was applied to reconstruct the ‘date of spring mixing’ from cyst assemblages. Next, statistical regression models were tested to convert the reconstructed ‘dates of spring mixing’ into cold-season surface air temperatures with associated errors. The strengths and weaknesses of this approach are thoroughly tested. One much-debated, basic assumption for reconstructions (‘stationarity’), which states that only the environmental variable of interest has influenced cyst assemblages and the influence of confounding variables is negligible over time, is addressed in detail. Our inferences show that past cold-season air-temperature fluctuations were substantial and larger than those of other temperature reconstructions for Europe and the Alpine region. Interestingly, in this study, recent cold-season temperatures only just exceed those of previous, multi-decadal warm phases since AD 1500. These findings highlight the importance of local studies to assess natural climate variability at high altitudes.  相似文献   

5.
Chrysophycean stomatocyst assemblages were analysed from the sediments of 17 lakes and ponds from Svalbard as one component of a multi-proxy investigation of recent environmental change in the high Arctic. Sediment cores and water chemistry were collected from each of the study lakes, and chrysophyte stomatocysts were investigated from the top 0.25 cm of sediment (present-day) and bottom (i.e., bottom of short sediment core, pre-industrial) sediment samples. This study represents the first undertaking of chrysophyte cyst morphology and distribution on Svalbard. A total of 153 cyst morphotypes were described with light microscopy and/or scanning electron microscopy, of which 21 are new forms. Canonical correspondence analysis indicates that the present-day distribution of cysts is significantly related to pH (p= 0.02), altitude (p= 0.02), and Na+ (p= 0.04). Marked shifts in chrysophyte cyst assemblages were recorded between the top and bottom sediment samples of most lakes. A recent study has demonstrated that Svalbard lakes receive atmospheric contaminants from both local and remote sources. The observed assemblage shifts may be the result of the combined effects of these point sources and long-range pollutants, or the effects of recent climate change, or both.  相似文献   

6.
Responses to recent climatic changes in the sediment of subarctic Lake Saanajärvi in northwestern Finnish Lapland are studied by comparison of various biological and sedimentological proxies with the 200-year long climate record, specifically reconstructed for the site using a data-set of European-wide meteorological data. The multi-proxy evidence of simultaneously changing diatom, Cladocera, and chrysophyte assemblages along with the increased rates of organic matter accumulation and pigment concentrations suggest that the lake has undergone a distinct typological change starting from the turn of the 20th century. This change, indicating an increase in lake productivity, parallels a pronounced rise in the meteorologically reconstructed mean annual and summer temperatures in the region between ca. 1850 and 1930's. We postulate that, during the Little Ice Age, the lake was not, or was only weakly, thermally stratified during summer, whereas the subsequent increase in air and hence epilimnetic water temperatures resulted in the development of the present summer stratification. The increased thermal stability of the lake created more suitable conditions for the growth of phyto- and zooplankton and changed the overall primary production from benthos to plankton. Mineral magnetic and carbonaceous particle records suggest long-distance pollution, particularly since the 1920's, yet the observed changes in lake biota and productivity can hardly be explained by this very minor background pollution; the 20th century species configurations are typical of neutral waters and do not indicate any response to pollution.  相似文献   

7.
Chrysophycean stomatocysts were identified and enumerated from the surface sediments of 60 lakes located on the Interior Plateau of British Columbia. The lakes span a salinity gradient from freshwater to hypersaline (0.0–92.4 g L–1), with the majority being fresh to hyposaline. One hundred and ten stomatocyst morphotypes, almost all of which were previously described, were identified from the lake sediments. The first axis of direct gradient analysis, which was highly significant, was essentially a salinity axis (i.e. [Ca], [Mg], [K], [Na], [SO4], [DIC], and [Cl]). Most cysts were found to have fairly broad tolerances, with the narrowest tolerances occurring among morphotypes with the lowest salinity optima. Weighted-averaging regression and calibration techniques were used to develop an inference model to measure the relationship between measured average lakewater salinity and stomatocyst inferred salinity (apparent r2=0.80). Simple weighted-averaging produced a model with a lower bootstrapped RMSE of prediction than weighted-averaging with tolerance downweighting. These data indicate that chrysophyte stomatocysts are useful quantitative indicators of past lakewater salinity (in the freshwater to hyposaline range) in B.C. lakes, and can be used to strengthen the interpretations from diatom-inference models already developed from the same region.  相似文献   

8.
Changes in microfossils (diatoms, chrysophytes, chironomids and cladocera remains), geochemistry and deposition of atmospheric pollutants have been investigated in the sediment records of the alpine lake Gossenköllesee (Tyrol, Austria) spanning the last two centuries. The sediment records were compared with seasonal and annual air temperature trends calculated for the elevation (2417 m a.s.l.) and the geographical position (47° 1346N, 11° 0051E) of the lake, and with precipitation records available since 1866 from Innsbruck. Temperature trends followed a 20–30 year oscillation between cold and warm periods. Regarding long-term changes, temperature trends showed a U-shaped trend between 1780 and 1950, followed by a steep increase since 1975.Physical, geochemical, and organic parameters were not controlled by air temperature. Among the biological records only diatoms and chrysophytes reacted to air temperature changes: the relative abundance of planktonic diatoms increased during warm periods and changes in mean annual alpine air temperature explained 36.5% of their variation. The relation between abundance of seasonal stomatocyst types and air temperature varied on two different time scales: while summer stomatocysts were influenced by short term temperature fluctuations, the autumn stomatocysts were affected only by the long term changes. Other biological parameters exhibited a constant species composition (chironomids, pigments) or changes were small and independent of temperature (cladocera). Spheroidal carbonaceous fly-ash particles, and trends in Pb and Cr indicated increasing deposition of atmospheric pollutants but had no detectable effects on the biological parameters either. In respect to temperature variations over the last 200 years, this alpine lake is much less sensitive than expected and has thus to be regarded as a well buffered site. However, temperature alone is not sufficient to understand changes in species composition and other biogeochemical processes with unknown historical patterns might have affected species composition more strongly.  相似文献   

9.
We reported a special type of lamination formed in the sediments of Lake Xiaolongwan, northeastern China. The lamination consists of light- and brown-colored laminate couplets in the thin sections. The brown-colored layer is composed mainly of dinoflagellate cysts. The grey-colored layer consists of other organic and siliceous matter (plant detritus, diatoms, chrysophyte cysts) and clastics. Preliminary sediment trap results show that a distinct peak of dinocyst flux occurred in November. The dinocyst flux maximum also corresponds to the peaks of diatom flux and chrysophyte stomatocyst flux. These suggest that "red tide blooms" occur in this freshwater lake. We speculate that the dinocyst flux maximum could be related to autumn overturn due to increased nutrients, and the availability of cysts for germination from the lake bottom. Additionally, it may also reflect increasing dissolved organic matter after leaf fall. An independent chronology derived from 137Cs and 210Pb shows a good agreement with counted laminations. From the sediment trap data and the independent chronology data, the dinocyst microlaminae appear to be annually laminated, and probably could be called dinocyst varves. Although vegetative (thecate stage) cells of Peridinium volzii and Ceratium furcoides are found in the water samples, it is not possible to relate the dinocysts to these two dinoflagellate species. Based on morphological and ecological analyses, we suggested that they have affinities with species of Peridinium (sensu lato), most probably to P. inconspicuum. Detailed investigations should be carried out to understand the red tide history in this freshwater lake. Annually laminated dinocyst microlayers in freshwater and marine sediments not only provide an uncommon archive for understanding the history of red tides and harmful algal blooms, and why and how certain species periodically bloom over several thousands years, but also provide important records of paleoenvironmental and paleoclimatic changes at seasonal to annual resolution.  相似文献   

10.
黄珏  李正茂  张珂  江涛 《地理学报》2021,76(7):1693-1707
随着全球变暖和社会经济发展,中国湖泊富营养化情况时有发生,迫切需要对中国湖泊的浮游植物生物量进行有效监测。本文选择了中国756个面积超过10 km2的湖泊进行研究,基于Google Earth Engine(GEE)云端运算平台,反演2003—2018年间叶绿素a(chl-a)浓度数据,以此来分析研究各个湖泊的营养状态及其时空变化,探索了中国五大湖区内湖泊各季节与年均chl-a浓度时空分布特征与气象、社会经济及湖泊特征等影响因素之间的关系。结果表明: ① 中国湖泊的营养状态变化具有明显的季节性与地域性,研究时段内处于中营养状态的湖泊约占90%,春季时大多数位于东部平原湖区与东北平原与山区湖区的湖泊表现为贫营养状态,而青藏高原湖区与云贵高原湖区的湖泊在春季多呈现富营养状态。由各个湖泊年均chl-a浓度变化可以看出中国约82%的湖泊年均chl-a浓度的变化率小于0.5,呈现出轻微变化,18%的湖泊chl-a浓度呈现剧烈变化趋势。② 温度和降水对湖表chl-a浓度影响较大,超过70%湖泊的chl-a浓度与其表面温度和降水存在正相关性,其中大部分分布在中国北部与东部。缓冲区人口和草地占比、湖泊海拔和湖泊地理位置也对湖泊浮游植物生物量具有一定影响。  相似文献   

11.
Lakes with varved sediments are especially well suited for paleoecological study, from annual to even seasonal resolution. The interpretative power of such high-resolution paleoenvironmental reconstructions relies on the availability of modern analogs with the same temporal resolution. We studied seasonal pollen sedimentation in varved Lake Montcortès, Central Pyrenees (Spain), as a modern analog for high-resolution reconstruction of Late Holocene vegetation and landscape dynamics. Seasonal samples were obtained from sediment traps that were submerged near the maximum water depth for a 2-year period (fall 2013 to fall 2015). Seasonal pollen sedimentation was compared with meteorological variables from a nearby weather station. Bulk pollen sedimentation, dominated by Pinus (pine) and Quercus (oak), followed a clear seasonal pattern that peaked during the spring/summer, coinciding with maximum temperature and precipitation, minimum relative humidity and moderate winds from the SSE. Pollen sedimentation lags (PSL) were observed for most pollen types, as substantial amounts of pollen were found in the traps outside of their respective flowering seasons. Two pollen assemblages were clearly differentiated by their taxonomic composition, corresponding to spring/summer and fall/winter. This pattern is consistent with existing interpretation of the sediment varves, specifically, that varves are formed by two-layer couplets that represent the same seasonality as pollen. We concluded that pollen sedimentation in Lake Montcortès exhibits a strong seasonal signal in the quantity of pollen, the taxonomic composition of the pollen assembalges, and relationships between the pollen and meteorological variables. Thus, varved sediments provide a potentially powerful tool for paleoecological reconstruction at seasonal resolution. This method could be used not only to identify paleoenvironmental trends, but also to identify annual layers and therefore date sediments, even in the absence of evident sediment laminations. A satisfactory explanation of PSL will require further studies that examine internal lake dynamics and pollen production/dispersal patterns.  相似文献   

12.
The chrysophycean stomatocyst flora from the sediments of Upper Wallface Pond, a recently acidified Adirondack lake, was described according to the guidelines of the International Statospore Working Group. Sixty-six morphotypes were distinguished, using scanning electron microscopy. Twenty-eight of these cysts were distinguishable using the light microscope (LM), whereas 30 required grouping into 11 collective categories from LM identification, and 7 could not be identified using LM. None of our morphotypes could be linked definitively to the living chrysophyte species that produced them. Stratigraphic analysis showed that a marked change in the cyst assemblage occurred in the 1930's. Previous paleoecological studies inferred a pronouced pH decline at this time. Redundancy analysis of our data showed that diatom-inferred pH explained a significant amount of variation (Monte Carlo permutation test; p=0.01). This suggests that pH influences chrysophyte populations, and that stomatocysts could eventually be used to reconstruct pH and other variables.This is the fourth in a series of four papers published in this dedicated issue entitled Application of Chrysophyte Stomatocysts in Paleolimnology. Dr. C. D. Sandgren served as guest editor for these papers.  相似文献   

13.
Paleolimnological data from varved sediments in Lake Holzmaar (Eifel, Germany) were combined with documentary data on human activities, long-term data from the Historical Climate Database (HISKLID) for Germany and with recent monitoring data to evaluate changes in deposition that arose from climatic and human influences. The sediment data included seasonal layer thickness in an established varve chronology (1608–1942 AD), subannual chemical element counts, and multiannual organic matter data (TOC, TN, δ13Corg), all combined on an annual scale. Indicators for detritus deposition (lithogenic element counts and detritus layers) determined the first principal component (PC1) of the sediment data. This detritus PC1 was compared to the first PCs of the seasonal precipitation and temperature from HISKLID. While no relation was found to precipitation, the correlation with the temperature PC1 determined by spring to fall temperatures was significant. From 1608 to 1870, a positive correlation of the PCs suggests an increase of detritus deposition in the lake center with increasing non-winter temperatures. These may be linked by lake-internal sediment redeposition that increases when the periods of winter stratification become shorter and that of lake circulation longer. The detritus deposition is modulated by external detritus input depending on the intensity of erosion-conducive land use (wood pasture, wood cutting, and rotational slash-and-burn cultivation). Detritus input diminished when land use slowed down with population decrease as the consequence of plague epidemics, warfare and emigration. After 1870, forest regeneration and improving agricultural practices led to a stabilization of the catchment. Erosion and detritus deposition decreased progressively. The negative correlation of detritus deposition with the gradually increasing temperature presumably mimics a cause-effect relation, although a link with decreasing freeze–thaw action is possible. The modernization of agriculture proceeded with manuring and fertilizing, which caused an increase of lake productivity as indicated by summer blooms of diatoms with enhanced nutrient demand, increased δ13Corg values and sulfur concentrations. Within this well established data base we found combinations of criteria that may be used to deduce natural climatic or anthropogenic influences. The quantitative attribution of these influences remains a challenging task in paleolimnology because their interaction makes the detection of linking mechanisms difficult even at high degree of detail and the processes themselves remain debatable.  相似文献   

14.
Monitoring during three meteorologically different spring seasons in 2012, 2013, and 2014 revealed that temperature increase in spring, which influences spring lake mixing duration, markedly affected nutrient availability and diatom deposition in a sediment trap close to the bottom of deep Tiefer See, NE Germany. Deposition of Stephanodiscus taxa and small Cyclotella taxa was much higher after late ice out and a deep, short lake mixing period in spring 2013, compared to that after gradual warming and lengthy lake mixing periods in spring 2012 and 2014, when only brief or marginal ice cover occurred. Availability of dissolved Si and P was 33 and 20 % higher, respectively, in 2013 compared to 2014. The observed relation between high (low) diatom deposition and short (lengthy) mixing duration in spring was applied to varved sediments deposited between AD 1924 and 2008. Low detrital Si content in trapped material and a sediment core enabled use of µXRF-counts of Si as a proxy for diatom silica. The spring mixing duration for 1951–2008 was derived from FLake-model calculations. The spring warming duration related to lake mixing was approximated from air temperatures for 1924–2008 using the dates when daily mean air temperature exceeded 5 °C (start) and 10 °C (end). Diatom silica deposition showed a significant (p < 0.0001) inverse linear relationship with the modeled spring mixing duration (R2 = 0.36) and the spring warming duration (R2 = 0.28). In both cases, the relationship is strengthened when data from the period of low diatom production (1987–2005) is excluded (R2 = 0.59 and R2 = 0.35). Part of this low diatom production is related to external nutrient supply that favored growth of cyanobacteria at the expense of diatoms. This approach shows that diatom Si deposition was strongly influenced by the availability of light and nutrients, related to the duration of lake mixing and warming in spring, during most of the studied period. The remaining unexplained variability, however, indicates that additional factors influence Si deposition. Further tests in other deep, temperate lakes are necessary to verify if this relation is a common feature and consequently, if diatom Si can be used as a proxy for spring mixing duration in such lakes.  相似文献   

15.
Sediment cores spanning the last two centuries were taken in Hagelseewli, a high-elevation lake in the Swiss Alps. Contiguous 0.5 cm samples were analysed for biological remains, including diatoms, chironomids, cladocera, chrysophyte cysts, and fossil pigments. In addition, sedimentological and geochemical variables such as loss-on-ignition, total carbon, nitrogen, sulphur, grain-size and magnetic mineralogy were determined. The results of these analyses were compared to a long instrumental air temperature record that was adapted to the elevation of Hagelseewli by applying mean monthly lapse rates.During much of the time, the lake is in the shadow of a high cliff to the south, so that the lake is ice-covered during much of the year and thus decoupled from climatic forcing. Lake biology is therefore influenced more by the duration of ice-cover than by direct temperature effects during the short open-water season. Long periods of ice-cover result in anoxic water conditions and dissolution of authigenic calcites, leading to carbonate-free sediments.The diversity of chironomid and cladoceran assemblages is extremely low, whereas that of diatom and chrysophyte cyst assemblages is much higher. Weak correlations were observed between the diatom and chrysophyte cyst assemblages on the one hand and summer or autumn air temperatures on the other, but the proportion of variance explained is low, so that air temperature alone cannot account for the degree of variation observed in the paleolimnological record.Analyses of mineral magnetic parameters, spheroidal carbonaceous particles and lead suggest that atmospheric pollution has had a significant effect on the sediments of Hagelseewli, but little effect on the water quality as reflected in the lake biota.  相似文献   

16.
We measured variability in the composition of diatom and chrysophyte assemblages, and the pH inferred from these assemblages, in sediment samples from Big Moose Lake, in the Adirondack Mountains of New York. Replicate samples were analyzed from (1) a single sediment core interval, (2) 12 different intervals from each of 3 separate cores, and (3) 10 widely spaced surface sediment samples (0–1 cm). The variability associated with sample preparation (subsampling, processing, and counting) was relatively small compared to between-core and within-lake variability. The relative abundances of the dominant diatom taxa varied to a greater extent than those of the chrysophyte scale assemblages. Standard deviations of pH inferences for multiple counts from the same sediment interval from diatom, chrysophyte, and diatom plus chrysophyte inference equations were 0.04 (n=8), 0.06 (n=32), and 0.06 (n=8) of a pH unit, respectively. Stratigraphic analysis of diatoms and chrysophytes from three widely spaced pelagic sediment cores provided a similar record of lake acidification trends, although with slight differences in temporal rates of change. Average standard deviations of pH inferences from diatom, chrysophyte and diatom plus chrysophyte inference equations for eight sediment intervals representing similar time periods but in different cores were 0.10, 0.20, and 0.09 pH unit, respectively. Our data support the assumption that a single sediment core can provide an accurate representation of historical change in a lake. The major sources of diatom variability in the surface sediments (i.e., top 1.0 cm) were (1) differences in diatom assemblage contributions from benthic and littoral sources, and (2) the rapid change in assemblage composition with sediment depth, which is characteristic of recently acidified lakes. Because scaled chrysophytes are exclusively planktonic, their spatial distribution in lake sediments is less variable than the diatom assemblages. Standard deviations of pH inferences for 10 widely spaced surface sediment samples from diatom, chrysophyte and diatom plus chrysophyte inference equations were 0.21, 0.09, and 0.16 of a pH unit, respectively.  相似文献   

17.
Carbon storage in lakes can have huge implications for the global carbon cycle, as lakes annually accumulate up to one half the amount of organic carbon buried in marine sediments. Yet little is known of the effect of recent climate change on carbon storage in lakes. We analyzed century-scale time series of climate variables (precipitation, temperature, NAO winter index) and profiles of sediment characteristics in a dated sediment core from shallow, eutrophic Lake Võrtsjärv, south Estonia. We used path analysis to evaluate the effect of climate conditions on phytoplankton biomass in the lake and accumulation of organic and inorganic carbon in the sediment. Changes in winter and spring climate influenced the lake’s phytoplankton growth significantly. Carbon pathways in hard-water Lake Võrtsjärv were influenced by both hydrological (most significant in colder periods) and biogeochemical processes. Increased nutrient and water input to Lake Võrtsjärv, anticipated with projected climate warming, favours greater in-lake productivity, larger accumulation of inorganic carbon in sediments, and an increase in organic carbon mineralisation, which fuels atmospheric greenhouse gas emissions from the lake.  相似文献   

18.
Sediment trap studies and high frequency monitoring are of great importance to develop a deeper understanding of how seasonal environmental processes are imprinted in sediment signal formation. We collected whole year diatom assemblages from 2002 to 2014 with a sequential sediment trap from a varved boreal lake (Nylandssjön, Sweden) together with environmental and limnological parameters, and compared them with the corresponding diatom record of the annual laminated sediment. Our data set indicates a large year-to-year variability of diatom succession and abundance patterns, which is well reflected in the varved sediments. Specifically, Cyclotella glomerata dominated the annual sediment trap record (as well as in the corresponding sediment varves) in years with warmer air temperatures in March/April, and Asterionella formosa dominated the annual sediment assemblages as a consequence of years characterized by higher runoff before lake over-turn. Years succeeding forest clearance in the lake catchment showed marked increase in diatom and sediment flux. The DCA scores of the yearly diatom trap assemblages clearly resemble the lake’s thermal structure, which indicates that the relative abundance of major taxa seems primarily controlled by the timing of seasonal environmental events, such as above-average winter air temperature and/or autumn runoff and the current thermal structure of the lake. The high seasonal variability between environmental drivers in combination with the physical limnology leaves us with several possible scenarios leading to either an A. formosa versus C. glomerata dominated annual diatom sediment signal. With this study we highlight that short-term environmental events and seasonal limnological conditions are of major importance for interpreting annual sediment signals.  相似文献   

19.
This study represents a step towards developing seasonal climate inferences by using high-resolution modern data sets. The importance of seasonal climate changes is highlighted by the instrumental record of a meteorological station close to our study site (lac du Sommet in the Laurentian Mountains, Québec, Canada): Between 1966 and 2001, May temperatures increased significantly by 3.1°C (r = 0.41, n = 35, p < 0.01) but annual mean temperatures only by 0.6°C (r = 0.21, n = 35, p > 0.05). Comparison of this instrumental record with fossil diatom assemblages in a sediment core from lac du Sommet showed that axis one of a principal component analysis (PCA) of the fossil diatoms was best correlated with wind velocity in June (r = 0.62, n = 19, p < 0.005) and that past diatom production was significantly enhanced in periods with colder July temperatures (r =  ?0.77, n = 19, p < 0.0005) and higher wind velocity in June (r = 77, n = 19, p < 0.0005). The strong impact of the spring and summer conditions on overall diatom composition and productivity suggests that seasonal lake responses to climate are more important than annual mean temperatures. However, the seasonal dynamics of diatom communities are not well understood, and seasonality is rarely inferred effectively from lake sediment studies. Our research presents a pilot study to answer a twofold question: Is it possible to identify diatom communities which are typical for warmer or colder seasonal climate using sediment traps, and if it is, can this knowledge be used to infer seasonal climate conditions from fossil diatom assemblages? To address these questions, the seasonal dynamics of diatom communities and water chemistry were studied using sediment traps and water samples at biweekly intervals in four lakes distributed along an altitudinal gradient in the Laurentian Mountains from May through October 2002. Date of ice break-up was significantly related to the diatom assemblages taken in spring and uncorrelated to other significant environmental variables. Summer water temperature, circulation of the water column and pH explained a significant part of the biological variance in summer, and total nitrogen (TN) explained most of the biological variance in autumn. To infer these variables, weighted averaging partial least squares models were applied to the seasonal data sets. Inferred ice break-up dates were significantly correlated with number of days below 0°C in April (r = 0.52, n = 19, p < 0.025), inferred circulation of the water column was significantly related to measured wind velocity in June (r = 0.64, n = 19, p < 0.005), inferred summer water temperature and inferred pH was significantly related to measured July air temperature (r = 0.50, r =  ?53, n = 19, p < 0.025) and inferred TN autumn concentrations had an inverse relationship to August temperatures (r =  ?0.53, n = 19, p < 0.01). This comparison of the historical record with diatom-inferred seasonal climate signals, based on the comparison of fossil diatom assemblages with modern sediment trap data of high temporal resolution, provides a promising new approach for the reconstruction of seasonal climate aspects in paleolimnological studies.  相似文献   

20.
A 40-cm sediment core from Big Moose Lake (Adirondack Mountains, New York, U.S.A.) was analyzed for recent changes in chrysophyte composition of chrysophyte species to assess if legislated reductions of sulphur emissions have resulted in changes in biological composition and inferred lakewater pH in this lake. This core, taken in September 1994, had a record of stratigraphic changes in chrysophyte assemblages remarkably similar to those in 210Pb-dated sediment cores taken in 1983 and 1988. Abrupt changes in chrysophyte stratigraphy were used to date the newest sediment core by stratigraphic correlation. We observed relatively constant composition of chrysophyte species and inferred-pH values in post-1970 sediments, which suggests that there has been little change in lakewater pH values despite the reductions in sulfate deposition since 1970 in the Adirondacks. These results are consistent with recent monitoring measurements in the Adirondacks. Further research is necessary to ascertain the applicability of these findings to other lakes in the Adirondacks and to determine the reasons for the lack of recovery.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号