首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Macroalgae, hard corals, octocorals, and fish were surveyed on 10 to 13 inshore coral reefs of the Great Barrier Reef, along a water quality gradient in two regions with contrasting agricultural land use. A water quality index was calculated for each reef based on available data of particulate and dissolved nutrients, chlorophyll and suspended solids. Strong gradients in ecological attributes occurred along the water quality gradient. Macroalgae of the divisions Rhodophyta and Chlorophyta increased with increasing nutrients, while Phaeophyta remained similar. Octocoral richness and abundances of many hard coral and octocoral taxa decreased, and none of the hundreds of species increased. At reefs in higher nutrient environments, hard coral and octocoral assemblages were composed of subsets of the many species found in lower nutrient environments, whereas fish and macroalgal assemblages consisted of contrasting suites of species. The study identifies species groups that are likely to increase or decrease in abundance with changing water quality.  相似文献   

2.
Coral community structure is often governed by a suite of processes that are becoming increasingly influenced by land-use changes and related terrestrial discharges. We studied sites along a watershed gradient to examine both the physical environment and the associated biological communities. Transplanted corals showed no differences in growth rates and mortality along the watershed gradient. However, coral cover, coral richness, and coral colony density increased with increasing distance from the mouth of the bay. There was a negative relationship between coral cover and mean suspended solids concentration. Negative relationships were also found between terrigenous sedimentation rates and the richness of adult and juvenile corals. These results have major implications not only for Pacific islands but for all countries with reef systems downstream of rivers. Land development very often leads to increases in river runoff and suspended solids concentrations that reduce coral cover and coral diversity on adjacent reefs.  相似文献   

3.
South African coral reefs are limited in size but, being marginal, provide a model for the study of many of the stresses to which these valuable systems are being subjected globally. Soft coral cover, comprising relatively few species, exceeds that of scleractinians over much of the reefs. The coral communities nevertheless attain a high biodiversity at this latitude on the East African coast. A long-term monitoring programme was initiated in 1993, entailing temperature logging and image analysis of high resolution photographs of fixed quadrats on representative reef. Sea temperatures rose by 0.15 degrees C p.a. at the site up to 2000 but have subsequently been decreasing by 0.07 degrees C p.a. Insignificant bleaching was encountered in the region during the 1998 El Nino Southern Oscillation (ENSO) event, unlike elsewhere in East Africa, but quantifiable bleaching occurred during an extended period of warming in 2000. Peak temperatures on the South African reefs thus appear to have attained the coral bleaching threshold. While this has resulted in relatively little bleaching thus far, the increased temperatures appear to have had a deleterious effect on coral recruitment success as other anthropogenic influences on the reefs are minimal. Recruitment success diminished remarkably up to 2004 but appears again to be improving. Throughout, the corals have also manifested changes in community structure, involving an increase in hard coral cover and reduction in that of soft corals, resulting in a 5.5% drop in overall coral cover. These "silent" effects of temperature increase do not appear to have been reported elsewhere in the literature.  相似文献   

4.
Against a backdrop of rising sea temperatures and ocean acidification which pose global threats to coral reefs, excess nutrients and turbidity continue to be significant stressors at regional and local scales. Because interventions usually require local data on pollution impacts, we measured ecological responses to sewage discharges in Surin Marine Park, Thailand. Wastewater disposal significantly increased inorganic nutrients and turbidity levels, and this degradation in water quality resulted in substantial ecological shifts in the form of (i) increased macroalgal density and species richness, (ii) lower cover of hard corals, and (iii) significant declines in fish abundance. Thus, the effects of nutrient pollution and turbidity can cascade across several levels of ecological organization to change key properties of the benthos and fish on coral reefs. Maintenance or restoration of ecological reef health requires improved wastewater management and run-off control for reefs to deliver their valuable ecosystems services.  相似文献   

5.
Six reef sites were chosen along the west coast of the southern islands of Singapore, at an increasing distance from the densely populated metropolitan area, to study the spatial patterns of coral reef communities on the upper reef slope ( approximately 4m) and the associated environmental conditions. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2) yr(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well-adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates (RR). Although measured levels of the downward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

6.
Dynamite damage was investigated on 60 reefs in the Egyptian Red Sea. 65% of the investigated reefs had signs of dynamite damage, mostly in leeward areas (58%). Significant changes in coral and fish community composition within dynamited sites were observed. Coral cover decreased, the amount of bare substratum and rubble increased, fish communities in dynamited areas suffered a decrease in species richness and abundance. Due to a stable pattern of coral community differentiation on northern Red Sea reefs (windward Acropora, leeward Porites) most damage is on near-climax Porites reef slopes or Porites carpets. Natural regeneration of such communities is likely to be very slow, possibly taking several hundred years. Rehabilitation would be difficult since coral transplants would have to mimic the previously existing community.  相似文献   

7.
8.
Localized declines in coral condition are commonly linked to land-based sources of stressors that influence gradients of water quality, and the distance to sources of stressors is commonly used as a proxy for predicting the vulnerability and future status of reef resources. In this study, we evaluated explicitly whether proximity to shore and connections to coastal bays, two measures of potential land-based sources of disturbance, influence coral community and population structure, and the abundance, distribution, and condition of corals within patch reefs of the Florida Reef Tract. In the Florida Keys, long-term monitoring has documented significant differences in water quality along a cross-shelf gradient. Inshore habitats exhibit higher levels of nutrients (DIN and TP), TOC, turbidity, and light attenuation, and these levels decrease with increasing distance from shore and connections to tidal bays. In clear contrast to these patterns of water quality, corals on inshore patch reefs exhibited significantly higher coral cover, higher growth rates, and lower partial mortality rates than those documented in similar offshore habitats. Coral recruitment rates did not differ between inshore and offshore habitats. Corals on patch reefs closest to shore had well-spread population structures numerically dominated by intermediate to large colonies, while offshore populations showed narrower size-distributions that become increasingly positively skewed. Differences in size-structure of coral populations were attributed to faster growth and lower rates of partial mortality at inshore habitats. While the underlying causes for the favorable condition of inshore coral communities are not yet known, we hypothesize that the ability of corals to shift their trophic mode under adverse environmental conditions may be partly responsible for the observed patterns, as shown in other reef systems. This study, based on data collected from a uniform reef habitat type and coral species with diverse life-history and stress-response patterns from a heavily exploited reef system, showed that proximity to potential sources of stressors may not always prove an adequate proxy for assigning potential risks to reef health, and that hypothesized patterns of coral cover, population size-structure, growth, and mortality are not always directly related to water quality gradients.  相似文献   

9.
Coral recruitment was assessed in highly diverse and economically important Spermonde Archipelago, a reef system subjected to land-based sources of siltation/pollution and destructive fishing, over a period of 2 years. Recruitment on settlement tiles reached up to 705 spat m−2 yr−1 and was strongest in the dry season (July–October), except off-shore, where larvae settled earlier. Pocilloporidae dominated near-shore, while a more diverse community of Acroporidae, Poritidae and others settled in the less polluted mid-shelf and off-shore reefs. Non-coral fouling community appeared to hardly influence initial coral settlement on the tiles, although, this does not necessarily infer low coral post-settlement mortality, which may be enhanced at the near- and off-shore reefs as indicated by increased abundances of potential space competitors on natural substrate. Blast fishing showed no local reduction in coral recruitment and live hard coral cover increased in oligotrophic reefs, indicating potential for coral recovery, if managed effectively.  相似文献   

10.
Marine plants colonise several interconnected ecosystems in the Great Barrier Reef region including tidal wetlands, seagrass meadows and coral reefs. Water quality in some coastal areas is declining from human activities. Losses of mangrove and other tidal wetland communities are mostly the result of reclamation for coastal development of estuaries, e.g. for residential use, port infrastructure or marina development, and result in river bank destabilisation, deterioration of water clarity and loss of key coastal marine habitat. Coastal seagrass meadows are characterized by small ephemeral species. They are disturbed by increased turbidity after extreme flood events, but generally recover. There is no evidence of an overall seagrass decline or expansion. High nutrient and substrate availability and low grazing pressure on nearshore reefs have lead to changed benthic communities with high macroalgal abundance. Conservation and management of GBR macrophytes and their ecosystems is hampered by scarce ecological knowledge across macrophyte community types.  相似文献   

11.
This paper presents initial results from a study of factors that inhibit or enhance hard coral recovery in rubble fields created by blast fishing in Komodo National Park and Bunaken National Park, Indonesia. Within nine sites monitored since 1998, there was no significant natural recovery. Levels of potential source coral larvae were assessed with settlement tiles in the rubble fields and in nearby high coral cover sites. Rubble movement was measured and shown to be detrimental to small scleractinians, especially in high current areas. In shallow water (2-6 m deep), rubble is often overgrown by soft corals and corallimorpharians, which inhibit hard coral survival. There is increased scleractinian recruitment in quadrats cleared of soft coral, and Acropora nubbins transplanted into soft coral fields suffer greater mortality than those transplanted above the soft coral canopy. Gaining an understanding of the prognosis for coral recovery is essential not only in order to assess the long-term impacts of blast fishing, but also to improve management decisions about protection of intact reefs and potential restoration of damaged areas.  相似文献   

12.
Kenya     
The Kenya coast is bathed by the northward-flowing warm waters of the East Africa Coastal Current, located between latitudes 1 and 5° S. With a narrow continental shelf, the coastal marine environments are dominated by coral reefs, seagrass beds and mangroves, with large expanses of sandy substrates where river inputs from Kenya's two largest rivers, the Tana and Athi rivers, prevent the growth of coral reefs. The northern part of the coast is seasonally influenced by upwelling waters of the Somali Current, resulting in lower water temperatures for part of the year. The coast is made up of raised Pleistocene reefs on coastal plains and hills of sedimentary origin, which support native habitats dominated by scrub bush and remnant pockets of the forests that used to cover East Africa and the Congo basin. The marine environment is characterized by warm tropical conditions varying at the surface between 25°C and 31°C during the year, stable salinity regimes, and moderately high nutrient levels from terrestrial runoff and groundwater. The semi-diurnal tidal regime varies from 1.5 to 4 m amplitude from neap to spring tides, creating extensive intertidal platform and rocky-shore communities exposed twice-daily during low tides. Fringing reef crests dominate the whole southern coast and parts of the northern coast towards Somalia, forming a natural barrier to the wave energy from the ocean. Coral reefs form the dominant ecosystem along the majority of the Kenya coast, creating habitats for seagrasses and mangroves in the lagoons and creeks protected by the reef crests. Kenya's marine environment faces a number of threats from the growing coastal human population estimated at just under three million in 2000. Extraction of fish and other resources from the narrow continental shelf, coral reef and mangrove ecosystems increases each year with inadequate monitoring and management structures to protect the resource bases. Coastal development in urban and tourist centers proceeds with little regard for environmental and social impacts. With a faltering economy, industrial development in Mombasa proceeds with few checks on pollution and other impacts. In 1998 Kenya's coral reefs suffered 50–80% mortality from the El Niño-related coral bleaching event that affected the entire Indian Ocean. The institutional, human resource and legal infrastructure for managing the coastal environment has in the past been low, however these are rapidly improving with the revitalization of national institutions and the passing in 1999 of an Environment Act. Marine Protected Areas are the key tool currently used in management of marine ecosystems, and focus principally on coral reefs and biodiversity protection. New initiatives are underway to improve application of fisheries regulations, and to use Integrated Coastal Area Management (ICAM) as a framework for protecting marine and coastal environments.  相似文献   

13.
Six reef sites were chosen along the west coasts of Singapore's southern islands, to: (1) quantitatively assess and compare coral community composition and structure, and recruitment rates, (2) assess the relationship between the aforementioned patterns and the environmental conditions, and (3) provide insights on potential processes that incorporate history at these study sites. Chronic exposure to high sediment load was the most obvious form of anthropogenic stress. Recruitment rates on ceramic tiles were low (1.4+/-1.0-20+/-14.7 recruits m(-2)year(-1)) but decreased towards the main island of Singapore as did hard coral cover and coral density. Coral fauna consisted of genera generally found in deeper waters (e.g., fungiids, foliose Oxypora, Leptoseris, and Echinopora) or those well adapted to turbid waters (e.g., Porites, Pectinia, Leptastrea, Montipora). Light extinction coefficient (K) and % live coral cover (%LCC) showed a strong and inverse curvilinear relationship (%LCC=13.60 *K(-3.40)). Similarly, the rate of sediment deposition (DFSPM) (Recruitment rate, RR=1.51-0.17 *DFSPM) and water clarity (RR=3.56-2.92 *K) exhibited strong and inverse relationships with recruitment rates. Although measured levels of the down-ward flux of suspended particulate matter and suspended solids were well within "normal" levels recorded in the literature, it was the proportion of benthic space, generic coral composition, and site history that offered compelling evidence of chronic exposure to increased sediment load. Clearly a reduction in both water clarity and live-coral cover has taken place since monitoring efforts began in the early 1970s, in fact coral cover has more than halved at all sites examined since the 1980s and benthic space was predominantly occupied by dead corals covered with sediment and filamentous algae.  相似文献   

14.
Responses of bioindicator candidates for water quality were quantified in two studies on inshore coral reefs of the Great Barrier Reef (GBR). In Study 1, 33 of the 38 investigated candidate indicators (including coral physiology, benthos composition, coral recruitment, macrobioeroder densities and FORAM index) showed significant relationships with a composite index of 13 water quality variables. These relationships were confirmed in Study 2 along four other water quality gradients (turbidity and chlorophyll). Changes in water quality led to multi-faceted shifts from phototrophic to heterotrophic benthic communities, and from diverse coral dominated communities to low-diversity communities dominated by macroalgae. Turbidity was the best predictor of biota; hence turbidity measurements remain essential to directly monitor water quality on the GBR, potentially complemented by our final calibrated 12 bioindicators. In combination, this bioindicator system may be used to assess changes in water quality, especially where direct water quality data are unavailable.  相似文献   

15.
Partial mortality and fission on colonies of four common massive coral species were examined at sites differing in their exposure to river sediments in St. Lucia, West Indies. Rates of partial mortality were higher close to the river mouths, where more sediments were deposited, than away from the rivers in two coral species. Frequency of fission showed no significant trend. The percent change in coral cover on reefs from 1995 to 1998 was negatively related to the rate of partial mortality estimated in 1998 in all species. This suggests that partial mortality rates could reflect longer-term temporal changes in coral communities. Similar conclusions could also be reached using a less precise measure and simply recording partial mortality on colonies as <50% and >/=50% dead tissue. We conclude that partial mortality in some species of massive reef corals, expressed as the amount of dead tissue per colony, could provide a rapid and effective means of detecting sediment stress on coral reefs.  相似文献   

16.
The relative performance of (i) percent live cover, (ii) colony density, (iii) generic richness, (iv) partial colony mortality, and (v) colony size of hard corals were evaluated to determine which variables best discriminated the coral communities near a small river in Okinawa, Japan. An analysis of their variance was undertaken across a combination of sites at three depths, at increasing distance from a river's influence (Zatsun River). The river provides a periodic and localized input of sediment and fresh water to the adjacent coral reef; the effects of which we assume attenuate at increasing distance from the river mouth. The mean frequency of partially dead coral colonies (i.e., the proportion of live coral colonies that were partially dead) presented the clearest and most reliable response to river affect, and the power to discriminate among sites improved steadily with increasing depth. Spatial examination of the prevalence of partial mortality, regardless of how long ago the infliction occurred, provides a clear window to long-term processes involving population and community change and indeed the reef building capacity of the communities.  相似文献   

17.
The primary objectives of coral transplantation are to improve reef ‘quality' in terms of live coral cover, biodiversity and topographic complexity. Stated reasons for transplanting corals have been to: (1) accelerate reef recovery after ship groundings, (2) replace corals killed by sewage, thermal effluents or other pollutants, (3) save coral communities or locally rare species threatened by pollution, land reclamation or pier construction, (4) accelerate recovery of reefs after damage by Crown-of-thorns starfish or red tides, (5) aid recovery of reefs following dynamite fishing or coral quarrying, (6) mitigate damage caused by tourists engaged in water-based recreational activities, and (7) enhance the attractiveness of underwater habitat in tourism areas. Whether coral transplantation is likely to be effective from a biological standpoint depends on, among other factors, the water quality, exposure, and degree of substrate consolidation of the receiving area. Whether it is necessary (apart from cases related to reason 3 above), depends primarily on whether the receiving area is failing to recruit naturally.

The potential benefits and dis-benefits of coral transplantation are examined in the light of the results of research on both coral transplantation and recruitment with particular reference to a 4.5 year study in the Maldives. We suggest that in general, unless receiving areas are failing to recruit juvenile corals, natural recovery processes are likely to be sufficient in the medium to long term and that transplantation should be viewed as a tool of last resort. We argue that there has been too much focus on transplanting fast-growing branching corals, which in general naturally recruit well but tend to survive transplantation and re-location relatively poorly, to create short-term increases in live coral cover, at the expense of slow-growing massive corals, which generally survive transplantation well but often recruit slowly. In those cases where transplantation is justified, we advocate that a reversed stance, which focuses on early addition of slowly recruiting massive species to the recovering community, rather than a short-term and sometimes short-lived increase in coral cover, may be more appropriate in many cases.  相似文献   


18.
Remote sensing of coral reefs and their physical environment   总被引:11,自引:0,他引:11  
There has been a vast improvement in access to remotely sensed data in just a few recent years. This revolution of information is the result of heavy investment in new technology by governments and industry, rapid developments in computing power and storage, and easy dissemination of data over the internet. Today, remotely sensed data are available to virtually anyone with a desktop computer. Here, we review the status of one of the most popular areas of marine remote sensing research: coral reefs. Previous reviews have focused on the ability of remote sensing to map the structure and habitat composition of coral reefs, but have neglected to consider the physical environment in which reefs occur. We provide a holistic review of what can, might, and cannot be mapped using remote sensing at this time. We cover aspects of reef structure and health but also discuss the diversity of physical environmental data such as temperature, winds, solar radiation and water quality. There have been numerous recent advances in the remote sensing of reefs and we hope that this paper enhances awareness of the diverse data sources available, and helps practitioners identify realistic objectives for remote sensing in coral reef areas.  相似文献   

19.
Although coral reefs worldwide are subject to increasing global threats, humans also impact coral reefs directly through localized activities such as snorkeling, kayaking and fishing. We investigated five sites on the northern shore of Moorea, French Polynesia, and quantified the number of visitors on the beach and in shallow water. In field surveys, we measured total coral cover and colony sizes of two common genera, Porites and Acropora, a massive and branching morphology, respectively. One site, which hosted over an order of magnitude more people than the other four, had significantly less total coral cover and supported very little branching Acropora. In addition, size frequency distributions of both the branching and massive genera were skewed toward smaller colony sizes at the high use site. Our results demonstrated that the use of tropical beaches may result in less coral cover, with branching colonies rare and small.  相似文献   

20.
Coral reef fish communities in the Seychelles are highly diverse and remain less affected by the direct impacts of human activities than those on many other coral reefs in the Indian Ocean. These factors make them highly suitable for a detailed survey of the impacts of the 1998 mass coral mortality, which devastated the coral faunas of the region. Using underwater visual census (UVC) techniques. fish communities were sampled in three localities in the southern Seychelles and one locality in the northern (granitic) Seychelles. Initial surveys were undertaken from the latter site in 1997. Surveys were undertaken at all sites during the coral bleaching episode in 1998 prior to any major changes in the reef fish communities. Repeat surveys were undertaken in 1999 one year after the coral mortality. Over 250 fish species were sampled from 35 families. Results suggest that changes in the overall fish community structures are not great, despite massive changes in the benthic cover. Significant changes have been observed in a number of individual species. These include those most heavily dependent on live coral cover for shelter or sustenance. Future potential changes are discussed, and potential management interventions are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号