首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The Sgr B2 giant molecular cloud is claimed to be an 'X-ray reflection nebula'– the reprocessing site of a powerful flare of the Sgr A* source, which occurred a few hundred years ago. The shape of the X-ray spectrum and the strength of the iron fluorescent line support this hypothesis. We argue that the cleanest test of the origin of X-rays from Sgr B2 would be a detection of polarized emission from this source.  相似文献   

2.
We report on the diffuse X‐ray emission from the Galactic Centre (GCDX) observed with the X‐ray Imaging Spectrometer (XIS) on board the Suzaku satellite. The highly accurate energy calibration and extremely low background of the XIS provide many new facts on the GCDX. These are (1) the origin of the lines at 6.7 and 7.0 keV is collisional excitation in a hot plasma, (2) the discovery of new SNR and super‐bubble candidates, (3) most of the 6.4 keV line is X‐ray fluorescence, and (4) time variability of the 6.4 keV line is found from the Sgr B2 complex. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Diffuse 511-keV line emission, from the annihilation of cold positrons, has been observed in the direction of the Galactic Centre for more than 30 yr. The latest high-resolution maps of this emission produced by the SPI instrument on INTEGRAL suggest at least one component of the emission is spatially coincident with the distribution of ∼70 luminous, low-mass X-ray binaries detected in the soft gamma-ray band. The X-ray band, however, is generally a more sensitive probe of X-ray binary populations. Recent X-ray surveys of the Galactic Centre have discovered a much larger population (>4000) of faint, hard X-ray point sources. We investigate the possibility that the positrons observed in the direction of the Galactic Centre originate in pair-dominated jets generated by this population of fainter accretion-powered X-ray binaries. We also consider briefly whether such sources could account for unexplained diffuse emission associated with the Galactic Centre in the microwave (the Wilkinson Microwave Anisotropy Probe 'haze') and at other wavelengths. Finally, we point out several unresolved problems in associating Galactic Centre 511-keV emission with the brightest X-ray binaries.  相似文献   

4.
Observations of OCS and a search for OC3S are reported, with particular reference to cold dust clouds. OCS has been detected for the first time in dark clouds with a mean fractional abundance relative to hydrogen of approximately 3 x 10(-9); this is approximately 4 times greater than that observed for giant molecular clouds. This results is discussed in the context of molecule formation mechanisms. Observations of the J = 1 --> 0 transition of OCS indicate that this transition is amplifying the background continuum radiation in the direction of Sgr B2.  相似文献   

5.
6.
Observations of electron-positron annihilation radiation from the Galactic Center region with the SPI instrument aboard INTEGRAL are summarized. The measured width of the 511 keV line and inferred fraction of positrons annihilating through positronium formation are consistent with the annihilation taking place in the warm ISM phase, although combinations of several ISM phases are also allowed by the data. The spatial distribution of 511 keV emission suggests that positron sources are concentrated toward the Galactic bulge and avoid the Galactic disk.  相似文献   

7.
We present a catalogue of 17 filamentary X-ray features located within a  68 × 34  arcmin2  view centred on the Galactic Centre region from images taken by Chandra . These features are described by their morphological and spectral properties. Many of the X-ray features have non-thermal spectra that are well fitted by an absorbed power law. Of the 17 features, we find six that have not been previously detected, four of which are outside the immediate  20 × 20  arcmin2  area centred on the Galactic Centre. Seven of the 17 identified filaments have morphological and spectral properties expected for pulsar wind nebulae (PWNe) with X-ray luminosities of  5 × 1032  to 1034 erg s−1 in the 2.0–10.0 keV band and photon indices in the range of  Γ= 1.1  to 1.9. In one feature, we suggest the strong neutral Fe Kα emission line to be a possible indicator for past activity of Sgr A*. For G359.942−0.03, a particular filament of interest, we propose the model of a ram pressure confined stellar wind bubble from a massive star to account for the morphology, spectral shape and 6.7 keV He-like Fe emission detected. We also present a piecewise spectral analysis on two features of interest, G0.13−0.11 and G359.89−0.08, to further examine their physical interpretations. This analysis favours the PWN scenario for these features.  相似文献   

8.
Summary. This paper reviews the physical state of stars and Interstellar Matter in the Galactic Bulge (radius kpc from the dynamical center of the Galaxy), in the Nuclear Bulge (kpc) and in the Sgr A Radio and GMC Complex, i.e. the central \,pc of our Galaxy. The Galactic Bulge is devoid of cold Interstellar Matter and consists mainly of old stars, while the Nuclear Bulge accounts for of the mass of all of the Interstellar Matter in the Galaxy. A similar ratio holds for the formation rate of medium and high mass stars in Bulge and Disk. The metal abundance of the Interstellar Matter in the Galactic Bulge is found to be . The H-to-CO conversion factors to be applied to molecular gas in the Central Region are by factors 3 (Arimoto et al. 1996) to 10 (Sodroski et al. 1995) lower than in the solar vicinity. Hence, most H masses derived for the Central Region appear to be considerably overestimated. The Nuclear Bulge is pervaded by a thermal plasma (K) which is responsible for the diffuse free-free emission. Lyman continuum photon and dust IR luminosity of the Nuclear Bulge again account for of the respective total luminosities of the Galaxy. Magnetic fields in the Nuclear Bulge are strong (up to mG) as compared with the Galactic Disk (a few tens of G). The field lines are oriented parallel to the galactic plane inside giant molecular clouds and perpendicular to the plane in the intercloud medium. The compact source Sgr A* is close to or at the dynamical center of the Galaxy. Its radio spectrum with a high frequency cut-off at GHz, a low frequency turnover at GHz and a flux density dependence in between can be explained by synchrotron emission from quasi-monoenergetic relativistic electrons. Due to an extinction between Sun and Galactic Center corresponding to , an intrinsic weakness of this source in the near infrared, and a strong background emission from warm dust there are only upper limits available for the flux density of Sgr A* in the far, mid and near infrared and X-ray regime. The size of Sgr A* in the radio regime is cm, its dereddened K-band flux density is mJy, its luminosity has upper limits of (if radiation comes from an Accretion Disk) and (if black-body radiation from an object with a single temperature of K is assumed). If anyone of the soft X-ray sources detected by ROSAT actually coincides with Sgr A*, its X-ray luminosity would be less than a few . With a dark mass of Sgr A* is the best candidate for a starving black hole, although there are no observational indications for the presence of a (Standard) Accretion Disk. While the radio/IR spectrum of Sgr A* is purely nonthermal, the spectrum integrated over the central parsec resembles that of a Seyfert galaxy. Sgr A* is embedded in the Hii region Sgr A West with part of the ionized gas forming a minispiral. Sgr A West is surrounded by the Circum Nuclear Disk, an irregular shaped assembly of molecular gas which extends from pc and rotates around the Galactic Center with an estimated dynamical time scale of \,yr. The total luminosity of of the central parsec is due to the radiation of early-type stars of which have now been directly identified as luminous blue supergiants. It is still debated, however, if these stars can also account for all of the ionization of Sgr A West. In addition, the central parsec contains red giants, AGB stars, and a few super giants of which the brightest are now identified by direct imaging. These stars – together with a few million low mass main sequence stars – account for the bulk of the 2.2\,m emission. The spatial distributions of the three stellar populations in the central pc are remarkably different. Sgr A* is – along the line-of-sight – presumably located close to the center of the Hii region Sgr A West, which in turn is located in front of the extended (pc) synchrotron source Sgr A East, which appears to be the remnant of a gigantic explosion (of the order of the energy of a single supernova explosion) which took place yr ago inside the GMC Sgr A East Core. X-ray observations show within pc a pervasive hot (keV) plasma of expansion age of yr. Both phenomena – as well as the formation of the Circum Nuclear Disk – may have the same origin. Influx of material is observed within the Nuclear Bulge on all distance scales. In the Nuclear Bulge (pc) as well as in the Circum Nuclear Disk (pc) inflow towards the Galactic Center occurs primarily in the galactic plane and amounts to a few . The accretion rate into the central Black Hole, deduced from the luminosity of Sgr A*, however, appears to be lower by at least five orders of magnitude (assuming standard disk accretion). But in an equilibrium state only part of the infalling mass which is not accreted by the Black Hole can be consumed by star formation. A mass inflow rate varying with time is a more natural explanation. Comparing the physical state of the Center of our Galaxy with that of Active Galactic Nuclei derived from observations and modelling, we find that most of the basic characteristics of an AGN are also present in the Galactic Center. Lacking are, however, both the evidence for a standard Accretion Disk and a hard UV spectrum with accompanying high excitation emission lines in the Galactic Center which are characteristic for AGN. The luminosity of the central parsec, , amounts to only of the total luminosity of the Galaxy of . Seen from a distance of M31 (kpc) with an angular resolution of (corresponding to a linear size of pc) the Center of our Galaxy would appear as a mildly active nucleus with some starburst activity and would probably be classified as a weak Seyfert galaxy. The synchrotron spectrum of Sgr A*, however, would be completely masked by reprocessed stellar light (i.e. free-free and dust emission). Received: October 21, 1996  相似文献   

9.
We analysed Rossi X-ray Timing Explorer Proportional Counter Array observations of a recent outburst of the X-ray pulsar XMMU J054134.7−682550. We calculated the pulse frequency history of the source. We found no sign of a binary companion. The source spins up when the X-ray flux is higher, with a correlation between the spin-up rate and X-ray flux, which may be interpreted as a sign of an accretion disc. On the other hand, the source was found to have an almost constant spin frequency when the X-ray flux is lower without any clear sign of a spin-down episode. The decrease in pulsed fraction with decreasing X-ray flux was interpreted as a sign of accretion geometry change, but we did not find any evidence of a transition from accretor to propeller regimes. The source was found to have variable pulse profiles. Two peaks in pulse profiles were usually observed. We studied the X-ray spectral evolution of the source throughout the observation. Pulse-phase-resolved analysis does not provide any further evidence for a cyclotron line, but may suggest a slight variation of intensity and width of the 6.4 keV iron line with phase.  相似文献   

10.
We report the discovery of a prominent non-thermal X-ray feature located near the Galactic centre that we identify as an energetic pulsar wind nebula. This feature, G359.95-0.04, lies 1-lyr north of Sgr A* (in projection), is comet like in shape, and has a power-law spectrum that steepens with increasing distance from the putative pulsar. The distinct spectral and spatial X-ray characteristics of the feature are similar to those belonging to the rare class of ram-pressure confined pulsar wind nebulae. The luminosity of the nebula at the distance of Sgr A*, consistent with the inferred X-ray absorptions, is   Lx ∼ 1 × 1034 erg s−1  in the 2–10 keV energy band. The cometary tail extends back to a region centred at the massive stellar complex IRS 13 and surrounded by an enhanced diffuse X-ray emission, which may represent an associated supernova remnant. Furthermore, the inverse Compton scattering of the strong ambient radiation by the nebula consistently explains the observed TeV emission from the Galactic centre. We also briefly discuss plausible connections of G359.95-0.04 to other high-energy sources in the region, such as the young stellar complexes IRS 13 and SNR Sgr A East.  相似文献   

11.
We report on two ASCA observations of the high-mass X-ray binary pulsar OAO 1657−415. A short observation near mid-eclipse caught the source in a low-intensity state, with a weak continuum and iron emission dominated by the 6.4-keV fluorescent line. A later, longer observation found the source in a high-intensity state and covered the uneclipsed through mid-eclipse phases. In the high-intensity state, the non-eclipse spectrum has an absorbed continuum component due to scattering by material near the pulsar and 80 per cent of the fluorescent iron emission comes from less than 19 light-second away from the pulsar. We find a dust-scattered X-ray halo whose intensity decays through the eclipse. We use this halo to estimate the distance to the source as 7.1 ± 1.3 kpc.  相似文献   

12.
We have detected the   v = 1 → 0 S(1) (λ= 2.1218 μm)  and   v = 2 → 1 S(1) (λ= 2.2477 μm)  lines of H2 in the Galactic Centre, in a  90 × 27 arcsec2  region between the north-eastern boundary of the non-thermal source Sgr A East, and the giant molecular cloud (GMC)  M−0.02 − 0.07  . The detected  H2 v = 1 → 0  S(1) emission has an intensity of  1.6–21 × 10−18 W m−2 arcsec−2  and is present over most of the region. Along with the high intensity, the large linewidths  (FWHM = 40–70 km s−1)  and the  H2 v = 2 → 1 S(1)  to   v = 1 → 0 S(1)  line ratios (0.3–0.5) can be best explained by a combination of C-type shocks and fluorescence. The detection of shocked H2 is clear evidence that Sgr A East is driving material into the surrounding adjacent cool molecular gas. The H2 emission lines have two velocity components at ∼+50 and  ∼0 km s−1  , which are also present in the NH3(3, 3) emission mapped by McGary, Coil & Ho. This two-velocity structure can be explained if Sgr A East is driving C-type shocks into both the  GMC M−0.02 − 0.07  and the northern ridge of McGary et al.  相似文献   

13.
The Be X-ray pulsar SMC X-3 underwent an extra long and ultraluminous giant outburst from 2016 August to 2017 March. The peak X-ray luminosity is up to \(\sim10^{39}~\mbox{erg/s}\), suggesting a mildly super-Eddington accretion onto the strongly magnetized neutron star. It therefore bridges the gap between the Galactic Be/X-ray binaries (\(L_{\mathrm{X}}^{\mathrm{peak}} \leq10^{38}~\mbox{erg/s}\)) and the ultraluminous X-ray pulsars (\(L_{\mathrm{X}}^{\mathrm{peak}} \geq10^{40}~\mbox{erg/s}\)) found in nearby galaxies. A number of observations were carried out to observe the outburst. In this paper, we perform a comprehensive phase-resolved analysis on the high quality data obtained with the Nustar and XMM-Newton, which were observed at a high and intermediate luminosity levels. In order to get a better understanding on the evolution of the whole extreme burst, we take the Swift results at the low luminosity state into account as well. At the early stage of outburst, the source shows a double-peak pulse profile, the second main peak approaches the first one and merges into the single peak at the low luminosity. The second main peak vanishes beyond 20 keV, and its radiation becomes much softer than that of the first main peak. The line widths of fluorescent iron line vary dramatically with phases, indicating a complicated geometry of accretion flows. In contrast to the case at low luminosity, the pulse fraction increases with the photon energy. The significant small pulse fraction detected below 1 keV can be interpreted as the existence of an additional thermal component located at far away from the central neutron star.  相似文献   

14.
Spectra of Seyfert 1s are commonly modelled as emission from an X-ray-illuminated flat accretion disc orbiting a central black hole. This provides both reprocessed and direct components of the X-ray emission, as required by observations of individual objects, and possibly a fraction of the cosmological X-ray background. There is some observational motivation for us to at least consider the role that an effectively concave disc surface might play: (1) a reprocessed fraction ≳1/2 in some Seyferts and possibly in the X-ray background, and (2) the commonality of a sharp iron line peak for Seyferts at 6.4 keV despite a dependence of peak location on inclination angle for flat disc models. Here it is shown that a concave disc may not only provide a larger total fraction of reprocessed photons, but can also reprocess a much larger fraction of photons in its outer regions compared with a flat disc. This reduces the sensitivity of the 6.4-keV peak location to the inner disc inclination angle because the outer regions are less affected by Doppler and gravitational effects. If the X-ray source is isotropic, the reprocessed fraction is directly determined by the concavity. If the X-ray source is anisotropic, the location of iron line peak can still be determined by concavity but the total reflected fraction need not be as large as for the isotropic emitter case. The geometric calculations herein are applicable to general accretion disc systems illuminated from the centre.  相似文献   

15.
About one year ago, it was speculated that decaying or annihilating light dark matter (LDM) particles could explain the flux and extension of the 511-keV line emission in the Galactic Centre. Here, we present a thorough comparison between theoretical expectations of the Galactic positron distribution within the LDM scenario and observational data from INTEGRAL /SPI. Unlike previous analyses, there is now enough statistical evidence to put tight constraints on the shape of the dark matter (DM) halo of our Galaxy, if the Galactic positrons originate from DM. For annihilating candidates, the best fit to the observed 511-keV emission is provided by a radial density profile with inner logarithmic slope  γ= 1.03 ± 0.04  . In contrast, decaying DM requires a much steeper density profile,  γ > 1.5  , rather disfavoured by both observations and numerical simulations. Within the annihilating LDM scenario, a velocity-independent cross-section would be consistent with the observational data while a cross-section purely proportional to v 2 can be rejected at a high confidence level. Assuming the most simplistic model where the Galactic positrons are produced as primaries, we show that the LDM candidate should be a scalar rather than a spin-1/2 particle and obtain a very stringent constraint on the value of the positron production cross-section to explain the 511-keV emission. One consequence is that the value of the fine structure constant α should differ from that recommended in the CODATA (Committee on Data for Science and Technology). This is a very strong test for the LDM scenario and an additional motivation in favour of experiments measuring α directly. Our results finally indicate that an accurate measurement of the shape of the dark halo profile could have a tremendous impact on the determination of the origin of the 511-keV line and vice versa.  相似文献   

16.
The fate of the cooling gas in the central regions of rich clusters of galaxies is not well understood. In one plausible scenario clouds of atomic or molecular gas are formed. However the mass of the cold gas, inferred from measurements of low-energy X-ray absorption, is hardly consistent with the absence of powerful CO or 21-cm emission lines from the cooling flow region. Among the factors which may affect the detectability of the cold clouds are their optical depth, shape and covering fraction. Thus, alternative methods to determine the mass in cold clouds, which are less sensitive to these parameters, are important.   For the inner region of the cooling flow (e.g. within a radius of ∼50–100 kpc) the Thomson optical depth of the hot gas in a massive cooling flow can be as large as ∼ 0.01. Assuming that the cooling time in the inner region is few times shorter than the lifetime of the cluster, the Thomson depth of the accumulated cold gas can be accordingly higher (if most of the gas remains in the form of clouds). The illumination of the cold clouds by the X-ray emission of the hot gas should lead to the appearance of a 6.4-keV iron fluorescent line, with an equivalent width proportional to τT. The equivalent width only weakly depends on the detailed properties of the clouds, e.g. on the column density of individual clouds, as long as the column density is less than a few 1023 cm−2. Another effect also associated exclusively with the cold gas is a flux in the Compton shoulder of bright X-ray emission lines. It also scales linearly with the Thomson optical depth of the cold gas. With the new generation of X-ray telescopes, combining large effective area and high spectral resolution, the mass of the cold gas in cooling flows (and its distribution) can be measured.  相似文献   

17.
We present an ASCA observation of the broad-line radio galaxy 3C 111. The X-ray spectrum is well described by a model consisting of a photoelectrically absorbed power-law form. The inferred absorbing column density is significantly greater than expected on the basis of 21-cm measurements of Galactic H  I . Whilst this may be the result of intrinsic absorption from a circumnuclear torus or highly warped accretion disc, inhomogeneities and molecular gas within the foreground giant molecular cloud may also be responsible for some of this excess absorption. We also claim a marginal detection of a broad iron Kα line which is well explained as being a fluorescent line originating from the central regions of a radiatively efficient accretion disc. This line appears weak in comparison to those found in (radio-quiet) Seyfert nuclei. We briefly discuss the implications of this fact.  相似文献   

18.
We report on observations of the narrow-line Seyfert galaxy NGC 5506 with the Rossi X-ray Timing Explorer . The observations cover a time interval of ∼1000 d during which the source showed strong flux and spectral variability. The spectrum clearly shows iron fluorescence emission at 6.4 keV and significant reflection features. Both the equivalent width of the iron line and the relative strength of the reflected continuum are higher during low flux states. The variability of the reflection features can be explained by the presence of two reflected components: one that responds rapidly to flux changes of the primary continuum and a second, slowly variable, component originating from a distant reflector, e.g. a molecular torus.  相似文献   

19.
The outburst of X-ray transient source XTE J2012+381 was detected by the RXTE All-Sky Monitor on 1998 May 24th. Following the outburst, X-ray observations of the source were made in the 2–18 keV energy band with the Pointed Proportional Counters of the Indian X-ray Astronomy Experiment (IXAE) on-board the Indian satellite IRS-P3 during 1998 June 2nd–10th. The X-ray flux of the source in the main outburst decreased exponentially during the period of observation. No large amplitude short-term variability in the intensity is detected from the source. The power density spectrum obtained from the timing analysis of the data shows no indication of any quasi-periodic oscillations in 0.002–0.5 Hz band. The hardness ratio i.e. the ratio of counts in 6–18 keV to 2–6 keV band, indicates that the X-ray spectrum is soft with spectral index >2. From the similarities of the X-ray properties with those of other black hole transients, we conclude that the X-ray transient XTE J2012+381 is likely to be a black hole.  相似文献   

20.
We have investigated the Quasi Periodic Oscillation (QPO) properties of the transient accreting X-ray pulsar XTE J1858 + 034 during the second outburst of this source in April–May 2004. We have used observations made with the Proportional Counter Array (PCA) of the Rossi X-ray Timing Explorer (RXTE) during May 14–18, 2004, in the declining phase of the outburst. We detected the presence of low frequency QPOs in the frequency range of 140–185 mHz in all the RXTE-PCA observations. We report evolution of the QPO parameters with the time, X-ray flux, and X-ray photon energy. Though a correlation between the QPO centroid frequency and the instantaneous X-ray flux is not very clear from the data, we point out that the QPO frequency and the one day averaged X-ray flux decreased with time during these observations. We have obtained a clear energy dependence of the RMS variation in the QPOs, increasing from about 3% at 3 keV to 6% at 25 keV. The X-ray pulse profile is a single peaked sinusoidal, with pulse fraction increasing from 20% at 3 keV to 45% at 30keV. We found that, similar to the previous outburst, the energy spectrum is well fitted with a model consisting of a cut-off power law along with an iron emission line.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号