首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The evolution of nephelinitic melts in equilibrium with mica-bearing liquidus assemblages and melting relations have been studied on two silica-undersaturated joins of the KAlSiO4– Mg2SiO4– Ca2SiO4– SiO2– F system at atmospheric pressure by quench runs in sealed platinum capsules. Fluorine has been added to the batch compositions by the direct exchange of fluorine for oxygen (2F = O2−). The first join is the pseudo-ternary Forsterite – Diopside – KAlSiO3F2 system. Forsterite, diopside, F-phlogopite and leucite crystallisation fields and a fluoride-silicate liquid immiscibility solvus are present on the liquidus surface of the join. Sub-liquidus and sub-solidus phases include akermanite, cuspidine, spinel, fluorite and some other minor fluorine phases. The second system is the pseudo-binary Akermanite – F-phlogopite join that intersects the Forsterite – Diopside – KAlSiO3F2 join. Akermanite, forsterite, diopside, F-phlogopite, leucite and cuspidine are found to crystallise on the join. Forsterite (fo) and leucite (lc) are related to F-phlogopite (phl) by a reaction with the fluorine-bearing liquid: fo + lc + l = phl, and the reaction proceeds until forsterite or leucite are completely consumed. The reaction temperature and resulting phase association depend on batch composition. Thus, leucite is not stable in the sub-solidus of the Akermanite – F-phlogopite join, but is preserved in a part of the Forsterite – Diopside – KAlSiO3F2 system where forsterite reacts out, or does not crystallise at all. The phlogopite-in reaction has an important effect on the composition of the coexisting liquid. The liquids initially saturated in forsterite evolve to extremely Ca rich, larnite-normative residuals. The experimental data show that larnite-normative melilitolites can crystallise from evolved melilititic melts generated from “normal” melanephelinitic parental magmas with no normative larnite. The evolution towards melilitites requires fractionation of phlogopite-bearing assemblages under volatile pressure. Received: 3 June 1997 / Accepted: 5 January 1998  相似文献   

2.
In the Grt-Bt-Sil restitic xenoliths of El Joyazo (Cerro de Hoyazo), hercynitic spinel is a minor phase commonly associated with biotite. The possible reaction relationships among biotite and spinel are studied in reaction textures developed around biotites at their contact with patches of fibrolitic sillimanite and rhyolitic melt. In these textures, resorbed biotite crystals about 1 mm long are rimmed by a layer of glass <200 μm thick containing spinel and ilmenite; the same glass also fills embayments in biotite. Spinel forms euhedral crystals <100 μm in size, and ilmenite occurs as smaller anhedral crystals or needles, often intergrown with spinel. The homogeneous felt-like melt-sillimanite aggregate (“mix”) is richest in glass close to the reaction rim around biotite. Plagioclase and garnet are located >5 mm away from the reaction texture. Biotite is chemically zoned. Cores (Bt 1 ) have XMg=0.35 ± 0.02 and Ti=0.58 ± 0.01 atoms; whereas the outer rims (Bt 2 ) have XMg=0.45 ± 0.01 and Ti up to 0.68 atoms. The hercynite-rich spinel (Spl) has low ZnO content (<0.80 wt%) and XMg=0.26 ± 0.04. The chemical compositions of the mix aggregate represent linear combinations between sillimanite and a silica-rich melt. This melt (melt 1 ) is different from that of the layer around biotite (melt 2 ), which is also richer in Ca and alkalis. Garnet rims (Grt) have low Ca and Mn, and XMg=0.14. Plagioclase is characterized by large homogeneous cores (Pl 1 , An31 ± 2) and more calcic rims (Pl 2 , An49 ± 6). Matrix analysis in the 9-component (Al-Ca-Fe-K-Mg-Mn-Na-Si-Ti), 9-phase (Bt1-Bt2-Grt-Spl-Ilm-melt2-mix-Pl1-Pl2) system provides the mass balance (in mole units):
This relationship is in excellent agreement with the observed textures and hence is considered a good model for the incongruent melting of biotite in the xenoliths. The mass-balance indicates that melt production is dominated by the availability of K from biotite, and that garnet and plagioclase must be involved as reactants, so that the reaction volume is larger than the melt production site. The melting of biotite, constrained at T=900–950°C and P ≥ 5 kbar, is not a terminal reaction, as its variance in the reduced 8-component multisystem is ≥3. Received: 1 June 1999 / Accepted: 8 February 2000  相似文献   

3.
The reaction-displacement technique was applied to the end-member reaction annite = sanidine + magnetite + H2 in order to determine the activity of the annite component (a Ann) in iron biotites with variable degrees of the Tschermak's substitution ([6]Fe + [4]Si = [6]Al + [4]Al). Based on the simplified relation a Ann = f H 2/foH2 (foH2 = hydrogen fugacity of the end-member reaction at P, T), two types of experiments were performed at 700°C / 2 kbar: Type I used Fe-Al biotites of known starting composition together with sanidine + magnetite + H2O. This assemblage was exposed to various f H 2 conditions (f H 2 < foH2) produced in the pressure vessel either by using different ratios of water/oil as pressure medium (f H 2 in this case was measured by the hydrogen sensor technique), or by the Ni′NiO buffer. The composition of the Fe-Al biotites changed through incorporation or release of the annite component in response to the externally imposed f H 2. By using opposite biotite starting compositions, the equilibrium composition as a function of f H2 was bracketed. For type II, f H 2 in equilibrium with a specific combination of fine-grained Fe-Al biotite (+ sanidine + magnetite + H2O) was measured internally by application of the hydrogen sensor technique. Both type I and type II experiments yield consistent results demonstrating that a fine-grained assemblage of Fe-Al biotite (+ sanidine + magnetite + H2O) is able to act as a sliding-scale buffer. The final chemical composition of the Fe-Al biotite after the experiments was determined by electron microprobe and Mössbauer spectroscopy. The [4]Al and [6]Al in the biotites are coupled according to the Tschermak's substitution. In the tetrahedral sheet 0.1 Al-atoms per formula unit are present in excess to the amount required to balance [6]Al, and all Fe-Al biotites contain 8–10% Fe3+. Therefore, they are not members of the pure annite - siderophyllite join, but have an almost constant amount (15 Mol%) of two additional Fe3+-bearing components (ferri-siderophyllite and a vacancy end-member). The volume - composition relationship obtained does not indicate excess molar volumes of mixing for the annite (Ann) - siderophyllite (Sid) binary. The data are consistent with a molar volume of annite of 15.46 ± 0.02 Jbar–1 and of 15.06 ± 0.02 Jbar–1 for siderophyllite. The experimentally determined activity - composition relation shows that biotites on the join annite - siderophyllite deviate negatively from ideality. A symmetric interaction parameter WAnnSid is sufficient to represent the data within error. This was constrained as: W AnnSid = –29 ± 4 kJmol–1. This is in contradiction to empirical interaction parameters derived from natural assemblages for this binary that predict positive deviation from ideality. Reasons for this discrepancy are discussed.  相似文献   

4.
The Tongshankou Cu–Mo deposit, located in the westernmost Daye district of the Late Mesozoic Metallogenic Belt along the Middle-Lower reaches of the Yangtze River, eastern China, consists mainly of porphyry and skarn ores hosted in the Tongshankou granodiorite and along the contact with the Lower Triassic marine carbonates, respectively. Sensitive high-resolution ion microprobe zircon U–Pb dating constrains the crystallization of the granodiorite at 140.6 ± 2.4 Ma (1σ). Six molybdenite samples from the porphyry ores yield Re–Os isochron age of 143.8 ± 2.6 Ma (2σ), while a phlogopite sample from the skarn ores yields an 40Ar/39Ar plateau age of 143.0 ± 0.3 Ma and an isochron age of 143.8 ± 0.8 Ma (2σ), indicating an earliest Cretaceous mineralization event. The Tongshankou granodiorite has geochemical features resembling slab-derived adakites, such as high Sr (740–1,300 ppm) and enrichment in light rare earth elements (REE), low Sc (<10 ppm), Y (<13.3 ppm), and depletion in heavy REE (<1.2 ppm Yb), and resultant high Sr/Y (60–92) and La/Yb (26–75) ratios. However, they differ from typical subduction-related adakites by high K, low MgO and Mg#, and radiogenic Sr–Nd–Hf isotopic compositions, with (87Sr/86Sr) t  = 0.7062–0.7067, ɛ Nd(t) = −4.37 to −4.63, (176Hf/177Hf) t  = 0.282469–0.282590, and ɛ Hf(t) = −3.3 to −7.6. The geochemical and isotopic data, coupled with geological analysis, indicate that the Tongshankou granodiorite was most likely generated by partial melting of enriched lithospheric mantle that was previously metasomitized by slab melts related to an ancient subduction system. Magmas derived from such a source could have acquired a high oxidation state, as indicated by the assemblage of quartz–magnetite–titanite–amphibole–Mg-rich biotite in the Tongshankou granodiorite and the compositions of magmatic biotite that fall in the field between the NiNiO and magnetite–hematite buffers in the Fe3+–Fe2+–Mg diagram. Sulfur would have been present as sulfates in such highly oxidized magmas, so that chalcophile elements Cu and Mo were retained as incompatible elements in the melt, contributing to subsequent mineralization. A compilation of existing data reveals that porphyry and porphyry-related Cu–Fe–Au–Mo mineralization from Daye and other districts of the Metallogenic Belt along the Middle-Lower reaches of the Yangtze River took place coevally in the Early Cretaceous and was related to an intracontinental extensional environment, distinctly different from the arc-compressive setting of the Cenozoic age that has been responsible for the emplacement of most porphyry Cu deposits of the Pacific Rim.  相似文献   

5.
Reaction textures, fluid inclusions, and metasomatic zoning coupled with thermodynamic calculations have allowed us to estimate the conditions under which a biotite–hornblende gneiss from the Kurunegala district, Sri Lanka [hornblende (NMg=38–42) + biotite (NMg=42–44) + plagioclase + quartz + K-feldspar + ilmenite + magnetite] was transformed into patches of charnockite along shear zones and foliation planes. Primary fluid inclusion data suggest that two immiscible fluids, an alkalic supercritical brine and almost pure CO2, coexisted during the charnockitisation event and subsequent post-peak metamorphic evolution of the charnockite. These metasomatic fluids migrated through the amphibolite gneiss along shear zones and into the wallrock under peak metamorphic conditions of 700–750 °C, 5–6 kbar, and afl H2O=0.52–0.59. This resulted in the formation of charnockite patches containing the assemblage orthopyroxene (NMg=45–48) + K-feldspar (Or70–80) + quartz + plagioclase (An28) in addition to K-feldspar microveins along quartz and plagioclase grain boundaries. Remnants of the CO2-rich fluid were trapped as separate fluid inclusions. The charnockite patches show the following metasomatic zonation patterns: – a transition zone with the assemblage biotite (NMg= 49–51) + hornblende (NMg = 47–50) + plagioclase + quartz + K-feldspar + ilmenite + magnetite; – a KPQ (K-feldspar–plagioclase–quartz) zone with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg=45–48) + quartz + ilmenite + magnetite; – a charnockite core with the assemblage K-feldspar + plagioclase + orthopyroxene (NMg = 39–41) + biotite (NMg=48–52) + quartz + ilmenite + magnetite. Systematic changes in the bulk chemistry and mineralogy across the four zones suggest that along with metasomatic transformation, this process may have been complicated by partial melting in the charnockite core. This melting would have been coeval with metasomatic processes on the periphery of the charnockite patch. There is also good evidence in the charnockitic core that a second mineral assemblage, consisting of orthopyroxene (NMg= 36–42) + biotite (NMg=50–51) + K-feldspar (Or70–80) + quartz + plagioclase (An28–26), could have crystallised from a partial melt during cooling from 720 to 660 °C at decreasing afl H2O from 0.67 to 0.5. Post-magmatic evolution of charnockite at T < 700 °C resulted in fluids being released during the crystallisation of the charnockitic core. These gave rise to the formation of late stage rim myrmekites along K-feldspar grain boundaries as well as late stage biotite, cummingtonite, and carbonates. Received: 15 September 1999 / Accepted: 8 June 2000  相似文献   

6.
Summary ?A single-crystal X-ray investigation was performed on crystals of P21/c natural pigeonite with varying Ca and Fe* ( = Fe2+ + Mn2+) contents, in order to verify the effect of microtextural disorder on structure refinements and to constrain the crystal chemistry of pigeonite. Antiphase domains and exsolution lamellae affect differently the refinement results. In a crystal free of exsolution the structure obtained after refinement with all reflections is an average of that of the antiphase domains and of their boundaries, whereas in an exsolved crystal it represents only the structure of the prevailing pigeonite lamellae. The refinement using only h + k odd reflections seems to give the structure of the Ca-free pigeonite characteristic of the antiphase domains rather than that of Ca-rich domain walls. The ratio of the scale factors in refinements with all reflections and with only h + k odd reflections allows the ratios of the exsolved augite and pigeonite phases to be estimated. The crystal chemistry of the investigated samples follows the trends outlined by data on Ca-free and Fe-free synthetic samples. In particular, it is shown that Ca and Fe* substitution for Mg induce similar changes in the average structure, i.e. both induce an expansion in the M1 polyhedron and decrease the difference between the M2–O3 distances. Received October 18, 2001; revised version accepted February 15, 2002  相似文献   

7.
 Synthetic aegirine LiFeSi2O6 and NaFeSi2O6 were characterized using infrared spectroscopy in the frequency range 50–2000 cm−1, and at temperatures between 20 and 300 K. For the C2/c phase of LiFeSi2O6, 25 of the 27 predicted infrared bands and 26 of 30 predicted Raman bands are recorded at room temperature. NaFeSi2O6 (with symmetry C2/c) shows 25 infrared and 26 Raman bands. On cooling, the C2/cP21/c structural phase transition of LiFeSi2O6 is characterized by the appearance of 13 additional recorded peaks. This observation indicates the enlargement of the unit cell at the transition point. The appearance of an extra band near 688 cm−1 in the monoclinic P21/c phase, which is due to the Si–O–Si vibration in the Si2O6 chains, indicates that there are two non-equivalent Si sites with different Si–O bond lengths. Most significant spectral changes appear in the far-infrared region, where Li–O and Fe–O vibrations are mainly located. Infrared bands between 300 and 330 cm−1 show unusually dramatic changes at temperatures far below the transition. Compared with the infrared data of NaFeSi2O6 measured at low temperatures, the change in LiFeSi2O6 is interpreted as the consequence of mode crossing in the frequency region. A generalized Landau theory was used to analyze the order parameter of the C2/cP21/c phase transition, and the results suggest that the transition is close to tricritical. Received: 21 January 2002 / Accepted: 22 July 2002  相似文献   

8.
Felsic magmatic rocks in Kameng corridor of western Arunachal Himalaya are represented by extensively exposed Palaeoproterozoic porphyritic muscovite-biotite granite (GGn) of the Bomdila Group and small stock-like Mesoproterozoic hornblende-biotite granite (HBG) of the Salari Group. Mineralogy and chemical composition of biotites from GGn and HBG have been utilized to understand the nature and tectonic environment of their parental felsic melts. Biotites in GGn (FeOt/MgO=3.1–4.6) are Fe-biotites and have shown affinity with primary biotites co-precipitating with muscovite in a peraluminous (S-type) felsic melt of syn-collisional tectonic environment. Biotites in HBG (FeOt/MgO=1.3–2.2) are transitional between Fe and Mg biotites evolved from Fayalite-Magnetite-Quartz (FMQ) to Nickel-Nickel Oxide (NNO) buffers and are related to primary biotites co-existing with amphibole and other ferromagnesian minerals in a calc-alkaline metaluminous (I-type) felsic melt mostly formed in a subduction setting. Both GGn and HBG biotites exhibit Mg⇌Fe substitution, which is more pronounced in HBG biotites. GGn biotites exhibit 2Al⇌3Fe2+ substitution as expected in peraluminous melt, whereas 3Mg⇌2Al substitution normally expected to operate in metaluminous melt is less pronounced in HBG biotites. GGn biotites are markedly enriched in siderophyllite, and depleted in phlogopite components as compared to HBG biotites, which point to diverse genetic conditions. HBG biotites indicate oxidizing environment of the felsic melt unlike the reducing nature of the porphyritic granite (GGn).  相似文献   

9.
The timing of Cu–Mo–U mineralisation at the Nori/RA prospect in the Paleoproterozoic Great Bear magmatic zone has been investigated using Re–Os molybdenite and 40Ar–39Ar biotite geochronology. The Re–Os molybdenite ages presented are the first robust sulphide mineralisation ages derived from the Great Bear magmatic zone. Cu–Mo–U mineralisation is hosted in early to syn-deformational hydrothermal veins consisting of quartz and K-feldspar or more commonly tourmaline-biotite-quartz-K-feldspar, with associated wall-rock alteration assemblages being predominantly biotite. Sulphide and oxide minerals consist of chalcopyrite, molybdenite and uraninite with lesser pyrite and magnetite. Elevated light rare earth elements and tungsten concentrations associated with the Cu–Mo–U mineralisation have also been reported at the prospect by previous workers. Molybdenite and uraninite occur intimately in dravitic tourmaline growth zones and at grain margins, attesting to their syngenetic nature (with respect to hydrothermal veining). Two molybdenite separates yield Re–Os model ages of 1,874.4 ± 8.7 (2σ) and 1,872.4 ± 8.8 Ma (2σ) with a weighted average model age of 1,873.4 ± 6.1 Ma (2σ). Laser step heating of biotite from the marginal alteration of the wall-rock adjacent to the veins yields a 40Ar–39Ar maximum cooling age of 1,875 ± 8 Ma (MSWD = 3.8; 2σ), indistinguishable from the Re–Os molybdenite model age and a previously dated ‘syn-tectonic’ aplitic dyke in the region. Dravitic tourmaline hosts abundant primary liquid–vapour–solid-bearing fluid inclusions. Analytical results indicate liquid–vapour homogenisation at >260°C constraining the minimum temperature of mineralisation. The solids, which are possibly trapped, did not homogenise with the liquid–vapour by 400°C. Salinities in the inclusions are variable. Raman spectra identify that at least some of the solids are calcite and anhydrite. Raman spectra also confirm the vapour phases contain some CO2; whereas clathrates or CH4 was not observed or detected. Quartz grains only host secondary fluid inclusions, which fluoresce under ultraviolet light, indicating trapped hydrocarbons. We speculate that these resulted from Phanerozoic fluid circulation through the Proterozoic basement. The collective interpretation of the age, hydrothermal character and associated metals, high temperature and variable salinity suggests that the Nori/RA Cu–Mo–U mineralisation can be linked with the earliest stages of plutonism in the Great Bear magmatic zone. From a regional perspective, the mineralisation may pre-date the extensive multi-element mineralisation now recognised as part of the iron oxide copper–gold (IOCG) spectrum of deposits. As IOCG provinces generally contain a variety of mineralisation styles, we interpret this as the earliest phase of the extensive mineralising system.  相似文献   

10.
Summary Batiferrite, ideally Ba[Ti2Fe10]O19, was found in the Quaternary volcanic rocks near üdersdorf, Graulai, and Altburg, western Eifel area, Germany. The new mineral typically occurs as euhedral platy grains in cavities of melilite- and leucite-nephelinite basalts. Associated minerals are hematite, magnetite, titanite, g?tzenite, clinopyroxene, nepheline, and biotite. It exhibits a hexagonal tabular habit flattened on {0001}, diameter 0.5–1 mm, thickness 20–125 μm, and {10&1macr;3}, {10&1macr;0} as observable forms. The mineral is opaque, of black color with submetallic lustre, and shows a ferrimagnetic behavior. VHN50 is 793 with a range of 710–841 from ten indentations. The quantitative reflectance measurements of Ro/Re on oriented grains in air and oil immersion, respectively, are [%]: for 470 nm 22.1/20.1 and 8.4/7.1, for 546 nm 21.0/19.4 and 7.8/6.6, for 589 nm 20.2/18.8 and 7.4/6.3, and for 650 nm 19.3/18.3 and 6.8/5.9. The bireflectance is distinct (air) to weak (oil), and parallel (0001) a moderate anisotropy with straight extinction can be observed. Typical microprobe analyses give [wt%] K2O 0.28–0.33, Na2O 0.17–0.20, SrO 0.46–0.55, BaO 11.80–12.17, MgO 1.27–1.47, Al2O3 0.31–0.33, TiO2 13.11–13.63, MnO 2.38–2.57, Fe2O3 61.36–63.12, FeO 5.49–5.86 (Fe3+/Fe2+ calculated for charge compensation), which is equivalent to (Ba0.84Na0.06K0.06Sr0.05)1.01(Fe8.48 3+Fe0.86 2+Ti1.82Mg0.37Mn0.37Al0.06)11.96O19 as the average composition based on 19 oxygen atoms. Batiferrite is a magnetoplumbite-type mineral with hexagonal symmetry, space group P6 3 /mmc (no. 194), a = 5.909(1) ?, c = 23.369(4) ?, V = 706.6(2) ?3, Z = 2, and a calculated density of 5.016 gcm−3. The structure was refined to R1 = 0.031 for 278 unique reflections with Fo 2 > 4σ (Fo 2) and R1 = 0.079 for all 452 unique observations using single crystal X-ray data. The strongest reflections of the X-ray powder diffraction pattern are [d obs, I/Io, (hkl)]: 2.631, 100, (114); 2.799, 80, (107); 1.478, 70, (220); 2.429, 60, (203); 1.672, 50, (217). The new mineral is comparable to the other Ba containing magnetoplumbite-type minerals haggertyite and hawthorneite, the iron content, however, is much higher and in the range of magnetoplumbite. The large cation site (A) is dominated by Ba, and four of the five remaining crystallographic cation sites in the structure are dominated by Fe (M1, 2, 3, 5), the octahedrally coordinated M4-site is dominated by Ti. No oxygen vacancy on the O3-site like in plumboferrite can be observed. Batiferrite is named for its main chemical composition and the relationship to the M-type hexaferrites (polytype 5H).
Zusammenfassung Batiferrit, ein neues ferrimagnetisches Mineral des Magnetoplumbit-Typs aus den quart?ren Vulkaniten der West-Eifel, Deutschland Das neue Mineral Batiferrite, mit der Idealformel Ba[Ti2Fe10]O19, wurde an drei Fundpunkten in den Quart?ren Vulkangesteinen der westlichen Eifel, Deutschland, in der N?he von üdersdorf, Graulai und Altburg gefunden. Das neue Mineral tritt typischerweise bl?ttchenf?rmig in kleinen Hohlr?umen von Melilith- und Leucit-Nephelininit Basalten auf. Vergesellschaftete Minerale sind H?matit, Magnetit, Titanit, G?tzenit, Klinopyroxen, Nephelin und Biotit. Der Habitus ist hexagonal tafelig nach {0001}, mit einem Durchmesser von 0.5–1 mm und einer Dicke von 20–125 μm, zus?tzlich k?nnen die Formen {10&1macr;3} und {10&1macr;0} beobachtet werden. Das Mineral ist opak, hat eine schwarze Farbe mit einem leicht metallischen Glanz, und ist ferromagnetisch. Die H?rte VHN50 ist 793 mit einem Bereich von 710–841 aus 10 Eindruckbestimmungen. Die quantitativen Reflexionsmessungen von Ro/Re an orientierten K?rnern in Luft beziehungsweise ?limmersion, ergaben [%]: für 470 nm 22.1/20.1 und 8.4/7.1, für 546 nm 21.0/19.4 und 7.8/6.6, für 589 nm 20.2/18.8 und 7.4/6.3, und für 650 nm 19.3/18.3 und 6.8/5.9. Die Bireflexion ist deutlich (Luft) bis schwach (?l) und parallel (0001) kann eine mittlere Anisotropie mit gerader Ausl?schung beobachtet werden. Eine typische Mikrosondenanalyse ergibt [wt%] K2O 0.28–0.33, Na2O 0.17–0.20, SrO 0.46–0.55, BaO 11.80–12.17, MgO 1.27–1.47, Al2O3 0.31–0.33, TiO2 13.11–13.63, MnO 2.38–2.57, Fe2O3 61.36–63.12, FeO 5.49–5.86 (Fe3+/Fe2+ berechnet zum Ladungsausgleich), die mittlere chemische Formel auf der Basis von 19 Sauerstoffatomen lautet (Ba0.84Na0.06K0.06Sr0.05)1.01 (Fe8.48 3+Fe0.86 2+Ti1.82Mg0.37Mn0.37Al0.06)11.96O 19. Batiferrit ist ein Mineral der Magnetoplumbitgruppe, hat hexagonale Symmetrie mit der Raumgruppe P63/mmc (Nr. 194), a = 5.909(1) ?, c = 23.369(4) ?, V = 706.6(2) ?3, Z = 2, und einer berechneten Dichte von 5.016 gcm−3. Die Struktur wurde aus Einkristall-R?ntgendaten bis zu einem R1-Wert von 0.031 für 278 Fo 2 > 4σ(Fo 2), und einem R1-Wert von 0.079 für alle 452 Fo 2 verfeinert. Die st?rksten Beugungsreflexe der Pulver-R?ntgendaten sind [dobs, I/Io, (hkl)]: 2.631, 100, (114); 2.799, 80, (107); 1.478, 70, (220); 2.429, 60, (203); 1.672, 50, (217). Das neue Mineral weist deutliche ?hnlichkeiten zu den anderen beiden Ba-reichen Mineralen Haggertyit und Hawthorneit der Magnetoplumbit-Gruppe auf, jedoch ist der Eisengehalt wesentlich h?her und im Bereich des Minerals Magnetoplumbit. Der gro?e Kationenplatz (A) ist von Barium dominiert, vier (M1, 2, 3, 5) der restlichen fünf kristallographischen Kationenpl?tze in der Struktur sind fast ausschlie?lich mit Fe, die oktaedrisch koordinierte M4-Position ist überwiegend mit Ti besetzt. An der O3-Position konnte kein Sauerstoffdefizit wie in Plumboferrit festgestellt werden. Batiferrit ist nach seiner chemischen Beschaffenheit und nach seiner Zugeh?hrigkeit zu den M-Typ Hexaferriten (Polytyp 5H) benannt.


Received December 14, 1999; accepted March 2, 2000  相似文献   

11.
Petrographic, electron microprobe, and bulk-rock geochemical analyses indicate that the distribution and composition of ferromagnesian silicates (biotite, garnet, and staurolite) in and adjacent to the metamorphosed Bleikvassli Zn–Pb–(Cu) volcanogenic massive sulfide deposit, Norway, are dependent upon the competing effects of f O2f S2 and host-rock composition. The enrichment in magnesium content of these silicates within the orebody and at distances of as much as 5–10 m away is due to the increased f O2 and f S2 conditions imposed on the silicates in zones subject to minor hydrothermal alteration during regional metamorphism. Alternatively, within pelitic country rocks at distances >5–10 m from ore, the host-rock chemistry controls the composition of metamorphic silicate minerals. Also, country rocks within a few meters of ore are distinguished by the common presence of zinc-bearing staurolite (up to 9 wt% ZnO) coexisting with biotite ± garnet. Rocks in the Bleikvassli deposit were hydrothermally enriched in zinc and fluorine prior to metamorphism. The fluorine resides mainly in biotite, which is an additional contributing factor to the magnesium enrichment of that mineral due to Fe2+–F avoidance. Our inference that the sulfidation–oxidation halo around the Bleikvassli ore deposit is only meters in width contrasts with the view of Maiga (1983), who proposed the effects of sulfidation could be identified at distances >159 m from ore. It is evident that the delineation of a sulfidation–oxidation halo bordering a metamorphosed massive sulfide deposit must be done carefully in order to discriminate between the effects due to variations in primary rock composition versus those resulting from a sulfur and oxygen fugacity gradient between the massive sulfides and the sulfur-poor country rocks. Received: 1 March 1998 / Accepted: 3 May 2000  相似文献   

12.
 The partitioning of Fe and Mg between the M1 and M2 octahedral sites of olivine has been investigated by in situ time-of-flight neutron powder diffraction. The degree of M-cation order was determined from direct measurements of site occupancies in a synthetic sample of Fo50Fa50 heated to 1250 °C at the Fe-FeO oxygen buffer. Fe shows slight preference for M1 at temperatures below about 600 °C, progressively disordering on heating to this temperature. Above 630 °C, the temperature at which site preferences cross over (T cr), Fe preferentially occupies M2, becoming progressively more ordered into M2 on increasing temperature. The cation-ordering behaviour is discussed in relation to the temperature dependence of the M1 and M2 site geometries, and it is suggested that vibrational entropy, crystal field effects and changes in bond characteristics play a part in the cross-over of partitioning behaviour. The temperature dependence of site ordering is modelled using a Landau expansion of the free energy of ordering of the type ΔG = −hQ + gTQ +  (T − T c)Q 2 +  Q 4, with a/h = 0.00406 K−1, b/h = 2.3, T c = 572 K and g/h = 0.00106 K−1. These results suggest that the high-temperature ordering behaviour across the forsterite-fayalite join will have a bearing on the activity-composition relations of this important rock-forming mineral, and indicate that Fe-Mg olivine solid solutions become less ideal as temperature increases. Received: 12 August 1999 / Accepted: 25 April 2000  相似文献   

13.
Optical constituents as suspended particulate matter (SPM), chlorophyll (Chl-a), colored dissolved organic matter (CDOM), and grain sizes were obtained on a transect in the arctic fjord-type estuary Kangerlussuaq (66°) in August 2007 along with optical properties. These comprised diffuse attenuation coefficient of downwelling PAR (K d(PAR)), upwelling PAR (K u(PAR)), particle beam attenuation coefficient (c p), and irradiance reflectance R(−0, PAR). PAR is white light between 400 and 700 nm. The estuary receives melt water from the Greenland Inland Ice and stations covered a transect from the very high turbid melt water outlet to clear marine waters. Results showed a strong spatial variation with high values as for suspended matter concentrations, CDOM, diffuse attenuation coefficient K d(PAR), particle beam attenuation coefficients (c p), and reflectance R(−0, PAR) at the melt water outlet. Values of optical constituents and properties decreased with distance from the melt water outlet to a more or less constant level in central and outer part of the estuary. There was a strong correlation between inorganic suspended matter (SPMI) and diffuse attenuation coefficient K d(PAR) (r 2 = 0.92) and also for particle beam attenuation coefficient (c p; r 2 = 0.93). The obtained SPMI specific attenuation—K d*(PAR) = 0.13 m2 g−1 SPMI—and the SPMI specific particle beam attenuation—c p* = 0.72 m2 g−1—coefficients were about two times higher than average literature values. Irradiance reflectance R(−0, PAR) was comparatively high (0.09−0.20) and showed a high (r 2 = 0.80) correlation with K u(PAR). Scattering dominated relative to absorption—b(PAR)/a(PAR) = 12.3. Results strongly indicated that the high values in the optical properties were related to the very fine particle sizes (mean = 2–6 μm) of the suspended sediment. Data and results are discussed and compared to similar studies from both temperate and tropical estuaries.  相似文献   

14.
 The lattice constants of paragonite-2M1, NaAl2(AlSi3)O10(OH)2, were determined to 800 °C by the single-crystal diffraction method. Mean thermal expansion coefficients, in the range 25–600 °C, were: αa = 1.51(8) × 10−5, αb = 1.94(6) × 10−5, αc = 2.15(7) ×  10−5 °C−1, and αV = 5.9(2) × 10−5 °C−1. At T higher than 600 °C, cell parameters showed a change in expansion rate due to a dehydroxylation process. The structural refinements of natural paragonite, carried out at 25, 210, 450 and 600 °C, before dehydroxylation, showed that the larger thermal expansion along the c parameter was mainly due to interlayer thickness dilatation. In the 25–600 °C range, Si,Al tetrahedra remained quite unchanged, whereas the other polyhedra expanded linearly with expansion rate proportional to their volume. The polyhedron around the interlayer cation Na became more regular with temperature. Tetrahedral rotation angle α changed from 16.2 to 12.9°. The structure of the new phase, nominally NaAl2 (AlSi3)O11, obtained as a consequence of dehydroxylation, had a cell volume 4.2% larger than that of paragonite. It was refined at room temperature and its expansion coefficients determined in the range 25–800 °C. The most significant structural difference from paragonite was the presence of Al in fivefold coordination, according to a distorted trigonal bipyramid. Results confirm the structural effects of the dehydration mechanism of micas and dioctahedral 2:1 layer silicates. By combining thermal expansion and compressibility data, the following approximate equation of state in the PTV space was obtained for paragonite: V/V 0 = 1 + 5.9(2) × 10−5 T(°C) − 0.00153(4) P(kbar). Received: 12 July 1999 / Revised, accepted: 7 December 1999  相似文献   

15.
Summary ?Hydrothermal experiments to synthesize pumpellyite group minerals of the pumpellyite–okhotskite series and to investigate their stability have been carried out at 200, 300 and 400 MPa P fluid and 250–500 °C by using cold-seal pressure vessels and solid buffers of MnO2–Mn2O3, Cu2O–CuO and Cu2O–Cu buffer assemblages. Okhotskite and pumpellyite rich in the okhotskite component crystallized from an oxide mixture starting material of Ca4MgMn3+ 3Al2Si6O24.5-oxide+excess H2O at P fluid of 200, 300 and 400 MPa and temperatures of 300 and 400 °C. However, a single phase of okhotskite was not produced, and associated piemontite, hausmannite, wollastonite, clinopyroxene, corundum, braunite–neltnerite solid solution and alleghanyite also formed. Mn-pumpellyite of the okhotskite–pumpellyite join occurs as aggregates of needle crystals, rounded grains or flaky crystals. Chemical compositions are variable and range from pumpellyite-(Mn2+) to okhotskite: 31–36 SiO2, 13–21 Al2O3, 12–25 total Mn2O3, 0.6–4 MgO and 20–24 wt.% CaO. Reconnaissance experiments using a starting material of synthetic Ca2Mn3+Al2Si3O12(OH)-piemontite at 300 MPa and temperatures of 250, 300, 400 and 500 °C indicate that Mn-rich pumpellyite can crystallize from piemontite at lower temperatures than the stability field of piemontite. The Mn-rich pumpellyite was accompanied by garnet, wollastonite and alleghanyite. The chemical compositions of the Mn-pumpellyites are 32–36 SiO2, 18–27 Al2O3, 8–18 total Mn2O3 and 20–23 wt.% CaO. This study shows that the stability fields of piemontite, piemontite+Mn-pumpellyite, and Mn-pumpellyite range in this order with decreasing temperature under high fO2 conditions. The maximum stability temperature of Mn-rich pumpellyite lies between 400 and 500 °C at 200–400 MPa in high fO2 conditions. Received March 3, 2000; revised version accepted December 28, 2001  相似文献   

16.
Meta-sedimentary rocks including marbles and calcsilicates in Central Dronning Maud Land (CDML) in East Antarctica experienced a Pan-African granulite facies metamorphism with peak metamorphic conditions around 830 ± 20 °C at 6.8 ± 0.5 kbar which was accompanied by the post-kinematic intrusion of huge amounts of syenitic (charnockitic) magmas at 4.5 ± 0.7 kbar. The marbles and calcsilicates may represent meta-evaporites as indicated by the occurrence of metamorphic gypsum/anhydrite and Cl-rich scapolite that formed in the presence of saline fluids with X NaCl in the range 0.15–0.27. The marbles and calcsilicates bear biotite, tremolite and/or hornblende and humite group minerals (clinohumite, chondrodite and humite) which are inferred to have crystallized at about 650 °C and 4.5 kbar. The syenitic intrusives contain late-magmatic biotite and amphibole (formed between 750 and 800 °C) as well as relictic magmatic fayalite, orthopyroxene and clinopyroxene. Two syenite and two calcsilicate samples contain fluorite. Corona textures in the marbles and calcsilicates suggest very low fluid-rock ratios during the formation of the retrograde (650 °C) assemblages. Biotite in all but two syenite samples crystallized at log(f H 2 O/f HF) ratios of 2.9 ± 0.4, while in the calcsilicates, both biotite and humite group minerals indicate generally higher log(f H 2 O/f HF) values of up to 5.2. A few samples, though, overlap with the syenite values. Log(f H 2 O/f HCl) derived from biotite covers the range 0.5–2.6 in all rock types. Within a single sample, the calculated values for both parameters vary typically by 0.1 to 0.8 log units. Water and halogen acid fugacities calculated from biotite-olivine/orthopyroxene-feldspar-quartz equilibria and the above fugacity ratios are 1510–2790 bars for H2O, 1.3–5.3 bars for HF and 7–600 bars for HCl. The results are interpreted to reflect the reaction of relatively homogeneous magmatic fluids [in terms of log(f H 2 O /f HF)] derived from the late-magmatic stages of the syenites with both earlier crystallized, still hotter parts of the syenites and with adjacent country rocks during down-temperature fluid flow. Fluorine is successively removed from the fluid and incorporated into F-bearing minerals (close to the syenite into metamorphic fluorite). In the course of this process log(f H 2 O /f HF) increases significantly. Chlorine preferably partitions into the fluid and hence log(f H 2 O /f HCl) does not change markedly during fluid-rock interaction. Received: 28 November 1997 / Accepted: 27 April 1998  相似文献   

17.
Summary Kristiansenite occurs as a late hydrothermal mineral in vugs in an amazonite pegmatite at Heftetjern, T?rdal, Telemark, Norway. Tapering crystals, rarely up to 2 mm long, are colourless, white, or slightly yellowish. The mineral has the ideal composition Ca2ScSn(Si2O7)(Si2O6OH) and is triclinic C1 with cell parameters a = 10.028(1), b = 8.408(1), c = 13.339(2) ?, α = 90.01(1), β = 109.10(1), γ = 90.00(1)°, V = 1062.7(3) ?3 (Z = 4). It has a monoclinic cell within ∼ 0.1 ? and is polysynthetically twinned on {010} by metric merohedry. The strongest reflections in the X-ray powder pattern are [d in ?, (I obs), (hkl)]: 5.18 (53) (1–11), 3.146 (100) (004), 3.089 (63) (−222), 2.901 (19) (221), 2.595 (34) (222), 2.142 (17) (−3–31). The Mohs’ hardness is 5?–6; Dcalc. = 3.64 g/cm3; only a mean refractive index of 1.74 could be measured. Scandium enrichment in the Heftetjern pegmatite and the crystal chemistry of scandium are briefly discussed. Received April 30, 2001; accepted July 28, 2001  相似文献   

18.
High-pressure metamorphic assemblages occur in mafic, ultramafic and a few intermediate rocks in a gneiss complex that covers an area of approximately 400 × 100 km in the North-East Greenland Caledonides. Detailed petrologic and geochronologic studies were carried out on three samples in order to clarify the P-T-t evolution of this eclogite province. Geothermobarometry yields temperature estimates of 700–800 °C and pressure estimates of at least 1.5 GPa from an eclogite sensu stricto and as high as 2.35 GPa for a garnet websterite. The eclogite defines a garnet-clinopyroxene-amphibole-whole rock Sm-Nd isochron age of 405 ± 24 Ma (MSWD 0.9). Isofacial garnet websterites define garnet-clinopyroxene-orthopyroxene-amphibole-whole rock-(biotite) ages of 439 ± 8 Ma (MSWD =2.1) for a coarse-grained sample and 370 ± 12 Ma (MSWD=0.6) for a finer-grained variety. Overgrowths on zircons from the fine-grained pyroxenite and the eclogite give a pooled 206Pb/238U SHRIMP age of 377 ± 7 Ma (n=4). Significantly younger Rb-Sr biotite ages of 357 ± 8, 330 ± 6 and 326 ± 6 agree with young Rb-Sr, K-Ar and 40Ar/39Ar mineral ages from the gneiss complex and indicate slow cooling of the eclogitic rocks. High-pressure metamorphism may have been at least 439 Ma old (Siluro-Ordovician) with cooling through amphibolite-facies conditions in the Devonian and continued crustal thinning and exhumation well into the Carboniferous. Sm-Nd whole rock model ages indicate the eclogite protoliths are Early Proterozoic in age, while 207Pb/206Pb SHRIMP ages of 1889 ± 18 and 1981 ± 8 from anhedral zircon cores probably reflect Proterozoic metasomatism. The samples have negative ɛNd values (−5 to −16) and elevated 87Sr/86Sr ratios (0.708–0.715), consistent with field evidence that the eclogite protoliths were an integral part of the continental crust long before Caledonian metamorphism. The presence of a large Caledonian eclogite terrane in Greenland requires modification of current tectonic models that postulate subduction of Baltica beneath Laurentia during the Caledonian orogeny. Received: 9 October 1996 / Accepted: 7 July 1997  相似文献   

19.
The elucidation of thermal histories by geochronological and isotopic means is based fundamentally on solid-state diffusion and the concept of closure temperatures. Because diffusion is thermally activated, an analytical solution of the closure temperature (T c *) can only be obtained if the diffusion coefficient D of the diffusion process is measured at two or more different temperatures. If the diffusion coefficient is known at only one temperature, however, the true closure temperature (T c *) cannot be calculated analytically because there exist an infinite number of possible (apparent) closure temperatures ( c ) which can be generated by this single datum. By introducing further empirical constraints to limit the range of possible closure temperatures, however, mathematical analysis of a modified form of the closure temperature equation shows that it is possible to make both qualitative and quantitative estimates of T c * given knowledge of only one diffusion coefficient D M measured at one temperature T M . Qualitative constraints of the true closure temperature T c * are obtained from the shapes of curves on a graph of the apparent T c ( c ) vs. activation energy E, in which each curve is based on a single diffusion coefficient measurement D M at temperature T M . Using a realistic range of E, the concavity of the curve shows whether T M is less than, approximately equal to, or greater than T c *. Quantitative estimates are obtained by considering two dimensionless parameters [ln êRT^ c vs. T c */T M ] derived from these curves. When these parameters are plotted for known argon diffusion data and for a given diffusion size and cooling rate, it is found that the resultant curves are almost identical for all of the commonly dated K–Ar minerals – biotite, phlogopite, muscovite, hornblende and orthoclase – in spite of differences in their diffusion parameters. A common curve for Ar diffusion can be derived by least-squares fitting of all the Ar diffusion data and provides a way of predicting a “model” closure temperature T cm from a single diffusion coefficient D M at temperature T M . Preliminary diffusion data for a labradorite lead to a T cm of 507 ± 17 °C and a corresponding activation energy of about 65 kcal/mol, given a grain size of 200 μm and a cooling rate of 5 °C/Ma. Curves for He diffusion in silicates (augite, quartz and sanidine) also overlap to a significant degree, both among themselves and with the Ar model curve, suggesting that a single model curve may be a good representation of noble gas closure temperatures in silicates. An analogous model curve for a selection of 18O data can also be constructed, but this curve differs from the Ar model curve. A single model curve for cationic species does not appear to exist, however, suggesting that chemical bonding relationships between the ionic size/charge and crystal structure may influence the closure temperatures of diffusing cations. An indication of the degree of overlap among the various curves for Ar, He, 18O and cations is also obtained by considering the dimensionless parameter E/RT c *; for the noble gases and 18O, E/RT c * values for the respective minerals are very similar, whereas for cations, there is significant dispersion. Given these constraints, this may be a potential method of estimating closure temperatures for certain diffusing species when there are limited diffusion data. Received: 1 July 1999 / Accepted: 24 March 2000  相似文献   

20.
The Maoduan Pb–Zn–Mo deposit is in hydrothermal veins with a pyrrhotite stage followed by a molybdenite and base metal stage. The Re–Os model ages of five molybdenite samples range from 138.6 ± 2.0 to 140.0 ± 1.9 Ma. Their isochron age is 137.7 ± 2.7 Ma. Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) zircon U–Pb dating of the nearby exposed Linggen granite porphyry gave a 206Pb/238U age of 152.2 ± 2.2 Ma and the hidden Maoduan monzogranite yielded a mean of 140.0 ± 1.6 Ma. These results suggest that the intrusion of the Maoduan monzogranite and Pb–Zn–Mo mineralization are contemporaneous. δ 34S values of sulfide minerals range from 3.4‰ to 4.8‰, similar to magmatic sulfur. Four sulfide samples have 206Pb/204Pb = 18.252–18.432, 207Pb/204Pb = 15.609–15.779, and 208Pb/204Pb = 38.640–39.431, similar to the age-corrected data of the Maoduan monzogranite. These isotope data support a genetic relationship between the Pb–Zn–Mo mineralization and the Maoduan monzogranite and probably indicate a common deep source. The Maoduan monzogranite has geochemical features similar to highly fractionated I-type granites, such as high SiO2 (73.7–75.2 wt.%) and alkalis (K2O + Na2O = 7.8–8.9 wt.%) and low FeOt (0.8–1.3 wt.%), MgO (~0.3 wt.%), P2O5 (~0.03 wt.%), and TiO2 (~0.2 wt.%). The granitic rocks are enriched in Rb, Th, and U but depleted in Ba, Sr, Nb, Ta, P, and Ti. REE patterns are characterized by marked negative Eu anomalies (Eu/Eu* = 0.2–0.4). The Maoduan monzogranite, having (87Sr/86Sr) t  = 0.7169 to 0.7170 and εNd(t) = −13.8 to −13.7, was probably derived from mixing of partial melts from enriched mantle and the Paleoproterozoic Badu group in an extensional tectonic setting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号