首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 A special experimental facility has been developed to investigate the fragmentation of vesicular magma undergoing rapid decompression. The facility operates in a regime similar to that of shock tubes and at temperatures up to 950  °C and pressures up to 200 bar. Cylindrical samples (diameter ca. 17 mm, length ca. 50 mm) undergo rapid decompression in a high-temperature, high-pressure section of the facility following the disruption of a diaphragm separating that section from a low-pressure, low-temperature section. Actual vesicular magma samples have been experimentally fragmented at elevated temperatures and pressures corresponding to those observed during explosive volcanic eruptions and the resulting pyroclastics have been photographically resolved in flight and collected for physical characterization. The results of these experiments show that the rapid decompression of highly viscous vesicular magma can generate pyroclastic ejecta via rapid and complete fragmentation of magma at high temperature. This new fragmentation facility is presented as a tool for experimental volcanology under well-constrained conditions. Received: 19 March 1996 / Accepted: 25 August 1996  相似文献   

2.
 The rates of passive degassing from volcanoes are investigated by modelling the convective overturn of dense degassed and less dense gas-rich magmas in a vertical conduit linking a shallow degassing zone with a deep magma chamber. Laboratory experiments are used to constrain our theoretical model of the overturn rate and to elaborate on the model of this process presented by Kazahaya et al. (1994). We also introduce the effects of a CO2–saturated deep chamber and adiabatic cooling of ascending magma. We find that overturn occurs by concentric flow of the magmas along the conduit, although the details of the flow depend on the magmas' viscosity ratio. Where convective overturn limits the supply of gas-rich magma, then the gas emission rate is proportional to the flow rate of the overturning magmas (proportional to the density difference driving convection, the conduit radius to the fourth power, and inversely proportional to the degassed magma viscosity) and the mass fraction of water that is degassed. Efficient degassing enhances the density difference but increases the magma viscosity, and this dampens convection. Two degassing volcanoes were modelled. At Stromboli, assuming a 2 km deep, 30% crystalline basaltic chamber, containing 0.5 wt.% dissolved water, the ∼700 kg s–1 magmatic water flux can be modelled with a 4–10 m radius conduit, degassing 20–100% of the available water and all of the 1 to 4 vol.% CO2 chamber gas. At Mount St. Helens in June 1980, assuming a 7 km deep, 39% crystalline dacitic chamber, containing 4.6 wt.% dissolved water, the ∼500 kg s–1 magmatic water flux can be modelled with a 22–60 m radius conduit, degassing ∼2–90% of the available water and all of the 0.1 to 3 vol.% CO2 chamber gas. The range of these results is consistent with previous models and observations. Convection driven by degassing provides a plausible mechanism for transferring volatiles from deep magma chambers to the atmosphere, and it can explain the gas fluxes measured at many persistently active volcanoes. Received: 26 September 1997 / Accepted: 11 July 1998  相似文献   

3.
 The 1783–1784 Laki tholeiitic basalt fissure eruption in Iceland was one of the greatest atmospheric pollution events of the past 250 years, with widespread effects in the northern hemisphere. The degassing history and volatile budget of this event are determined by measurements of pre-eruption and residual contents of sulfur, chlorine, and fluorine in the products of all phases of the eruption. In fissure eruptions such as Laki, degassing occurs in two stages: by explosive activity or lava fountaining at the vents, and from the lava as it flows away from the vents. Using the measured sulfur concentrations in glass inclusions in phenocrysts and in groundmass glasses of quenched eruption products, we calculate that the total accumulative atmospheric mass loading of sulfur dioxide was 122 Mt over a period of 8 months. This volatile release is sufficient to have generated ∼250 Mt of H2SO4 aerosols, an amount which agrees with an independent estimate of the Laki aerosol yield based on atmospheric turbidity measurements. Most of this volatile mass (∼60 wt.%) was released during the first 1.5 months of activity. The measured chlorine and fluorine concentrations in the samples indicate that the atmospheric loading of hydrochloric acid and hydrofluoric acid was ∼7.0 and 15.0 Mt, respectively. Furthermore, ∼75% of the volatile mass dissolved by the Laki magma was released at the vents and carried by eruption columns to altitudes between 6 and 13 km. The high degree of degassing at the vents is attributed to development of a separated two-phase flow in the upper magma conduit, and implies that high-discharge basaltic eruptions such as Laki are able to loft huge quantities of gas to altitudes where the resulting aerosols can reside for months or even 1–2 years. The atmospheric volatile contribution due to subsequent degassing of the Laki lava flow is only 18 wt.% of the total dissolved in the magma, and these emissions were confined to the lowest regions of the troposphere and therefore important only over Iceland. This study indicates that determination of the amount of sulfur degassed from the Laki magma batch by measurements of sulfur in the volcanic products (the petrologic method) yields a result which is sufficient to account for the mass of aerosols estimated by other methods. Received: 30 May 1995 / Accepted: 19 April 1996  相似文献   

4.
 Measurements of CO2 fluxes from open-vent volcanos are rare, yet may offer special capabilities for monitoring volcanos and forecasting activity. The measured fluxes of CO2 and SO2 from Mount St. Helens decreased from July through November 1980, but the record includes variations of CO2/SO2 in the emitted gas and episodes of greatly increased fluxes of CO2. We propose that the CO2 flux variations reflect two gas components: (a) a component whose flux decreased in proportion to 1/ √t with a CO2/SO2 mass ratio of 1.7, and (b) a residual flux of CO2 consisting of short-lived, large peaks with a CO2/SO2 mass ratio of 15. We propose two hypotheses: (a) the 1/ √t dependence was generated by crystallization in a deep magma body at rates governed by diffusion-limited heat transfer, and (b) the gas component with the higher CO2/SO2 was released from ascending magma, which replenished the same magma body. The separation of the total CO2 flux into contributions from known processes permits quantitative inferences about the replenishment and crystallization rates of open-system magma bodies beneath volcanos. The flux separations obtained by using two gas sources with distinct CO2/SO2 ratios and a peak minus background approach to obtain the CO2 contributions from an intermittent source and a continuously emitting source are similar. The flux separation results support the hypothesis that the second component was generated by episodic magma ascent and replenishment of the magma body. The diffusion-limited crystallization hypothesis is supported by the decay of minimum CO2 and SO2 fluxes with 1/ √t after 1 July 1980. We infer that the magma body at Mount St. Helens was replenished at an average rate (2.8×106 m3 d–1) which varied by less than 5% during July, August, and September 1980. The magma body volume (2.4–3.0 km3) in early 1982 was estimated by integrating a crystallization rate function inferred from CO2 fluxes to maximum times (20±4 years) estimated from the increase of sample crystallinity with time. These new volcanic gas flux separation methods and the existence of relations among the CO2 flux, crystallization rates, and magma body replenishment rates yield new information about the dynamics of an open-vent, replenished magma body. Received: 15 February 1995 / Accepted: 30 March 1996  相似文献   

5.
 Fragmentation, or the "coming apart" of magma during a plinian eruption, remains one of the least understood processes in volcanology, although assumptions about the timing and mechanisms of fragmentation are key parameters in all existing eruption models. Despite evidence to the contrary, most models assume that fragmentation occurs at a critical vesicularity (volume percent vesicles) of 75–83%. We propose instead that the degree to which magma is fragmented is determined by factors controlling bubble coalescence: magma viscosity, temperature, bubble size distribution, bubble shapes, and time. Bubble coalescence in vesiculating magmas creates permeability which serves to connect the dispersed gas phase. When sufficiently developed, permeability allows subsequent exsolved and expanded gas to escape, thus preserving a sufficiently interconnected region of vesicular magma as a pumice clast, rather than fully fragmenting it to ash. For this reason pumice is likely to preserve information about (a) how permeability develops and (b) the critical permeability needed to insure clast preservation. We present measurements and calculations that constrain the conditions (vesicularity, bubble size distribution, time, pressure difference, viscosity) necessary for adequate permeability to develop. We suggest that magma fragments explosively to ash when and where, in a heterogeneously vesiculating magma, these conditions are not met. Both the development of permeability by bubble wall thinning and rupture and the loss of gas through a permeable network of bubbles require time, consistent with the observation that degree of fragmentation (i.e., amount of ash) increases with increasing eruption rate. Received: 5 July 1995 / Accepted: 27 December 1995  相似文献   

6.
 Experimental studies have been performed to evaluate pre-explosive water–melt mixes with respect to explosive volcanic molten–fuel–coolant interaction (MFCI), i.e., phreatomagmatic explosion. Remolten ultrabasic volcanic rock was used as a magma simulant. Measurement of the explosion intensity was used to determine optimal premixing conditions. A well-defined optimal range was found for the hydrodynamic mixing energy (differential flow speed of 4.2 m/s), as well as for the water/melt mass ratio (0.03 to 0.04) under experimental conditions. The mass flux of water had a minor influence on the explosion intensity. Additionally, transparent mixing experiments with silicon oil and inked water were carried out. They indicate a direct dependence of the pre-explosive water-melt interface area on the explosion intensity. The experimental results show that the contact conditions of water and melt required for explosive MFCI may easily be established in natural volcanic systems. Thus, explosive MFCI is a probable mechanism of explosive volcanism. Received: 23 July 1996 / Accepted: 16 December 1996  相似文献   

7.
8.
 An estimated average CO2 output from Etna's summit craters in the range of 13±3 Mt/a has recently been determined from the measured SO2 output and measured CO2/SO2 molar ratios. To this amount the CO2 output emitted diffusely from the soil (≈ 1 Mt/a) and the amount of CO2 dissolved in Etna's aquifers (≈ 0.25 Mt/a) must be added. Data on the solubility of CO2 in Etnean magmas at high temperature and pressure allow the volume of magma involved in the release of such an amount of this gas to be estimated. This volume of magma (≈ 0.7 km3/a) is approximately 20 times greater than the volume of magma erupted annually during the period 1971–1995. On the basis of C-isotopic data of CO2 collected in the Etna area and of new hypotheses on the source of Mediterranean magmas, significant contributions of CO2 from non-magmatic sources to the total output from Etna are unlikely. Such large outputs of CO2 and also of SO2 from Etna could be due to an anomalously shallow asthenosphere beneath the volcano that allows a continuous escape of gases toward the surface, even without migration of magma. Received: 7 August 1996 / Accepted: 9 November 1996  相似文献   

9.
Fragmentation of magma during Plinian volcanic eruptions   总被引:2,自引:0,他引:2  
 The ratio of the volume of vesicles (gas) to that of glass (liquid) in pumice clasts (V G /V L ) reflects the degassing and dynamic history experienced by a magma during an explosive eruption. V G /V L in pumices from a large number of Plinian eruption deposits is shown here to vary by two orders of magnitude, even between pumices at a given level in a deposit. These variations in V G /V L do not correlate with crystallinity or initial water content of the magmas or their eruptive intensities, despite large ranges in these variables. Gas volume ratios of pumices do, however, vary systematically with magma viscosity estimated at the point of fragmentation, and we infer that pumices do not quench at the level of fragmentation but undergo some post-fragmentary evolution. On the timescale of Plinian eruptions, pumices with viscosities <109 Pa s can expand after fragmentation, as long as their bubbles retain gas, at a rate inversely proportional to their viscosity. Once the bubbles connect to form a permeable network and lose their gas, expansion halts and pumices with viscosities <105 Pa s can collapse under the action of surface tension. Textural evidence from bubble sizes and shapes in pumices indicates that both expansion and collapse have taken place. The magnitudes of expansion and collapse, therefore, depend critically on the timing of bubble connectivity relative to the final moment of quenching. We propose that bubbles in different pumices become connected at different times throughout the time span between fragmentation and quenching. After accounting for these effects, we derive new information on the fragmentation process from two characteristics of pumices. The most important is a relatively constant minimum value of V G /V L of ∼1.78 (64 vol.% vesicularity) in all samples with viscosities >105 Pa s. This value is independent of magma composition and thus reflects a property of the eruptive mechanism. The other characteristic is that highly expanded pumices (>85 vol.% vesicularities) are common, which argues against overpressure in bubbles as a mechanism for fragmenting magma. We suggest that magma fragments when it reaches a vesicularity of ∼64 vol.%, but only if sheared sufficiently strongly. The intensity of shear varies as a function of velocity in the conduit, which is related to overpressure in the chamber, so that changes in overpressure with time are important in controlling the common progression from explosive to effusive activity at volcanoes. Received: 19 April 1995 / Accepted: 3 April 1996  相似文献   

10.
 The role of carbon dioxide in the dynamics of magma ascent in explosive eruptions is investigated by means of numerical modeling. The model is steady, one-dimensional, and isothermal; it calculates the separated flow of gas and a homogeneous mixture of liquid magma and crystals. The magma properties are calculated on the basis of magma composition and crystal content and are allowed to change along the conduit due to pressure decrease and gas exsolution. The effect of the presence of a two-component (water + carbon dioxide) exsolving gas phase is investigated by performing a parametric study on the CO2/(H2O+CO2) ratio, which is allowed to vary from 0 to 0.5 at either constant total volatile or constant water content. The relatively insoluble carbon dioxide component plays an important role in the location of the volatile-saturation and magma-fragmentation levels and in the distribution of the flow variables in the volcanic conduit. In detail, the results show that an increase of the proportion of carbon dioxide produces a decrease of the mass flow rate, pressure, and exit mixture density, and an increase of the exit gas volume fraction and depth of the fragmentation level. A relevant result is the different role played by water and carbon dioxide in the eruption dynamics; an increasing amount of water produces an increase of the mass flow rate, and an increasing amount of carbon dioxide produces a decrease. Even small amounts of carbon dioxide have major consequences on the eruption dynamics, implying that the multicomponent nature of the volcanic gas must be taken into account in the prediction of the eruption scenario and the forecasting of volcanic hazard. Received: 6 March 1998 / Accepted: 28 October 1998  相似文献   

11.
 Virtually all the seismicity within Ruapehu Volcano recorded during a 2-month deployment in early 1994, with 14 broadband seismographs around the Tongariro National Park volcanoes in the North Island of New Zealand, was associated with the active vent and occurred within approximately 1 km of Ruapehu Crater Lake. High-frequency volcano-tectonic earthquakes and low-frequency events (similar to bursts of 2 Hz volcanic tremor) were both found to have sources in this region. The high-frequency events, which often consisted of a smaller precursor event followed approximately 2 s later by the main event, had sharp onsets and were locatable using standard techniques. The depth of these events ranged from the surface down to approximately 1500 m below Crater Lake. The low-frequency events did not have sharp onsets and were located by phase-correlation methods. Nearly all occurred under a small region on the east side of Crater Lake, at depths from 200 to 1000 m below the surface. This low-frequency earthquake source region, in which no high-frequency events occurred, may be the steam zone within the actual vent of Ruapehu Volcano. Received: 30 June 1996 / Accepted: 16 February 1998  相似文献   

12.
 In situ measurement of volcanic eruption velocities is one of the great challenges left in geophysical volcanology. In this paper we report on a new radar Doppler technique for monitoring volcanic eruption velocities. In comparison with techniques employed previously (e.g., photographic methods or acoustic Doppler measurements), this method allows continuous recordings of volcanic eruptions even during poor visibility. Also, radar Doppler instruments are usually light weight and energy efficient, which makes them superior to other Doppler techniques based on laser light or sound. The proposed new technique was successfully tested at Stromboli Volcano in late 1996 during a period of low activity. The recorded data allow a clear distinction between particles rising from the vent and particles falling back towards the vent. The mean eruption velocity was approximately 10 m/s. Most of the eruptions recorded by radar were correlated to seismic recordings. The correlation between the magnitude of the volcanic shocks and the eruption force index defined in the paper may provide new insights into magma transport in the conduit. Received: 15 May 1998 / Accepted: 15 December 1998  相似文献   

13.
 Experiments on degassing of water-saturated granite melts with a pressure drop from 100 and 450 MPa to 40 and 120 MPa, respectively, at temperatures close to feldspar liquidus (750–700  °C), were carried out to determine the modality of water exsolution and vesicle formation at the liquidus temperature. Pressure-drop rates as small as approximately 100 bar/day were used. Uniform space distributions of bubbles of exsolved water were obtained with starting glass containing a small fraction (≈0.5 vol.%) of trapped air bubbles. Volume crystallization of feldspar was observed in degassed melts supplied with seeds. Bubble size distributions (BSD) measured in granite glasses after degassing are presented. Data on vesicle characteristics (number, radius, area, elongation) were acquired on images digitized with standard software, while the reconstruction of size distributions was performed with the Schwartz-Saltikov "unfolding" procedure. Bubble size distributions of size classes in the range 5–1000 μm were acquired with proper magnification and satisfactory statistical reliability of determined number densities. The BSDs of the experimental samples are compared with the results of measurements of rapidly degassed products of Mt. Etna and Vulcano Island. Many particular features of the bubble nucleation and growth can be distinguished in an individual BSD. However, the general BSD of the whole data set, including natural ones, can be relatively well described with linear regression in bilogarithmic coordinates. The slope of this regression is approximately 2.8±0.1. This dependence is in striking contrast with distributions theoretically predicted with classical nucleation models based on homogeneous nucleation of vesicles. The theoretical distribution requires the occurrence of strong maxima that are not observed in our experimental and natural samples, thus arguing for heterogeneous nucleation mechanisms. Received: 1 October 1998 / Accepted: 25 June 1999  相似文献   

14.
Victims from volcanic eruptions: a revised database   总被引:1,自引:1,他引:1  
 The number of victims from volcanism and the primary cause(s) of death reported in the literature show considerable uncertainty. We present the results of investigations carried out either in contemporary accounts or in specific studies of eruptions that occurred since A.D. 1783. More than 220 000 people died because of volcanic activity during this period, which includes approximately 90% of the recorded deaths throughout history. Most of the fatalities resulted from post-eruption famine and epidemic disease (30.3%), nuées ardentes or pyroclastic flows and surges (26.8%), mudflows or lahars (17.1%), and volcanogenic tsunamis (16.9%). At present, however, international relief efforts might reduce the effects of post-eruption crop failure and disease, and at least some of the lahars could be anticipated in time by adequate scientific and social response. Thus, mitigation of hazards from pyroclastic flows and tsunamis will become of paramount importance to volcanologists and civil authorities. Received: 3 August 1997 / Accepted: 10 April 1998  相似文献   

15.
 Ash flow deposits, containing up to 1000 km3 of material, have been produced by some of the largest volcanic eruptions known. Ash flows propagate several tens of kilometres from their source vents, produce extensive blankets of ash and are able to surmount topographic barriers hundreds of metres high. We present and test a new model of the motion of such flows as they propagate over a near horizontal surface from a collapsing fountain above a volcanic vent. The model predicts that for a given eruption rate, either a slow (10–100 m/s) and deep (1000–3000 m) subcritical flow or a fast (100–200 m/s) and shallow (500–1000 m) supercritical flow may develop. Subcritical ash flows propagate with a nearly constant volume flux, whereas supercritical flows entrain air and become progressively more voluminous. The run-out distance of such ash flows is controlled largely by the mass of air mixed into the collapsing fountain, the degree of fragmentation and the associated rate of loss of material into an underlying concentrated depositional system, and the mass eruption rate. However, in supercritical flows, the continued entrainment of air exerts a further important control on the flow evolution. Model predictions show that the run-out distance decreases with the mass of air entrained into the flow. Also, the mass of ash which may ascend from the flow into a buoyant coignimbrite cloud increases as more air is entrained into the flow. As a result, supercritical ash flows typically have shorter runout distances and more ash is elutriated into the associated coignimbrite eruption columns. We also show that one-dimensional, channellized ash flows typically propagate further than their radially spreading counterparts. As a Plinian eruption proceeds, the erupted mass flux often increases, leading to column collapse and the formation of pumiceous ash flows. Near the critical conditions for eruption column collapse, the flows are shed from high fountains which entrain large quantities of air per unit mass. Our model suggests that this will lead to relatively short ash flows with much of the erupted material being elutriated into the coignimbrite column. However, if the mass flux subseqently increases, then less air per unit mass is entrained into the collapsing fountain, and progressively larger flows, which propagate further from the vent, will develop. Our model is consistent with observations of a number of pyroclastic flow deposits, including the 1912 eruption of Katmai and the 1991 eruption of Pinatubo. The model suggests that many extensive flow sheets were emplaced from eruptions with mass fluxes of 109–1010 kg/s over periods of 103–105 s, and that some indicators of flow "mobility" may need to be reinterpreted. Furthermore, in accordance with observations, the model predicts that the coignimbrite eruption columns produced from such ash flows rose between 20 and 40 km. Received: 25 August 1995 / Accepted: 3 April 1996  相似文献   

16.
 Dike propagation and dilation increases the compression of adjacent rocks. On volcanoes, especially oceanic shields, dikes are accordingly thought to be structurally destabilizing. As compression is incremented, volcanic flanks are driven outward or downslope and thus increase their susceptibility to destructive earthquakes and giant landslides. We show, however, that the 2-m-thick dike emplaced along the east rift zone of Kilauea in 1983 actually stabilized that volcano's flank. Specifically, production of flank earthquakes dropped more than twofold after 1983 as maximum downslope motion slowed to 6 cm·year–1 from approximately 40 cm·year–1 during 1980–1982. As much as 65 cm of deflationary subsidence above Kilauea's summit and upper rift zones accompanied the dike intrusion. According to recent estimates, this deflation corresponds to a reduction in magma-reservoir pressure of approximately 4 MPa, probably about as much as the driving pressure of the 1983 dike. The volume of the dike, approximately 0.10–0.15 km3, is orders of magnitude less than the estimated 200- to 250-km3 volume of Kilauea's reservoir of magma and nearby hot, mushy rock. Thus, deflation of that reservoir reduces the compressional load on the flank over a much larger area than intrusion of the dike adds to it, particularly at the dominant depth of seismicity, 8–9 km. A Coulomb block model for flank motion during intervals between major earthquakes requires the low-angle fault beneath Kilauea's flank to exhibit slip weakening, conducive to earthquake instability. Accordingly, the triggering mechanism of destructive earthquakes, several of which have struck Hawaii during the past 150 years, need not require stresses accumulated by dike intrusions. Received: 27 October 1998 / Accepted: 24 May 1999  相似文献   

17.
 Results are presented from 11 microgravity surveys on Mt. Etna between 1987 and 1993, a period including the major 1989 and 1991–1993 flank eruptions and subordinate 1990 activity. Measurements were made with LaCoste and Romberg D-62 and D-157 gravity meters along a network around the volcano between 1000 and 1900 m a.s.l. and, since 1992, a N–S summit profile. Gravity changes of as much as 200 μGal were observed at scales from the size of the summit region to that of the volcano. None was associated with significant changes in ground elevation. The data show an increase in gravity for 2 years before the 1989 eruption. The increase is attributed to the accumulation of magma (0.25–1.7×109 m3) in an elongate zone, oriented NNW–SSE, between 2.5 and 6 km below sea level. Part of this magma was injected into the volcanic pile to supply the 1989 and 1990 eruptions. It also probably fed the start of the 1991–1993 eruption, since this event was not preceded by significant gravity changes. A large gravity increase (up to 140 μGal) detected across the volcano between June and September 1992 is consistent with the arrival in the accumulation zone of 0.32–2.2×109 m3 of new magma, thus favoring continued flank effusion until 1993. A large gravity decrease (200 μGal) in the summit region marked the closing stages of the 1991–1993 event and is associated with magma drainage from the upper levels of Etna's central feeding system. Received: 15 July 1995 / Accepted: 27 October 1997  相似文献   

18.
 Physical properties of cryptodome and remelted samples of the Mount St. Helens grey dacite have been measured in the laboratory. The viscosity of cryptodome dacite measured by parallel–plate viscometry ranges from 10.82 to 9.94 log10 η (Pa s) (T=900–982  °C), and shrinkage effects were dilatometrically observed at T>900  °C. The viscosity of remelted dacite samples measured by the micropenetration method is 10.60–9.25 log10 η (Pa s) (T=736–802  °C) and viscosities measured by rotational viscometry are 3.22–1.66 log10 η (Pa s) (T=1298–1594  °C). Comparison of the measured viscosity of cryptodome dacitic samples with the calculated viscosity of corresponding water-bearing melt demonstrates significant deviations between measured and calculated values. This difference reflects a combination of the effect of crystals and vesicles on the viscosity of dacite as well as the insufficient experimental basis for the calculation of crystal-bearing vesicular melt viscosities at low temperature. Assuming that the cryptodome magma of the 18 May 1980 Mount St. Helens eruption was residing at 900  °C with a phenocryst content of 30 vol.%, a vesicularity of 36 vol.% and a bulk water content of 0.6 wt.%, we estimate the magma viscosity to be 1010.8 Pa s. Received: 25 August 1996 / Accepted: 19 July 1997  相似文献   

19.
 Ruapehu volcano erupted intermittently between September and November 1995, and June and July 1996, producing juvenile andesitic scoria and bombs. The volcanic activity was characterized by small, sequential phreatomagmatic and strombolian eruptions. The petrography and geochemistry of dated samples from 1995 (initial magmatic eruption of 18 September 1995, and two larger events on 23 September and 11 October), and from 1996 (initial and larger eruptions on 17–18 June) suggest that episodes of magma mixing occurred in separate magma pockets within the upper part of the magma plumbing system, producing juvenile andesitic magma by mixing between relatively high (1000–1200  °C)- and low (∼1000  °C)- temperature (T) end members. Oscillatory zoning in pyroxene phenocrysts suggests that repeated mixing events occurred prior to and during the 1995 and 1996 eruptions. Although the 1995 and 1996 andesitic magmas are products of similar mixing processes, they display chronological variations in phenocryst clinopyroxene, matrix glass, and whole-rock compositions. A comparison of the chemistry of magnesian clinopyroxene in the four tephras indicates that, from 18 September through June 1996, the tephras were derived from at least two discrete high-temperature (high-T) batches of magma. Crystals of magnesian clinopyroxene in the 23 September and 11 October tephras appear to be derived from different high-T magma batches. Whole-rock and matrix-glass compositions of all tephras are consistent with their derivation from distinct mixed melts. We propose that, prior to 1995 there was a shallow low-temperature (low-T) magma storage system comprising crystal-rich mush and remnant magma from preceding eruptive episodes. Crystal clots and gabbroic inclusions in the tephras attest to the existence of relict crystal mush. At least two discrete high-T magmas were then repeatedly injected into the mush zone, forming discrete and mixed magma pockets within the shallow system. The intermittent 1995 and 1996 eruptions sequentially tapped these magma pockets. Received: 1 April 1998 / Accepted: 22 December 1998  相似文献   

20.
 Analysis of the petrochemical characters of the 1669 Etnean lavas shows that they can be grouped into two sets: SET1 lavas were erupted from 11 to 20 March and are more primitive in composition than SET2, erupted later until the end of activity. Both sets may be interpreted as the result of crystallization under different conditions of two primary magmas which are compositionally slightly distinct and which fractionate different volumetric proportions of minerals. To explain why more mafic lavas (SET1) were erupted earlier than more acid ones (SET2), we argue that new deeper magma rose up into a reservoir where residing magma was fractionating. Density calculations demonstrate that new magma is less dense and may originate a plume, rapidly rising through the residing magma which is cooler and more volatile-depleted than the new magma. Calculations of uprise velocity assuming laminar flow are consistent with this hypothesis. Received: 20 November 1995 / Accepted: 2 August 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号