首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
当代火山喷发碎屑堆积物的研究进展及其主要类型   总被引:6,自引:0,他引:6  
刘祥 《世界地质》1996,15(1):1-6
火山喷发碎屑堆积物主要分为:火山喷发空中降落堆积物、火山碎屑、流状堆积物、火山泥流堆积物和火山基浪堆积物。简述了这些火山碎屑堆积物的成因及主要特征。  相似文献   

2.
全球主要火山灾害及其分布特征   总被引:1,自引:0,他引:1  
本文研究了火山灾害各种致灾因子的物理过程和灾害特点,根据文献中记载的全球火山灾害,在进行火山灾害分区研究的基础上,研究了全球火山灾害分布特征.全球主要的火山灾害分布在8个主要区域.有记载的火山灾害在热带占73%,远高于火山喷发分布于热带区的比例.全球两个最强烈的火山灾害分布区都是围绕着位于板块结合部表现为复杂构造结的班达海和加勒比海,而且每一个灾害区都有3条分支.热带区第3个灾害区为中非区,地幔上隆是这里主要的动力学背景.本文还研究了1700年以来火山灾害时间分布特征,以及1993年以来各种火山灾害发生频次.  相似文献   

3.
魏海泉  白志达  刘永顺 《地质论评》2022,68(5):1918-1941
火山碎屑岩是爆破性火山喷发行为的直接产物,不同的碎屑成分、粒度及结构反映了不同岩相的堆积动力学过程,对火山碎屑岩岩石学和岩相组合的研究发展成了以物理火山学为代表的现代火山学研究体系。作为火山爆发碎屑物质的集合,其中不同成因类型的火山碎屑物往往可以直接对应不同阶段火山作用动力学参数特征。火山碎屑物3个最基本的堆积物成因类型是火山碎屑降落物、火山碎屑流和火山碎屑涌浪。火山喷发时碎屑化过程主要涉及挥发分的出溶和岩浆碎屑化过程以及不同火山流体内部的碎屑化过程。对于岩浆喷发、射汽岩浆喷发以及射汽喷发的直接产物,火山碎屑岩在组成上都包含了岩浆破碎的同源碎屑、火山通道裹进的异源碎屑以及火山流体在地表流动时捕获的表生碎屑。火山碎屑定义为爆破性火山喷发的直接行为产物,而包括坡移、滑坡体、火山泥石流等火山降解过程的表生碎屑与熔岩流在自生、淬碎碎屑化过程产生的碎屑则被定义为火山质碎屑。火山岩岩相的建立,为20世纪80年代后期向火山学研究阶段的转变奠定了基础。在地质研究的基础上探索火山活动过程和控制机制的经验模型、实验模拟和数值模拟研究,其中流体动力学的介入对理解火山喷发的基本过程具有里程碑式的推动意义。由此形成的火山学是研究火山与火山喷发的形成机理、喷发过程和产物特性的科学。  相似文献   

4.
魏海泉  白志达  刘永顺 《地质论评》2022,68(3):2022052009-2022052009
火山碎屑岩是爆破性火山喷发行为的直接产物,不同的碎屑成分、粒度及结构反映了不同岩相的堆积动力学过程,对火山碎屑岩岩石学和岩相组合的研究发展成了以物理火山学为代表的现代火山学研究体系。作为火山爆发碎屑物质的集合,其中不同成因类型的火山碎屑物往往可以直接对应不同阶段火山作用动力学参数特征。火山碎屑物3个最基本的堆积物成因类型是火山碎屑降落物、火山碎屑流和火山碎屑涌浪。火山喷发时碎屑化过程主要涉及挥发分的出溶和岩浆碎屑化过程以及不同火山流体内部的碎屑化过程。对于岩浆喷发、射汽岩浆喷发以及射汽喷发的直接产物,火山碎屑岩在组成上都包含了岩浆破碎的同源碎屑、火山通道裹进的异源碎屑以及火山流体在地表流动时捕获的表生碎屑。火山碎屑定义为爆破性火山喷发的直接行为产物,而包括坡移、滑坡体、火山泥石流等火山降解过程的表生碎屑与熔岩流在自生、淬碎碎屑化过程产生的碎屑则被定义为火山质碎屑。火山岩岩相的建立,为20世纪80年代后期向火山学研究阶段的转变奠定了基础。在地质研究的基础上探索火山活动过程和控制机制的经验模型、实验模拟和数值模拟研究,其中流体动力学的介入对理解火山喷发的基本过程具有里程碑式的推动意义。由此形成的火山学是研究火山与火山喷发的形成机理、喷发过程和产物特性的科学。  相似文献   

5.
Baxter  P. J.  Neri  A.  Todesco  M. 《Natural Hazards》1998,17(2):163-176
Volcanic eruptions increasingly present catastrophic natural risks with hundreds of millions of people now living in areas of active volcanism and major conurbations around active eruptive centres. Interdisciplinary studies in disaster reduction have an important role in volcanic emergency management through advancing our understanding of the physical impacts of eruptive phenomena and the causes of death and injury in explosive eruptions. Numerical modelling of pyroclastic flows, amongst the most destructive of eruptive phenomena, provides new opportunities to improve the evaluation of the potential destructiveness of volcanic events and their human impacts in densely populated areas. In this work, the results of numerical modelling of pyroclastic flow propagation at Vesuvius have been analysed in terms of the physical parameters (temperature, ash in air concentration, and dynamic pressure) that are most critical for human survival. Our numerical simulations of eruptions of Vesuvius indicate that a large area exists where total destruction may not be inevitable in small to medium scale events, a finding that has prompted us to explore further the implications for human survival as part of an interdisciplinary approach to disaster reduction. The lessons of modelling at Vesuvius should be integrated into civil protection plans for other urban centres threatened by volcanoes.  相似文献   

6.
北京及邻区长城纪火山事件的沉积记录   总被引:6,自引:1,他引:5  
和政军  宋天锐 《沉积学报》2000,18(4):510-514,520
北京及邻区的中元古代大红峪组中发育着与火山事件有关的沉积相,主要包括两种基本类型:火山源硅质-陆源砂-碳酸盐岩混积相和火山碎屑重力流沉积,后者又可分为火山碎屑基浪沉积相和火山-沉积角砾碳酸盐岩混积相。初步分析表明,大红峪期大量的硅质沉积主要来自同期的水下火山活动;火山碎屑基浪沉积与火山口内残余热气冲破熔岩封堵而爆发泄出,造成一定范围的海水涌浪作用有关。  相似文献   

7.
Particle-laden turbulent flows, called dilute pyroclastic density currents, can be generated during explosive volcanic eruptions. They are the most hazardous events of interaction with buildings and human environments in volcanic areas. A qualitative comparison with the dusty turbulent shear currents generated after the Twin Towers collapse on September 11, 2001 shows that turbulent, multiphase flow-building interaction causes flow separation and recirculation around the buildings. This simple idea could be applied to dilute pyroclastic density currents, and improved in future by adhoc numerical simulations of flow-building interaction.  相似文献   

8.
长白山火山灾害及其对大型工程建设的影响   总被引:2,自引:0,他引:2  
刘松雪  刘祥 《世界地质》2005,24(3):289-292
长白山火山是世界著名的活火山,历史时期有过多次喷发,有再次爆发的危险.长白山火山最大的一次爆发发生在公元1199-1200年,这次大爆发的火山灰最远到达距其1 000km远的日本北部.依据这次大爆发由火山喷发空中降落堆积物、火山碎屑流和火山泥流造成的巨大火山灾害,预测了长白山火山未来爆发火山灾害的类型、强度和范围,并编制了长白山火山未来爆发火山喷发空中降落堆积物灾害预测图、火山碎屑流灾害预测图和火山泥流灾害预测图.该研究可预防和减轻火山灾害,指导核电站等大型工程选址.  相似文献   

9.
Merapi is Indonesia's most dangerous volcano with a history of deadly eruptions. Over the past two centuries, the volcanic activity has been dominated by prolonged periods of lava dome growth and intermittent gravitational or explosive dome failures to produce pyroclastic flows every few years. Explosive eruptions, such as in 2010, have occurred occasionally during this period, but were more common in pre‐historical time, during which a collapse of the western sector of the volcano occurred at least once. Variations in magma supply from depth, magma ascent rates and the degassing behaviour during ascent are thought to be important factors that control whether Merapi erupts effusively or explosively. A combination of sub‐surface processes operating at relatively shallow depth inside the volcano, including complex conduit processes and the release of carbon dioxide into the magmatic system through assimilation of carbonate crustal rocks, may result in unpredictable explosive behaviour during periods of dome growth. Pyroclastic flows generated by gravitational or explosive lava dome collapses and subsequent lahars remain the most likely immediate hazards near the volcano, although the possibility of more violent eruptions that affect areas farther away from the volcano cannot be fully discounted. In order to improve hazard assessment during future volcanic crises at Merapi, we consider it crucial to improve our understanding of the processes operating in the volcano's plumbing system and their surface manifestations, to generate accurate hazard zonation maps that make use of numerical mass flow models on a realistic digital terrain model, and to utilize probabilistic information on eruption recurrence and inundation areas.  相似文献   

10.
Volcán Citlaltépetl (Pico de Orizaba) with an elevation of 5,675 m is the highest volcano in North America. Its most recent catastrophic events involved the production of pyroclastic flows that erupted approximately 4,000, 8,500, and 13,000 years ago. The distribution of mapped deposits from these eruptions gives an approximate guide to the extent of products from potential future eruptions. Because the topography of this volcano is constantly changing computer simulations were made on the present topography using three computer algorithms: energy cone, FLOW2D, and FLOW3D. The Heim Coefficient (), used as a code parameter for frictional sliding in all our algorithms, is the ratio of the assumed drop in elevation (H) divided by the lateral extent of the mapped deposits (L). The viscosity parameter for the FLOW2D and FLOW3D codes was adjusted so that the paths of the flows mimicked those inferred from the mapped deposits. We modeled two categories of pyroclastic flows modeled for the level I and level II events. Level I pyroclastic flows correspond to small but more frequent block-and-ash flows that remain on the main cone. Level II flows correspond to more widespread flows from catastrophic eruptions with an approximate 4,000-year repose period. We developed hazard maps from simulations based on a National Imagery and Mapping Agency (NIMA) DTED-1 DEM with a 90 m grid and a vertical accuracy of ±30 m. Because realistic visualization is an important aid to understanding the risks related to volcanic hazards we present the DEM as modeled by FLOW3D. The model shows that the pyroclastic flows extend for much greater distances to the east of the volcano summit where the topographic relief is nearly 4,300 m. This study was used to plot hazard zones for pyroclastic flows in the official hazard map that was published recently.  相似文献   

11.
简要列举了近年来全新世火山地质领域的研究进展,主要涉及新确定的全新世火山、精细喷发序列与喷发频率、高分辨率火山机构多维框架研究、火山碎屑物粒度分布、形貌特征与成因、火山碎屑流、涌流和火山泥石流堆积、降落堆积成因亚类、火山活动与新构造和火山地质遗迹资源、环境及火山灾害。  相似文献   

12.
Cerro Machín is a dacitic tuff ring located in the central part of the Colombian Andes. It lies at the southern end of the Cerro Bravo–Cerro Machín volcanic belt. This volcano has experienced at least six major explosive eruptions during the last 5000 years. These eruptions have generated pyroclastic flows associated with Plinian activity that have traveled up to 8 km from the crater, and pyroclastic flows associated with Vulcanian activity with shorter runouts of 5 km from the source. Today, some 21,000 people live within a 8 km radius of Cerro Machín. The volcano is active with fumaroles and has shown increasing seismic activity since 2004, and therefore represents a potentially increasing threat to the local population. To evaluate the possible effects of future eruptions that may generate pyroclastic density currents controlled by granular flow dynamics we performed flow simulations with the TITAN2D code. These simulations were run in all directions around the volcano, using the input parameters of the largest eruption reported. The results show that an eruption of 0.3 km3 of pyroclastic flows from a collapsing Plinian column would travel up to 9 km from the vent, emplacing a deposit thicker than 60 m within the Toche River valley. Deposits >45 m thick can be expected in the valleys of San Juan, Santa Marta, and Azufral creeks, while 30 m thick deposits could accumulate within the drainages of the Tochecito, Bermellón, and Coello Rivers. A minimum area of 56 km2 could be affected directly by this kind of eruption. In comparison, Vulcanian column-collapse pyroclastic flows of 0.1 km3 would travel up to 6 km from the vent depositing >45 m thick debris inside the Toche River valley and more than 30 m inside the valleys of San Juan, Santa Marta, and Azufral creeks. The minimum area that could be affected directly by this kind of eruption is 33 km2. The distribution and thickness of the deposits obtained by these simulations are consistent with the hazard map presented by INGEOMINAS (Geological Survey of Colombia) in 2002. The composite map of the simulated flow deposits suggests that after major explosive events such as these, the generation of lahars is probable.  相似文献   

13.
乔乐  陈剑  凌宗成 《地质学报》2021,95(9):2678-2691
火山活动是月球最主要的内动力地质作用之一,是研究月球地质历史和热演化的重要窗口,也是月球科学及探测的重点目标。本文概要总结了月球火山作用的基本原理,并重点介绍了"岩墙扩展"模型。基于此模型,列举了由于岩墙在月壳内部上升程度的不同,导致的不同形式的喷发活动,并在月表产生了一系列火山地貌特征:(1)当岩墙仅扩展到浅月表、未能穿透月壳并引起喷发活动时,可能会在月表产生坑链构造、地堑或底部断裂型撞击坑;(2)当岩墙穿透了整个月壳并引起爆裂式喷发活动时,会在月表产生小型火山锥、区域性火山碎屑堆积物、全月分布的微小火山玻璃、暗晕凹陷构造及环形火山碎屑堆积物;(3)当岩墙穿透了整个月壳并引起溢流式喷发活动时,随着岩浆喷发通量的逐步增高,会在月表产生小型熔岩流、月海穹窿、复合熔岩流、蜿蜒型月溪、巨型熔岩流及火山高原复合体。本文也简要介绍了在月表观测到的若干非典型火山地貌特征,包括不规则月海斑块、环形凹陷穹丘及非月海富硅质穹窿。近年来新的探月数据加深了对这些特殊火山地貌特征的认识,但是更多的地质特征及成因模型细节仍有待未来月球研究及探测去解决。  相似文献   

14.
Archean felsic volcanic rocks form a 2000 m thick succession stratigraphically below the Helen Iron Formation in the vicinity of the Helen Mine, Wawa, Ontario. Based on relict textures and structures, lateral and vertical facies changes, and fragment type, size and distribution, the felsic volcanic rocks have been subdivided into (a) lava flows and domes (b) hyalotuffs, (c) bedded pyroclastic flows, (d) massive pyroclastic flows, and (e) block and ash flows.Lava flows and domes are flow-banded, massive, and/or brecciated and occur throughout the stratigraphic succession. Dome/flow complexes are believed to mark the end of explosive eruptive cycles. Deposits interpreted as hyalotuffs are finely bedded and composed dominantly of ash-size material and accretionary lapilli. These deposits are interlayered with bedded pyroclastic flow deposits and probably formed from phreatomagmatic eruptions in a shallow subaqueous environment. Such eruptions led to the formation of tuff cones or rings. If these structures emerged they may have restricted the access of seawater to the eruptive vent(s), thus causing a change in eruptive style from short, explosive pulses to the establishment of an eruption column. Collapse of this column would lead to the accumulation of pyroclastic material within and on the flanks of the cone/ring structure, and to flows which move down the structure and into the sea. Bedded pyroclastic deposits in the Wawa area are thought to have formed in this manner, and are now composed of a thicker, more massive basal unit which is overlain by one or more finely bedded ash units. Based on bed thickness, fragment and crystal size, type and abundance, these deposits are further subdivided into central, proximal and distal facies.Central facies units consist of poorly graded, thick (30–80 m) basal beds composed of 23–60% lithic and 1–8% juvenile fragments. These are overlain by 1–4 thinner ash beds (2–25 cm). Proximal facies basal beds range from 2–35 m in thickness and are composed of 15–35% lithic and 4–16% juvenile fragments. Typically, lithic components are normally graded, whereas juvenile fragments are inversely graded. These basal beds are overlain by ash beds (2–14 in number) which range from 12 cm to 6 m in thickness. Distal basal beds, where present, are thin (1–2 m), and composed of 2–8% lithic and 6–21% juvenile fragments. Overlying ash beds range up to 40 in number.The climax of pyroclastic activity is represented by a thick (1000 m) sequence of massive, poorly sorted, pyroclastic flow deposits which are composed of 5–15% lithic fragments and abundant pumice. These deposits are similar to subaerial ash flows and appear to mark the rapid eruption of large volumes of material. They are overlain by felsic lavas and/or domes. Periodic collapse of the growing domes produced abundant coarse volcanic breccia. The overall volcanic environment is suggestive of caldera formation and late stage dome extrusion.  相似文献   

15.
Volcanic hazards to airports   总被引:3,自引:1,他引:2  
Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies, Tungurahua in Ecuador, Mt. Etna in Italy, Rabaul caldera in Papua New Guinea, Mt. Spurr and Mt. St. Helens in the USA, Ruapehu in New Zealand, Mt. Pinatubo in the Philippines, and Anatahan in the Commonwealth of the Northern Mariana Islands (part of the USA). Ten countries—USA, Indonesia, Ecuador, Papua New Guinea, Italy, New Zealand, Philippines, Mexico, Japan, and United Kingdom—have the highest volcanic hazard and/or vulnerability measures for airports. The adverse impacts of volcanic eruptions on airports can be mitigated by preparedness and forewarning. Methods that have been used to forewarn airports of volcanic activity include real-time detection of explosive volcanic activity, forecasts of ash dispersion and deposition, and detection of approaching ash clouds using ground-based Doppler radar. Given the demonstrated vulnerability of airports to disruption from volcanic activity, at-risk airports should develop operational plans for ashfall events, and volcano-monitoring agencies should provide timely forewarning of imminent volcanic-ash hazards directly to airport operators.  相似文献   

16.
Nevado de Toluca Volcano (NTV), located in central Mexico, is a large stratovolcano, with an explosive history. The area is one of the most important developing centers (>2 millions) in Mexico and in the last 30 yrs large population growth and expansion have increased the potential risk in case of a reactivation of the volcano. As part of a study to assess volcanic risk, this paper presents the results of the volcanic hazard analysis for the NTV. A total of 150 stratigraphic sections were made in the field and three new ages were obtained. Eruptions from NTV produced a complex sequence of pyroclastic deposits that have affected the area at least 18 times during the last 100,000 yrs. Eight vulcanian, four plinian and one-ultraplinian eruptions as well as the destruction of at least three domes occurred in the last 42,000 yr BP as well as two sector collapses in the last 100,000 yrs. Isopach and isopleth maps for the main ulraplinian eruption were also made. The original cone height (5,080 m.a.s.l) was reconstructed through geomorphologic methods. The maximum distance calculated with the energy line for the block and ash flows was 41 km, 35 km for pumice flows and 45 km for debris avalanches. The dominant wind direction at altitudes of 20–30 km is to the east-northeast from November to March, west-northwest in April and west from May to October. Five hazards maps (block and ash flows, pumice flows, ash fall, debris avalanches, and lahars) were made for the NTV. The pyroclastic flows and lahars represent very high to medium hazard for Toluca, Villa Guerrero, Coatepec, Tianguistengo, Metepec, Tenango, Lerma and Zinacantepec. A new debris avalanche would probably affect the south and northeast because of active faulting (E–W and NW–SE) and existing topographic differences in height.  相似文献   

17.
The San Ignacio Fm, a late Palaeozoic foreland basin succession that crops out in the Frontal Cordillera (Argentinean Andes), contains lacustrine microbial carbonates and volcanic rocks. Modification by extensive pedogenic processes contributed to the massive aspect of the calcareous beds. Most of the volcanic deposits in the San Ignacio Fm consist of pyroclastic rocks and resedimented volcaniclastic deposits. Less frequent lava flows produced during effusive eruptions led to the generation of tabular layers of fine-grained, greenish or grey andesites, trachytes and dacites. Pyroclastic flow deposits correspond mainly to welded ignimbrites made up of former glassy pyroclasts devitrified to microcrystalline groundmass, scarce crystals of euhedral plagioclase, quartz and K-feldspar, opaque minerals, aggregates of fine-grained phyllosilicates and fiammes defining a bedding-parallel foliation generated by welding or diagenetic compaction. Widespread silicified and silica-permineralized plant remains and carbonate mud clasts are found, usually embedded within the ignimbrites. The carbonate sequences are underlain and overlain by volcanic rocks. The carbonate sequence bottoms are mostly gradational, while their tops are usually sharp. The lower part of the carbonate sequences is made up of mud which appear progressively, filling interstices in the top of the underlying volcanic rocks. They gradually become more abundant until they form the whole of the rock fabric. Carbonate on volcanic sandstones and pyroclastic deposits occur, with the nucleation of micritic carbonate and associated production of pyrite. Cyanobacteria, which formed the locus of mineral precipitation, were related with this nucleation. The growth of some of the algal mounds was halted by the progressive accumulation of volcanic ash particles, but in most cases the upper boundary is sharp and suddenly truncated by pyroclastic flows or volcanic avalanches. These pyroclastic flows partially destroyed the carbonate beds and palaeosols. Microbial carbonate clasts, silicified and silica-permineralized tree trunks, log stumps and other plant remains such as small branches and small roots inside pieces of wood (interpreted as fragments of nurse logs) are commonly found embedded within the ignimbrites. The study of the carbonate and volcanic rocks of the San Ignacio Fm allows the authors to propose a facies model that increases our understanding of lacustrine environments that developed in volcanic settings.  相似文献   

18.
Bontâu is a major eroded composite volcano filling the Miocene Zârand extensional basin, near the junction between the Codru-Moma and Highi?-Drocea Mountains, at the tectonic boundary between the South and North Apuseni Mountains. It is a quasi-symmetric structure (16–18 km in diameter) centered on an eroded vent area (9×4 km), buttressed to the south against Mesozoic ophiolites and sedimentary deposits of the South Apuseni Mountains. The volcano was built up in two sub-aerial phases (14–12.5 Ma and 11–10 Ma) from successive eruptions of andesite lava and pyroclastic rocks with a time-increasing volatile budget. The initial phase was dominated by emplacement of pyroxene andesite and resulted in scattered individual volcanic lava domes associated marginally with lava flows and/or pyroclastic block-and-ash flows. The second phase is characterized by amphibole-pyroxene andesite as a succession of pyroclastic eruptions (varying from strombolian to subplinian type) and extrusion of volcanic domes that resulted in the formation of a central vent area. Numerous debris flow deposits accumulated at the periphery of primary pyroclastic deposits. Several intrusive andesitic-dioritic bodies and associated hydrothermal and mineralization processes are known in the volcano vent complex area. Distal epiclastic deposits initially as gravity mass flows and then as alluvial volcaniclastic and terrestrial detritic and coal filled the basin around the volcano in its western and eastern part. Chemical analyses show that lavas are calc-alkaline andesites with SiO2 ranging from 56–61%. The petrographical differences between the two stages are an increase in amphibole content at the expense of two pyroxenes (augite and hypersthene) in the second stage of eruption; CaO and MgO contents decrease with increasing SiO2. In spite of a ~4 Ma evolution, the compositions of calc-alkaline lavas suggest similar fractionation processes. The extensional setting favored two pulses of short-lived magma chamber processes.  相似文献   

19.
松辽盆地改造残留的古火山机构与现代火山机构的类比分析   总被引:20,自引:3,他引:17  
现代火山机构形态有盾状、锥状和穹状,可按喷发样式进一步划分为7种类型。据此分类,在松辽盆地周缘剖面及其北部徐家围子断陷区可识别出4类火山机构:盾状火山机构,由喷溢相熔岩组成,可夹有薄层爆发相火山碎屑岩;层火山机构,由互层的熔岩与火山碎屑岩组成,喷溢相与爆发相交替的序列明显;火山碎屑锥,几乎全部由火山碎屑(熔)岩组成,爆发相为主;熔岩穹丘由高粘度的流纹质、英安质熔岩堵塞火山口后缓慢挤出形成,喷溢相和侵出相发育,兼有火山通道相。盆地内埋藏火山机构最小坡度为3°,最大坡度为25°,底部直径为2~14 km,分布面积为4~50 km2,火山岩厚度为100~600 m;总体上呈现出数目多、个体规模小、受区域大断裂控制、具裂隙式-多中心喷发、彼此相互叠置的特征。火山岩岩性和岩相是控制松辽盆地古火山机构类型及形态的主要因素。  相似文献   

20.
Merapi, an andesitic volcanic complex in Central Java, is one of the most frequently erupting volcanoes in Indonesia and poses a permanent threat to the surrounding population of over 1 million people. With frequently recurring volcanic activity, the sixty or so reported eruptions since the mid-1500s have caused ~7,000 fatalities and destroyed numerous villages in the region. In June 2006, an eruption affected the densely populated area on the volcano’s southern and south-eastern flanks for the first time in almost a century. The resultant block-and-ash flows (BAFs) travelled down an incised river valley (Kali Gendol) to a distance of 7 km from the source, breaking out of the main channel at four main locations. Unconfined (overbank) BAFs were generated, which covered the interfluve regions on either side of the main valley and buried buildings and other infrastructure features in the village of Kaliadem, situated on the western bank of the Gendol valley ~5 km from the summit of Merapi. Using traditional volcanological field-based methods and non-invasive, high-resolution ground-penetrating radar techniques, the morphology and internal architecture of these overbank deposits were studied in detail in order to evaluate the destructive impact of these flows in a local context. The results show that complex, local-scale variations in flow dynamics and deposit architectures are apparent and that BAFs are capable of transporting significant numbers of large blocks (>1–2 m) out of the valley confines. We propose a conceptual model for the escape of these channelised BAFs onto the interfluvial terrace at Kaliadem and show, through a stratigraphic analysis of the pyroclastic successions underlying the village and adjacent areas on the volcano’s southern flank, that the area has been affected repeatedly by overbank BAFs and explosive eruptions over the past few 100 years (and more).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号