首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 469 毫秒
1.
The available published data were used to reveal the principal conditions and factors that control the formation and evolution of the Black Sea water salinity. Formalization of the major processes that contribute to the formation of sea salinity structure enabled, based on the present-day data on water balance, the reproduction of profiles of water salinity and the coefficient of vertical water exchange K Z after 2, 4, 6, 8, and 10 ka since the beginning of water exchange with the Sea of Marmara through the Bosphorus. The time during which the present-day profile of the Black Sea water salinity had formed was evaluated. The results of simulation for different formation stages of the Black Sea salinity structure were used to determine the major ways of salt input into the sea (with river runoff and waters of the Lower Bosphorus Current) and its removal from the sea (the Upper Bosphorus Current). It was established that the Black Sea water salinity regime has virtually attained a stationary state.Translated from Vodnye Resursy, Vol. 32, No. 2, 2005, pp. 154–164.Original Russian Text Copyright © 2005 by Leonov.  相似文献   

2.
For the identification of natural processes taking place in surface water layer in the Sea of Okhotsk and nearby water areas, satellite data were used to determine seasonal variations of chlorophyll “a” concentration and the problem of water typification by satellite data in the visible light range was solved. Analysis of the annual cycle of phytoplankton concentration variations confirmed the presence of a short explosion in phytoplankton population in the southern Sea of Okhotsk during ice cover formation, which had been predicted before by model calculations. Classes of water reflecting different geoenvironmental situations were identified for characteristic regions of the Sea of Okhotsk. The dependences of chlorophyll “a” concentration growth on temperature were calculated, and corrections were introduced in the standard relationships used in biooptic algorithms for different parts of the Sea of Okhotsk.  相似文献   

3.
Gargopa  Yu. M. 《Water Resources》2002,29(6):690-697
Correlation is established between the long-term variations in the frequency of the atmospheric circulation forms, water balance elements, and the Sea of Azov water salinity. It is found that the river runoff into the sea and the sea freshwater balance increase and the sea salinity decreases in the periods, when northern and western forms of atmospheric processes develop; in the periods with a greater frequency of the eastern type of atmospheric macroprocesses, the situation is reverse. It is also found that the effect of atmospheric circulation on the sea salinity tends to strengthen, whereas the effect of the human-induced decrease in river runoff tends to diminish. The current desalination of the Sea of Azov down to 10.5 is shown to be mainly due to the development of western and northern forms of atmospheric circulation in the cold season of a year during the last 10–15 years.  相似文献   

4.
The spatial and temporal changes in the Lena River runoff over the last 9 thousand years are reconstructed through studying the freshwater microfossils in sediment cores obtained from the Laptev Sea inner shelf immediately adjacent to the Lena delta and subject to the freshening effect of river water inflowing the sea through the main arms of the delta (the Trofimovskaya, Bykovskaya, and Tumatskaya arms), the sediments having been thoroughly AMS 14C dated. The freshwater species of diatoms (predominantly the river ones) and green algae that enter the shelf with river water served as indicators of river runoff. The reconstruction of paleosalinity of the sea surface water in the regions under study is based on the relationships (established earlier) between the distribution of freshwater diatoms in the surface layers of sediments in the Arctic seas and the gradients of water salinity in summer. Data on variations in the composition of aquatic microfossil associations in sediments and the reconstructed paleosalinity in the regions of the eastern and western paleovalleys of the Lena River are used to determine the main paleohydrologic events that controlled the variations in the Lena runoff into the shelf zone of the Laptev Sea during the Holocene.  相似文献   

5.
General geographic features of the Thames River, its basin, and mouth area, consisting of the tidal mouth reach of the river, a large estuary, and an open nearshore zone of the river mouth (the North Sea coastal zone) are discussed. The peculiarities of river and sea hydrological factors responsible for the regime of the Thames River mouth area are described in detail. Characteristics of the river water runoff were specified and supplemented by the data on the river inundations in the area of London. Particular emphasis was placed on variations in the mean sea level in the area of the Thames River mouth as well as on specific features of tides and storm surges in the area of the sea inlet into the estuary. Main regularities in the estuary evolution during Holocene and present-day morphological processes in the Thames River mouth area were revealed.  相似文献   

6.
Regularities in the response of the mouths of major rivers, flowing into the Caspian Sea, to large-scale variations in its level and river water runoff and sediment yield are considered. Changes in the morphological structure and hydrological regime of the Volga, Terek, Sulak, Ural, and Kura mouths have been analyzed in both geological past and separately for three modern periods: a considerable drop in Caspian Sea level before 1978, its abrupt rise in 1978–1995, and a relative stabilization in the subsequent years. Specific features were identified in the hydrological-morphological processes in different mouths, caused by the differences in river sediment yields, and the slopes of delta surface and mouth nearshore beds. Some theoretical and methodological approaches were verified in the analysis and evaluation of the processes under consideration. The obtained results of studies of the mouths of rivers flowing into the Caspian Sea can be regarded as examples and analogues in the assessment of processes, which take place at the mouths of other Russian and world rivers at present and can take place in the future under anticipated natural and anthropogenic variations in sea level and river runoff.  相似文献   

7.
Rivers on territory of the Republic of Serbia can be separated to three sea drainage basins: Black, Adriatic and Aegean. Majority of rivers belong to the Black Sea drainage basin. The Danube is the most important river in Serbia and one of the most important rivers of Europe. All rivers investigated in this paper represent direct or indirect tributaries of the Danube River and as that, they are belonging to the Black Sea drainage basin. In this study, the water quality status and the spatial and temporal trends of seven major rivers in Serbia were assessed through the application of ten parameters of Water Quality Index. Ten year (2004–2013) public database of environmental data was used. Into considerations were taken differences between every river individually and difference between sample positions on every single river. Based on the chemical parameters of water quality, it can be seen that the biggest rivers in Serbia show different values of WQ parameters. The highest WQ value is measured on the Drina River, while the lowest value is measured on the Ju?na Morava and the Tisza River. Analyses of parameters per period of year show that there is a statistically significant difference between values during warm and cold periods.  相似文献   

8.
Leonov  A. V.  Stygar  O. V. 《Water Resources》2001,28(5):535-552
A mathematical model based on average long-term data on water temperature, illumination, transparency, and nutrient content is used to calculate annual variations in the concentrations of organic and inorganic fractions of nutrients (C, N, Si, and P) in ten water areas in the Caspian Sea. The eutrophication of sea environment is examined with special emphasis on the increase in the biomass of aquatic animals (in particular, phyto- and zooplankton), the rate and duration of periods of plankton blooming, and changes in the conditions of nutrient limiting of primary production processes in different parts of the sea. Relationships between the inorganic components of N and P in river runoff and sea water areas are established. The obtained Nmin/DIP ratios show P primary production to be limited in the zone of influence of the Volga runoff, P and N primary production to be limited in other northern parts of the sea, and N primary production to be mainly limited in the middle and southern parts of the sea.  相似文献   

9.
Long-term observation data were used to carry out comparative analysis of variations in the biogenic matter runoff of the Dnestr River over a period of fifty years. Based on data of weekly monitoring in 2002–2004, annual dynamics of biogenic matter runoff was analyzed for the Dnestr River and for Dnestr Liman. It was found out that, in spite of the “buffer” role of the latter, the contribution of biogenic substances, finding their way in the sea with the Dnestr River water, to the eutrophication of the northwestern Black Sea remains appreciable (about 60 thousand ton year?1). Dissolved organic compounds account for 70% of the present-day biogenic matter runoff of the Dnestr River.  相似文献   

10.
The transformation conditions of oil hydrocarbons in water are considered for the case of Karkinitskii Bay, the Black Sea, where gas deposits have been developed actively in recent years and oil product pollution of marine environment has been recorded repeatedly. Data on measured oil hydrocarbon concentrations, their input into the northwestern part of the Black Sea, and experimental estimates of oil decomposition in the marine environment are presented. The biotransformation conditions of oil hydrocarbons are simulated by reproducing the biochemical activity of microflora and effecting substrate consumption processes, metabolic product excretions, and biomass decay. These processes maintain the biogenic substance turnover in water environment. The calculations are based on the morphometric characteristics of Karkinitskii Bay, and mean long-term data on the monthly dynamics of marine environmental characteristics (temperature, light intensity, transparency, atmospheric precipitation, and the characteristics of water regime and Danube runoff). A check calculation was performed to reproduce the concentration dynamics of biogenic substances and oil products with allowance made for the effect of river runoff and background pollution of the marine environment. The numerical scenarios take into account the marine environmental pollution conditions (an immediate discharge of 1000, 500, or 200 t of oil products per week) in winter, spring, summer, and autumn. The obtained model estimates of the rates of oil product decomposition and oxygen consumption are shown to agree well with experimental data. The time required for the concentration of oil products to reach the MAC after pollution of the marine environment is estimated.  相似文献   

11.
Naidenov  V. I.  Krutova  N. M. 《Water Resources》2002,29(3):270-281
Nonlinear mechanisms of long-term variations in the Caspian Sea level are described. It is shown that with account taken of the dependence of the evaporation depth from the Volga basin surface on soil moisture content and the dependence of the evaporation depth from the sea surface on its level, we obtain a fundamentally new (chaotic) oscillation mechanism with several attraction levels. The stochastic differential equations describing the water budget of the sea basin and the sea proper and the respective solutions of the Fokker–Planck–Kolmogorov equation are shown to have stationary bimodal density of the level probability. The random process, characterizing the sea level variations at a nonlinear dependence between the evaporation rate and the level is found to be non-Gaussian. Noise-induced transitions, caused by nonlinear evaporation processes are described. A new nonlinear stochastic theory describing the Caspian Sea level variations and based on predicted physical effects is suggested.  相似文献   

12.
Zubakov  V. A. 《Water Resources》2001,28(3):249-256
It is shown that the awareness of the regularities and causes of variations in the Caspian Sea level from the moment of its origin as an isolated lake basin in the Late Miocene (7.2 mln years ago) is of great importance for paleohydrology. Out of the seven principal hydrologic stages of the Caspian Sea history, four stages are considered in this paper: two lake stages (the Late Miocene and Middle Pliocene), the intermediate stage when the Caspian and Zanklinian basins were connected, and the stage of the Manych runoff. An important fact in the Caspian Sea history is emphasized: penetration of the Akchagylian fauna forebears into the Caspian Sea Basin through the Black Sea and the nowadays nonexistent Kuban–Terek Channel (between 5.3 and 3.3 mln years ago). Three phases of penetration of the Mediterranean Zanklinian fauna into the Caspian Basin are recognized. The channel became closed during the Middle Pliocene phase of the Great Caucasian Range elevation (3.3–2.5 mln years ago). This isolation of the Caspian Basin caused the formation of the Great Akchagylian Lake. Its water washed out the New Manych Channel 2.5 mln years ago. From this moment on, the events that occurred in the Caspian Basin and in the Black and Mediterranean seas can be correlated in greater detail, link by link, within the 413-thousand-year period of water abundance.  相似文献   

13.
The Arctic Ocean is almost entirely surrounded by land, with shallow openings to the Pacific through Bering Strait (~ 45 m deep) and to the Atlantic through the Barents Sea (~50—450 m deep) and Fram Strait where the sill depth is around 2500 m. The bathy…  相似文献   

14.
It is established that the formation and evolution of the anaerobic zone of the Black Sea are associated with the beginning and development of the most recent salinization of the sea and the formation of pycnocline at intermediate depths; a deterioration of deep-water aeration and the formation of anaerobic conditions in deeper layers; the rate of sulfate-reduction first in the near-bed layer and later, as oxygen is depleted, in the water mass. Formalization of these processes based on refined present-day data on water balance enabled the reproduction of profiles of water salinity and vertical-exchange coefficient for different formation stages of salinity regime in the Black Sea. The vertical distribution of oxygen and hydrogen sulfide is reconstructed, and the rates of oxygen consumption in water column and sulfate reduction in the near-bed layer and at the upper boundary of the anaerobic zone are evaluated in numerical experiments. The obtained data show the transformation of the vertical distribution of oxygen and hydrogen sulfide in the Black Sea from the beginning of its most recent salinization to the present-day state. It is shown that the anaerobic zone rises from 2000 to 200 m within 500–600 years (in the period 3.9–4.5 Ka from the beginning of water exchange through the Bosphorus), and next the upper boundary of the anaerobic zone slowly ascends up to its present-day position (130–180 m). Mathematical modeling was used to evaluate the fluxes of oxygen and hydrogen sulfide at different formation stages of the anaerobic zone in the sea.__________Translated from Vodnye Resursy, Vol. 32, No. 3, 2005, pp. 307–321.Original Russian Text Copyright © 2005 by Leonov, Shaporenko.  相似文献   

15.
Abstract

The runoff and sediment of large rivers usually come from different source areas, which make different contributions to the sediment flux into the sea. This has been studied with the example of the Yellow River in China, whose suspended sediment flux into the Bohai Sea accounts for 19.4% of the world total. The drainage basin of this river can be divided into four major water and sediment source areas. The sediment flux into the sea is found to be closely related to the water and sediment from the different source areas in the drainage basin and, accordingly, an empirical regression model has been established to express this relationship. According to this model, in each tonne (t) of sediment from the fine sediment producing area (FSA), 0.85 t (for yearly series) and 0.72 t (for event series) can be transported into the sea; in each tonne of sediment from the coarse sediment producing area (CSA), only 0.21 t (for yearly series) and 0.34 t (for event series) can be transported into the sea. Since the 1970s, the Yellow River's sediment flux into the sea has declined markedly and this reduction can be attributed to a great degree to the soil control measures in the fine sediment producing area. Coupling the models of this study to the previously established models for estimating the impacts of soil control measures on water and sediment balance in the Yellow River basin, a quantitative prediction may be made for the change of sediment flux into the sea that might result from climate change and human activities in the future.  相似文献   

16.
Simultaneous monitoring of conservative and non-conservative tracers in streamflow offers a valuable means of obtaining information on the age and flow paths of water reaching the basin outlet. Previous studies of stormflow generation in a small forested basin on the Canadian Shield used isotopic (IHS) and geochemical hydrograph separations (GHS) to infer that some event water during snowmelt reaches the stream via subsurface pathways, and that surface water runoff is generated by direct precipitation on to saturated areas (DPSA) in the stream valley. These hypotheses were tested for rainfall inputs using simultaneous IHS (18O) and GHS (dissolved silica) of basin stormflow, supplemented by hydrochemical and hydrometric data from throughflow troughs installed on basin slopes. Comparison of pre-event and subsurface water hydrographs did not provide conclusive evidence for subsurface movement of event water to the stream, owing to the appreciable uncertainty associated with the hydrograph separations. However, IHSs of runoff at the soil–bedrock interface on basin slopes indicated that event water comprised 25–50% of total runoff from areas with deep soil cover, and that these contributions supplied event water flux from the basin in excess of that attributable to DPSA. The surface water component of stormflow estimated from the GHS was also largely the result of DPSA. GHS assumes that dissolved silica is rapidly and uniformly taken up by water infiltrating the soil and that water moving via surface pathways retains the low dissolved silica level of rainfall; however, neither assumption was supported by the hillslope results. Instead, results suggest that the observed depression of silica levels in basin stormflow previously attributed to dilution by DPSA was partly a function of transport of dilute event water to the channel via preferential pathways. Implications of these results for the general use of simultaneous IHS and GHS to infer hydrological processes are discussed. © 1997 by John Wiley & Sons, Ltd.  相似文献   

17.
The Dead Sea is the lowest spot on Earth. It is a closed saline lake located in the middle of the Jordan Rift Valley between Lake Tiberias and the Red Sea. Its major tributaries are the Jordan River itself and the Dead Sea side wadis. The Dead Sea has a unique ecosystem and its water has curative, industrial and recreational significance. The level of the Dead Sea has been continuously falling since the early 1930s at an average rate of 0·7 m per year. The water level, as of February 1998, is about 410·9 m below mean sea level. In this paper, a water balance model is developed for the Dead Sea by considering different hydrological components of this water balance, including precipitation, runoff, evaporation and groundwater flow. This model is calibrated based on historical levels of the Dead Sea. Different scenarios are investigated, including the proposed Dead Sea–Red Sea Canal. This project is supposed to halt the shrinking of the Dead Sea and restore it to pre‐1950 levels in the next century. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
For the first time, a dedicated release of the hydrology and water use model WaterGAP3, has been developed to spatially explicit calculate hydrological fluxes within river basins draining into the Mediterranean and Black Sea. The main differences between the new regional version of the global WaterGAP3 model and the previously applied global version WaterGAP2 can be found in the spatial resolution, snow modeling, and water use modeling. Comparison with observations shows that WaterGAP3 features a more realistic representation of modeled river runoff and inflow into both seas. WaterGAP3 generates more inflow to both seas than WaterGAP2. In the WaterGAP3 simulation, contributions to the total runoff into the Black Sea from individual discharge regions show in general a good agreement to climatology derived runoff, but lesser importance of Georgian rivers for the basin's water. After the successful model validation WaterGAP3 has been applied to correct estimates of seawater mass derived from the GRACE gravity mission and to account for freshwater inflow into both basins. The performance of the WaterGAP3 regional solution has been evaluated by comparing the seawater mass derived from GRACE corrected for the leakage of continental hydrology, to an independent estimate derived from steric-corrected satellite altimetry with steric correction from regional oceanographic models. The agreement is higher in the Mediterranean Sea than in the Black Sea. Results using WaterGAP3 and WaterGAP2 are not significantly different. However the agreement with the altimetry-derived results is higher using WaterGAP2, due to the smaller annual amplitude of the continental hydrology leakage from WaterGAP3. We conclude that the regional model WaterGAP3 is capable of realistically quantifying water mass variation in the region, further developments have been identified.  相似文献   

19.
The White Sea is a natural analogue of arctic seas. The pollution of the sea by petroleum hydrocarbons is not high now. However, the load on sea ecosystem can increase in the nearest future because of the anticipated industrial development in its watershed, including an increase in oil, coal, and diamond production. The specific features of the nature of arctic marine systems (hydrological, ice, hydrobiological, hydrochemical, and radiation regimes), and the poor knowledge of the conditions of dispersion, transformation, and utilization of petroleum hydrocarbons in such seas make their ecological studies especially important. Petroleum hydrocarbon concentrations in the waters of tributaries and water areas of the White Sea (for 1980–2006 and 1989–2006, respectively) were evaluated using literary and authors’ data. Analysis of the collected materials shows that the majority of petroleum hydrocarbons enter the sea’s water areas with river runoff. Petroleum hydrocarbon concentrations were evaluated in major tributaries of the sea, including the rivers of Northern Dvina, Onega, Mezen, Niva, Kem, and Keret, delivering petroleum hydrocarbons into the bays of Dvina, Onega, Mezen, and Kandalaksha, water area near the Solovetskie Islands, and Chupa Bay, respectively (Bay — Gulf). Model calculations should yield within-year variations in petroleum hydrocarbon concentrations in different part of the sea (under a correctly specified load) and the conditions of their biotransformation and horizontal transport through the boundaries between areas within the sea.  相似文献   

20.
Aliphatic and polycyclic aromatic hydrocarbons were studied in water, filtration and separation particulate matter, seston, and bottom sediments with the aim to determine their concentrations and origin and compare them with the concentrations of lipids and Corg (August 2006). The effect of anthropogenic hydrocarbons was identified mostly in the Northern Dvina mouth area and in the apex of Dvina Bay. In other parts of the sea, natural compounds dominate in all examined objects, since anthropogenic hydrocarbon cannot pass through the Northern Dvina-the White Sea geochemical barrier. The low temperatures in the high-latitude water areas are shown not to reduce the rate of diagenetic processes in the sedimentary strata.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号