首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 46 毫秒
1.
腾格里沙漠东南缘输沙势与最大可能输沙量之比较   总被引:3,自引:6,他引:3  
利用腾格里沙漠东南缘沙坡头站20年风况自记资料,计算了输沙势和最大可能输沙量,深入研究了二者之间的定量关系。另外,通过矢量合成法则,对合成输沙势和合成输沙量的关系也做了进一步研究。输沙势和最大可能输沙量不仅在量值上关系显著,而且在16个方位上的分布规律也存在一定的相关性。  相似文献   

2.
输沙势计算中的“时距”问题   总被引:4,自引:0,他引:4  
风力作用是干旱区风蚀过程和风沙地貌形成发展过程的动力基础,我们在探讨区域的风力作用时,通常是利用风速资料。风速是评价区域风沙活动的基础,但不同方法采集的风速资料对评价结果的影响并不一样。利用野外实测的风速资料进行不同时距处理,旨在说明时距在评价区域风沙作用的影响。结果表明,利用数据中值计算的结果要比平均值大11.31%,这说明以往研究中对输沙势的评价有偏大的现象。但是,由于以往所用数据的时距比较长,又造成计算的输沙势减小的趋势,随着时距增加,数据最大值/峰值降低,数据偏离中值的程度越明显,不论是利用中值还是平均值来计算输沙势,随着时距的增加,计算的DP值逐渐越小。对于用风速平均值计算的DP,1 min的计算结果要比5 min的计算大4.94%,比10 min的计算结果大16.90%,比15 min的计算结果大17.78%;而对于用中值计算的DP,1 min的计算结果要比5 min的计算大4.84%,比10 min的计算结果大16.70%,比15 min的计算结果大17.38%。  相似文献   

3.
科尔沁沙地奈曼旗近5年来风况及合成输沙势   总被引:8,自引:13,他引:8  
应用奈曼沙漠化研究站1998-2002年的气象资料, 统计分析了奈曼旗近5a来的风况特征和输沙势。结果表明: ①研究区3~5月起沙风发生频数最高, 占全年起沙风的38%~58%; 平均风速和最大风速值最大, 分别为6.0~7.5m·s-1和9.5~16.9m·s-1。该风况特征与地表冻融、裸露、干旱疏松相耦合, 形成了区内的风沙活动期。②在风沙活动期内, 风环境基本为锐双峰风况, 西北风居主导地位, 频数占54%; 南风和西南风次之, 频数占38%。③在风沙活动期内, 研究区属于高风能环境, 合成输沙势RDP为66.3VU(风速以m·s-1为单位), 合成输沙方向RDD为ESE113°。  相似文献   

4.
利用10个气象站点2001、2005、2010,2014年风速数据,计算并分析了晋北沙漠化地区起沙风风况及输沙势时空变化。结果表明:研究区年均起沙风频率和起沙风平均风速均为春季最大,冬季次之,夏季最小,各季节和全年年际变化均表现为大致减小趋势;输沙势显示研究区春季处于中风能环境,是最主要的风沙活动期,其他季节和全年整体上均处于低风能环境;春季风能环境总体呈减弱趋势,这可能是导致研究区2000年以来沙漠化逆转的重要因素之一;受地势影响,研究区春季风能环境呈北高南低、东高西低趋势,最高值位于东北部的大同盆地。  相似文献   

5.
库姆塔格沙漠风沙活动特征   总被引:6,自引:0,他引:6  
库姆塔格沙漠面积虽然较小,但其风沙地貌类型复杂,包含格状沙丘、复合型沙垄、金字塔沙丘以及"羽毛状"沙丘,其中"羽毛状沙丘"是该沙漠独特的沙丘类型,"羽毛状"沙漠也成了库姆塔格沙漠的代名词。以往对该沙漠风沙地貌的研究局限于遥感影像的判读或者理论分析,很少有实测数据的支持。近期对该沙漠的综合考察对该沙漠的风沙地貌有了新的认识。以建立在库姆塔格沙漠4个方位的5个气象站(测风站)的实测资料为基础,对库姆塔格沙漠近地层风况、风沙活动特征进行了研究。结果表明:(1)库姆塔格沙漠近地层风向复杂,总体可分为两种基本类型风向的区域:沙漠西北和北面为两组风向,而东南和南边为三组风向。(2)库姆塔格沙漠风沙活动强烈,沙漠绝大部分区域属于中风能环境外,南部部分地区都属于低风能环境。(3)该区域的风沙地貌类型和近地层风向特征与合成输沙势方向吻合,年合成输沙势方向在沙漠的西北和北面为西南方向,在多坝沟地区,输沙方向为西北方向,在沙漠南面为东北方向。风向变率在0.3~0.8之间,属于中比率,风况特征属于钝双峰风况或锐双峰风况。年输沙量在0.53~1.14 t/m2之间。  相似文献   

6.
近40a新疆输沙势的分析   总被引:7,自引:1,他引:7  
李红军  何清  杨青 《中国沙漠》2004,24(6):706-710
利用新疆100个气象站近40a来风的观测资料分析了南北疆合成输沙势的时空分布。分析表明: ①新疆风能高能地区较多, 其东部、北疆西部、西北部合成输沙势(RDP)较高, 南疆西部、西南部RDP较低, 北疆比南疆高。②北疆四季、年RDP从20世纪70年代以来波动减小, 南疆四季、年RDP在60、70年代达到最大, 之后到1998年振荡减小, 1998年后却陡然增大。南北疆RDP在春季最大, 夏季次之, 冬季最小, 在60年代较大, 70年代最大, 90年代最小。③南疆东部、西南、西北部RDP/DP(方向变率指数)较大, 中部、西部较小; 从东部到西部方向逐渐由偏西、西南向偏东、东南转变。北疆东部RDP/DP较大, 中部、天山中部和北麓平原一带在0.6~0.7之间, 西部、西北部有两个低值中心, 东北部在0.7~0.8之间; 方向以偏东南、东居多。  相似文献   

7.
输沙量与风速关系的几个问题   总被引:13,自引:5,他引:13  
贺大良 《中国沙漠》1993,13(2):14-18
输沙量及其强度是风沙危害程度的重要指标。在沙源丰富、地面干燥、平坦、无结构,无植被时,输沙量应正比于风速的三次方。但在输沙量与风速之间的经验回归方程中,V的方次有的大于3,这仅仅是数学计算产生的结果,为的是更好的配合回归曲线,V的方次高了,相应的V前面的系数必然会较小,反之亦然。风力可以吹动的最大沙粒质量与风速的6次方成正比。但风力能携带的总输沙量仍与风速的3次方成正比,二者不可混淆。一定风速下输沙的大颗粒多了,小颗粒就相对减少,总的输沙量仍然不变。  相似文献   

8.
 通过对沙尘暴强化观测试验期间风速、跃移颗粒数、输沙量等资料的统计与计算,对塔克拉玛干沙漠北缘荒漠过渡带肖塘地区春季风沙活动进行了研究。结果表明,肖塘地区春季2 m高度1 s时距的起沙风速为4.9~5.0 m·s-1,1 min时距的起沙风速为4.4 m·s-1;起沙风速随着风速等级的增加,出现的频率相应减少,主要集中在4.4~8.4 m·s-1 之间;输沙势、输沙量的方位分布与起沙风相似,以ENE、E和ESE 3个方位为主,观测期间(1个月)总输沙势为80.8 VU,合成输沙势为13.7 VU,合成输沙势方向为241°;最大可能输沙总量为1 921.8 kg·m-1,合成输沙量为286.8 kg·m-1,合成输沙方向为235°,与输沙势的合成方向一致。  相似文献   

9.
莫高窟窟顶风况及输沙势研究   总被引:2,自引:5,他引:2  
以1998—2001年莫高窟窟顶自动气象观测站记录的风资料为基础,通过对风况的统计和输沙势的计算,从风沙环境特征阐明了研究区主要受西北、东北和偏南三组风向共同作用。三组风况出现频率明显不同,其输沙势有一定差异。研究区风向变率指数较小,风况复杂,属于中风能环境。通过对风况的分析及输沙势的理论计算,以期对莫高窟的风沙危害防治提供科学理论依据。最后通过对莫高窟2001年输沙势(量)的对比计算,指出了现有输沙势公式存在的局限与不足。  相似文献   

10.
青海湖东克土沙区风沙运动规律及防治对策   总被引:1,自引:1,他引:1  
起沙风况、输沙势和输沙量是反映风沙活动强度的3个重要指标。以青海湖东克土流沙区的风况资料为依据,结合实地风沙观测数据,分析了区域的风沙活动特征。结果表明:(1)3\,4\,5月(主要风沙活动期)起沙风出现的比率分别是0.40、0.47\,0.53,起沙风速集中于6~16 m·s-1,占统计时段的91%,高能起沙风速(达到16 m·s-1及其以上的风速)集中在16:00-20:00。(2)研究区域总体上属于高能风况环境,3月和5月输沙势的风向变率都小于0.3,表明风向变幅大,风能不集中,对于沙区周围公路和草原的危害从不同的方向推进。(3)观测期间各方位输沙量总和为503.67 kg,NE、ENE、E和ESE 4个方位的输沙量最大,占总输沙量的43.56%。  相似文献   

11.
为了探究风沙流起动过程中沙粒输运特征,利用PTV测量技术在风洞中对风沙流起动过程进行了测量,分析了沙粒空间分布、沙粒平均水平速度、输沙率、沙粒数密度和输沙通量随时间的变化规律。结果表明:风沙流起动时间大约为1.5 s。起动过程中,输沙率随时间迅速增加,气流中沙粒总数目随时间的变化可表示为指数函数,沙粒数密度和输沙通量随高度的变化均可近似表示为负指数衰减函数。在t=1.0 s时刻的沙粒平均水平速度大于相同高度处以后时刻的沙粒平均水平速度,同一高度处t=1.5 s以后的沙粒数密度大于t=0.5 s、1.0 s时刻的沙粒数密度,同一高度处t=1.5 s以后的输沙通量大于t=1.0 s时刻的输沙通量。沙粒数密度随高度的衰减率一般随时间的增加而减小,并在t=1.5 s后逐渐接近稳定值。  相似文献   

12.
 戈壁输沙量与输沙势的定量关系一直是风沙地貌及风沙工程的关键科学问题之一。对莫高窟顶戈壁输沙量的长期监测(2008年5月至2009年4月)结果表明,窟顶戈壁输沙势为129VU,窟顶北侧的总输沙量约905 kg·m-1左右。其中,偏东风输沙量达500 kg·m-1,偏西风输沙量达320 kg·m-1。当风速大于11 m·s-1时,戈壁风沙发生长距离的输送,偏西风可将265 kg·m-1的沙量输送到窟区,偏东风可将410 kg·m-1的沙量吹回到鸣沙山。根据本区偏东风强盛,且偏东风戈壁输沙量大于偏西风输沙量的特点,提出了以固为主,输导结合的莫高窟风沙防治的主导思路。认为在窟顶构建一个既能阻截沙物质,又能对阻截的沙物质进行输导的人工戈壁床面是完全可行的。  相似文献   

13.
青藏高原红梁河风沙动力环境特征   总被引:1,自引:0,他引:1  
青藏高原红梁河沙地广布,目前对其风沙活动规律认识不足,不利于开展防沙工作。为此,通过野外观测和室内分析、计算等方法,对红梁河的风沙动力环境特征进行研究。结果表明:红梁河年起沙风向以N风为主,冬春季输沙势(DP)、合成输沙势(RDP)大,夏秋季输沙势、合成输沙势小,合成输沙方向(RDD)年内变化较小。年输沙势为249.84VU,属于中风能环境,年合成输沙势为242.92VU,年方向变率指数(RDP/DP)为0.97,属于大比率,年合成输沙方向为173.8°,为S方向。八方位年实测输沙总量为434.33kg·m-1,以SW方向的输沙量最大。  相似文献   

14.
甘肃瓜州锁阳城南雅丹地貌区起沙风况与输沙势特征   总被引:2,自引:2,他引:2  
以2016-2018年定位气象观测数据为依据,分析了甘肃瓜州锁阳城南雅丹地貌区的起沙风况及输沙势变化情况。结果表明:(1)研究区起沙风由两组风向近似相反的风所组成,主风向为NE-E,占全年起沙风的68.86%,次风向为WSW-WNW向,占27.67%;(2)年平均起沙风频率为19.0%,春季和夏季起沙风频率最高,分别占全年的33.57%和34.69%,各季起沙风向分布特征基本一致;(3)研究区风况类型为高风能环境和中等风向变率的钝双峰型风况。输沙势的大小和方向变率具有明显的季节性,春、夏季的总输沙势(DP)和合成输沙势(RDP)较高,夏季和冬季的方向变率RDP/DP值较高,合成输沙方向(RDD)245.45°~253.01°(WSW);(4)研究区雅丹地貌长轴走向与主输沙方向一致,说明风力是其形成的主要动力条件。  相似文献   

15.
风沙危害是敦煌莫高窟保护面临的主要环境问题之一,建立一个完整的防护体系是解决这一问题的有效途径。在对20世纪80年代以来建立的防沙治沙试验工程防护效应分析研究的基础上,对敦煌莫高窟风沙危害综合防护体系设计进行了讨论。根据因地制宜,因害设防;以固为主,固、阻、输、导相结合;以工程和生物措施为主,兼顾化学固沙;高新技术与常规治理技术相结合;重点治理,分阶段实施与长远目标相结合的设计原则,认为根据不同地貌特征及地表组成物质,依次建立鸣沙山前缘流动沙丘和平坦沙地阻固区、窟顶戈壁防护区、洞体崖面固结区、石窟对面流动沙丘固定区、窟区防护林带建设区及天然植被封育保护区,可使危害莫高窟的风沙灾害得到有效控制,并达到莫高窟作为世界文化遗产和全国重点文物保护单位对环境质量的要求。  相似文献   

16.
风沙流中不同粒径组沙粒的输沙量垂向分布实验研究   总被引:14,自引:0,他引:14  
冯大军  倪晋仁  李振山 《地理学报》2007,62(11):1194-1203
在非均匀沙床面上, 风沙流中不同粒径组沙粒的输沙量垂向分布, 是非均匀风沙运动研究的重点。研究首先通过风洞实验, 收集了风洞中垂线垂向输沙量分布沙样, 然后对集沙沙样进行了沙粒粒度分析实验, 实验分析结果得出了不同粒径组沙粒的输沙量垂向分布规律, 基于稳定平衡风沙跃移运动模型和本文实验结果, 最后数值模拟研究了不同粒径组沙粒输沙量垂向分布, 与沙粒起跳速度和角度之间的关系。本文研究结果得出, 在非均匀风沙流中, 粗粒径组沙粒垂向输沙量上部符合指数递减分布但近床面区偏离指数分布, 呈现为偏大型分布, 粗粒径组对应的沙粒起跳速度和角度分布均为指数函数; 细粒径组沙粒垂向输沙量在整 个高度上均符合指数递减规律, 细粒径组沙粒对应的起跳速度分布为指数函数, 起跳角度分布为高斯函数。沙粒的平均起跳速度, 在0.4u*~2.2u* 之间变化, 随着气流风速(u*) 和沙粒粒径的增加而减小。  相似文献   

17.
毛乌素沙地植被覆盖率与风蚀输沙率定量关系   总被引:54,自引:2,他引:54  
基于毛乌素沙地不同植被覆盖条件下的风蚀输沙率实地观测数据,借鉴国外最新的建模思想,采用Matlab5.3软件对数据进行非线性回归,建立毛乌素沙地植被覆盖率与风蚀输沙率之间的定量关系模型,比较系统地考察了植被覆盖对沙粒起动风速和风蚀输沙率的影响,确定了不同风速下的有效植被覆盖率。结果表明,在毛乌素沙地要有效减少和防治风蚀,植被覆盖率必须达到40-50%的水平,而要保证在最高风速下风蚀输沙得到有效控制,植被覆盖率必须达到60-70%的水平。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号