首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
柔性桩复合地基承载力数值计算   总被引:1,自引:1,他引:0  
谭峰屹  汪稔  赵丽 《岩土力学》2011,32(1):288-292
利用ANSYS有限元软件对柔性桩单(多)桩复合地基的承载力进行了数值计算,考虑的因素有:荷载、置换率、桩长径比和桩距,研究结果表明:随着荷载桩和长径比的增加,柔性桩单桩复合地基的桩身轴向应力峰值基本出现在距桩顶0.1倍左右桩长处,两者的变化均导致桩、土沉降有相同变化趋势;置换率的增加会导致桩承担更多荷载,但桩-土沉降变化趋势相反,不利于柔性桩复合地基的共同沉降;荷载和桩长径比对柔性桩多桩复合地基桩体承担的荷载贡献不大,但会导致桩-土有共同的变化趋势;桩距的变化能够导致柔性桩桩体承担的荷载有较大范围的变化,桩间土沉降较之桩沉降趋势更为明显,对柔性桩复合地基承载特性有一定的影响。  相似文献   

2.
Static and dynamic lateral load tests were carried out on model aluminium single piles embedded in soft clay to study its bending behaviour. Model aluminium piles with length to diameter ratios of 10, 20, 30 and 40 were used. Static lateral load tests were conducted on piles by rope and pulley arrangement upto failure and load–deflection curves were obtained. Dynamic lateral load tests were carried out for different magnitudes of load ranging from 7 to 30 N at wide range of frequencies from 2 to 50 Hz. The load transferred to the pile, pile head displacement and the strain variation along the pile length were measured using a Data Acquisition System. Safe static lateral load capacity for all piles is interpreted from load–deflection curves. Dynamic characteristics of the soil–pile system were arrived from the acquired experimental data. The soil–pile system behaves predominantly in nonlinear fashion even at low frequency under dynamic load. The displacement amplitude under dynamic load is magnified by 4.5–6.5 times the static deflection for all piles embedded in soft clay. But, the peak magnification factor reduces with an increase in the magnitude of lateral load mainly because of increase of hysteretic damping at very soft consistency. The maximum BM occurs at the fundamental frequency of the soil–pile system. Even the lower part of the pile affects the pile head response to the inertial load applied at the pile head. The maximum dynamic BM is magnified by about 1.5 times the maximum static BM for model piles in tested consistency of clay. The maximum dynamic BM occurs at a depth of about 1.5 times the depth of maximum static BM for model piles, which indicates an increase of active pile length under dynamic load.  相似文献   

3.
This paper is dedicated to the non-linear numerical modelling of the soil–structure interface. Thus, in a first part, after the presentation of the constitutive model, the soil–structure interface interaction is treated in terms of direct shear test simulations. A strategy for the interface model parameters’ identification is also presented. This strategy is linked to the similitude of soil–structure interface behavior and the soil behavior, regarding the interface surface roughness. In a second part, the performance of the numerical simulations are verified numerically against published results for soil–structure experimental shear tests. Finally, as an application, interface stress paths are studied in axially loaded pile–soil systems and load transfer mechanisms are identified.  相似文献   

4.
This work investigates the dynamic response of pile groups embedded in a poroelastic medium subjected to horizontal loading. The dynamic response is analyzed using the Muki and Sternberg Method. The load transfer problem is formulated in terms of a second-kind Fredholm integral. The dynamic impedance of the pile groups is computed using the pile–soil–pile dynamic interaction factors. The shear force, bending moment and pore pressure is obtained using the superposition method. Numerical results indicate that the pile flexibility ratio and the pile distance have considerable influence on the dynamic response of the piles and the poroelastic medium.  相似文献   

5.
Capacity based design of pile foundations limits the soil-structure interaction mechanism to group bearing capacity estimation, neglecting, in most cases, the contribution of the raft. On the other hand, a straightforward, nonlinear, 3-D analysis, accounting for soil and structural nonlinearities and the effects arising from pile–soil–pile interaction, would be extremely high CPU-time demanding and will necessitate the use of exceptionally powerful numerical tools. With the aim of investigating the most efficient, precise, and economical design for a bridge foundation, a hybrid method, compatible with the notion of sub-structuring is proposed. It is based on both experimental data and nonlinear 3-D analysis. The first step to achieve these targets is a back-analysis of a static pile load test, fitting values for soil shear strength, deformation modulus, and shear strength mobilization at the soil–pile interface. Subsequently, the response of 2 × 2 and 3 × 3 pile group configurations is numerically established and the distribution of the applied load to the raft and the characteristic piles is discussed. Finally, a design strategy for an optimized design of pile raft foundations subjected to non-uniform vertical loading is proposed.  相似文献   

6.
The load distribution and deflection of large diameter piles are investigated by lateral load transfer method (py curve). Special attention is given to the soil continuity and soil resistance using three-dimensional finite element analysis. A framework for determining a py curve is calculated based on the surrounding soil stress. The appropriate parametric studies needed for verifying the py characteristic are presented in this paper. Through comparisons with results of field load tests, the three-dimensional numerical methodology in the present study is in good agreement with the general trend observed by in situ measurements and thus, represents a realistic soil–pile interaction for laterally loaded piles in clay than that of existing py method. It can be said that a rigorous numerical analysis can overcome the limitations of existing py methods to some extent by considering the effect of realistic three-dimensional combination of pile–soil forces.  相似文献   

7.
This study used model pile load testing and numerical analysis to investigate the experimental analysis results of pile and soil responses for lateral load testing due to the flexural yielding of a pile, and to examine the applicability of the distributed plastic hinge model to the numerical simulation of inelastic pile response. A lateral load test on an aluminum model pile in sand was conducted as an analysis case. The pile was loaded to a large lateral pile-head displacement, a displacement under which some of the pile sections yielded and thus the pile had inelastic flexural deformation. The test results showed that before the pile yielded, the depth of maximum moment increased with increasing load due to soil nonlinearity; after the pile yielded, the depth of maximum moment varied less and the plastic region expanded upward and downward around this depth with increasing pile displacement. In deducing the responses of the pile and soil for the pile-soil system, the actual nonlinear flexural rigidity of the pile section built based on the bending test was essential to retrieve rational ones. In addition, the distributed plastic hinge model was shown to be effective to model the inelastic pile responses and capture the development of plastic zones in the pile.  相似文献   

8.

Physical-scaled model testing under 1 g conditions is carried out in obtaining the vertical response of fixed head floating-inclined single piles embedded in dry sand. Practical pile inclinations of 5° and 10° besides a vertical pile (0°) subjected to static and dynamic vertical pile head loadings are considered. To account for the effects of soil nonlinearity as well as the soil–pile interface nonlinearity on the response of piles, a range of low-to-high magnitude of pile head displacements is considered for the static case while a varying amplitude of harmonic accelerations for a wide range of frequencies is considered for the dynamic case. Experimental results are obtained in the form of pile head stiffnesses and strains generated in the pile under both the static and dynamic loadings. Results suggest that the nonlinear behavior of soil as well as the nonlinearity generated at the interface between the soil and the pile as the result of applied loading considerably affect the response of piles. The soil–pile interface nonlinearity that governs the slippage of pile shows a clear influence on the pile head stiffnesses by providing two distinct values of stiffnesses corresponding to the push and the pull directional movement of piles; the two values are significantly different. Axial and bending strains generated in the piles show expected dependency on the amplitude of applied loading; the pile head-level bending strain increases almost linearly with the increase in the angle of pile inclination.

  相似文献   

9.
Lateral load-deflection behaviour of single piles is often analysed in practice on the basis of methods of load-transfer PY curves. The paper is aimed at presenting the results of the interpretation of five full-scale horizontal loading tests of single instrumented piles in two sandy soils, in order to define the parameters of PY curves, namely the initial lateral reaction modulus and the lateral soil resistance, in correlation with the pressuremeter test parameters. PY curve parameters were found varying as a power of lateral pile/soil stiffness, on the basis of which hyperbolic PY curves in sand were proposed. The predictive capabilities of the proposed PY curves were assessed by predicting the soil/pile response in full-scale tests as well as in centrifuge tests and a very good agreement was found between the computed deflections and bending moments, and the measured ones. Small-sized database of full-scale pile loading tests in sand was built and a comparative study of some commonly used PY curve methods was undertaken. Moreover, it was shown that the load-deflection curves of these test piles may be normalised in a practical form for an approximate evaluation of pile deflection in a preliminary stage of pile design. At last, a parametric study undertaken on the basis of the proposed PY curves showed the significant influence of the lateral pile/soil stiffness on the non-linear load-deflection response.  相似文献   

10.
杨骁  何光辉 《岩土力学》2012,33(7):2189-2195
将地震液化场地分为地表的上覆未液化土层、底部的未液化基层以及夹在两者之间的液化土层,基于桩-土相互作用的非线性Winkler模型,考虑桩弯曲的非线性弯矩-曲率本构关系和桩的几何非线性变形,建立了液化土层横向扩展下桩非线性大挠度变形的基本控制方程,并利用打靶法进行了数值求解。同时,给出了桩线弹性小变形情形下的解析解。通过与非线性有限元解和线弹性小变形解析解的比较,验证了文中打靶法的有效性和可靠性。用数值方法分析了液化土层横向扩展对桩力学性能的影响,结果表明:非线性桩-土相互作用和桩材料非线性效应强于桩的几何非线性效应,随着液化土层横向扩展位移的增加,几何非线性效应逐渐增大,此时,应采用完全非线性模型进行桩力学行为的分析。  相似文献   

11.
Negative skin friction (NSF) along a pile caused by soil consolidation is of great concern to engineers. The development of NSF is time-dependent because soil consolidation is also time-dependent. In this paper, a numerical solution is provided for the development of negative skin friction of a pile in nonlinear consolidated soil under different loads on a pile top. A hyperbolic interface model is also developed. This model considers the development of shear strength during soil consolidation and loading–unloading scenarios at the pile–soil interface. One-dimensional nonlinear consolidation theory is invoked to estimate the soil settlement and shear strength. The distributions of NSF and the axial force along the pile are obtained using the differential quadrature method (DQM). The influences of soil consolidation and different pile loads on the negative skin friction of a pile are discussed.  相似文献   

12.
Dynamic experimental studies on the active lengths of a fixed-head floating pile under static and dynamic loading conditions are reported, focusing on the effects of local nonlinearity and resonant behavior of soil. Results obtained from the laterally loaded model soil-pile system subjected to low-to-high amplitude pile head loading suggest a strong influence of local nonlinearity on the active lengths of the pile. Such obtained experimental results are further compared with the available approximate equations for estimating the active lengths. The comparisons reveal the closeness in values for very low amplitude of loadings, but for intermediate-to-high amplitude of loadings, the experimental values are smaller than predicted by the approximate equations. Moreover, both the static and dynamic active lengths of the pile converge to an approximately identical value of six times the diameter of the pile for intermediate-to-high amplitude of loadings. This suggests that the active lengths of the pile are, in fact, the same for both the static and dynamic loadings, under nonlinear conditions. Additionally, results also suggest that the passive-type failures of soil induced by the applied lateral loadings in front of the pile govern the active lengths. Furthermore, the dynamic active lengths of the pile do not show any significant dependency on the resonance in the soil.  相似文献   

13.
基坑开挖时邻近桩基性状的数值分析   总被引:9,自引:1,他引:8  
陈福全  汪金卫  刘毓氚 《岩土力学》2008,29(7):1971-1976
基坑开挖时尤为关注的问题是土体侧向移动对邻近桩基的不利影响,土体的侧向移动使邻近桩基产生侧向位移和附加应力及弯矩,甚至可能使上部建筑物功能失效。采用土工有限元软件Plaxis 8.2对内支撑排桩支护基坑开挖过程进行数值模拟,分析了基坑开挖时对邻近桩基的各种影响因素,包括单排桩、双排桩在不同开挖深度、支护桩的刚度、桩基刚度、桩基距基坑开挖面距离、桩身的约束和桩长条件下桩身水平位移和弯矩的变化特性。  相似文献   

14.
波浪、船舶等长期水平循环荷载作用下,桩基将不可避免地产生附加应力和变形。针对饱和黏土地层,开展离心模型试验研究了船舶系泊水平荷载作用下单桩和群桩的变形特性。发现水平循环加-卸载诱发了桩周土体的塑性变形,进而导致桩身产生了不可恢复的水平位移和弯曲变形。随着循环荷载的增加,单桩和群桩的桩顶最大水平位移和残余水平位移均同时增加,但残余水平位移明显小于最大水平位移。单桩的桩顶残余水平位移与最大位移比值介于0.17~0.22;群桩的桩顶残余水平位移与最大水平位移比值介于0.30~0.84。水平循环加-卸载作用下,桩身残余弯曲应变明显小于最大弯曲应变。单桩的残余弯曲应变与最大弯曲应变比值介于0.13~0.50;群桩的桩身残余弯曲应变与最大弯曲应变比值介于0.23~0.82。群桩前桩的残余和最大弯曲应变明显大于后桩,前桩与后桩的最大弯曲应变、残余应变比值分别高达3.2和3.1。因此,前桩要采取合理的加固和保护措施,以确保桩基长期服役的安全性。  相似文献   

15.
王雨  陈文化  王锦华 《岩土力学》2016,37(3):819-826
隧道开挖会降低邻近桩基承载力,如何更为合理评价桩基水平附加响应是需要解决的问题。基于Pasternak双参数地基模型和三折线弹塑性荷载传递模型,采用两阶段分析法,并考虑侧向土体作用及地基土层的非均质特性,提出了更符合实际的单桩水平反应简化分析方法。通过与Winkler地基梁法及边界元法的对比分析,验证了方法的合理性。结合对单桩水平反应的多种影响因素进行参数分析,通过各因素相应的修正系数来对基准工况中单桩最大水平反应进行修正,得到计算工况中单桩的最大水平位移和最大弯矩。分析结果表明,桩基水平位移计算时可忽略侧向土体作用,而弯矩计算时应予以考虑;桩基计算工况的最大水平位移 最大弯矩 与平均地层损失比 呈现线性关系,而与隧道半径R、隧道轴线深度H、桩距隧道中心线距离x及桩身柔度系数 均呈现非线性关系。  相似文献   

16.
Uplift capacity of single piles: predictions and performance   总被引:4,自引:0,他引:4  
The paper pertains to the development of a simple semi-empirical model for predicting the uplift capacity of piles embedded in sand. Various pile and soil parameters such as length (L), diameter (d) of the pile and angle of friction (ϕ), soil–pile friction angle (δ) and unit weight (γ) of the soil which have direct influence on the uplift capacity of the pile are incorporated in the analysis. A comparative assessment of the ultimate uplift capacity of piles predicted by using the proposed theory and some of the available theories are made with respect to each other and with reference to the measured values obtained from model tests in the laboratory. For this purpose experimental data have been collected from the literature and also from model tests conducted as a part of the present investigation. The study shows the proposed model has an excellent potential in predicting the uplift capacity of piles embedded in sand that are consistent with model pile test results.  相似文献   

17.
可液化场地微型桩的地震响应分析是确保工程安全和优化抗震设计的前提。应用动态离心机试验和三维有效应力数值分析方法,研究了微型单桩桩台的侧向变形和加速度、不同埋深桩身弯矩、可液化场地的加速度及超孔隙水压力等响应特征。首先开展了相对密实度为57%饱和土层、输入波是频率为1 Hz和峰值加速度为1.516 m/s2正弦波的微型桩40 g动态地震响应离心机试验,进而应用基于多重剪切机构塑性模型和液化前缘状态面概念的三维有效应力分析方法,反演了试验结果,并进行了对比分析,结果表明,数值模拟与离心机试验结果吻合,液化场地特性控制着建于其中微型桩的地震响应特征,微型桩桩台的水平变形和残余变形可达78、30 mm,桩身最大弯矩和最大残余弯矩呈现向桩身底部迁移特点,同时表明,基于动态土工离心机试验和数值分析相结合的研究方法,分析可液化场地微型桩地震响应特性是有效可行的,研究结论为可液化场地微型桩的抗震设计提供了可靠的依据和参考。  相似文献   

18.
An analysis is developed to determine the response of laterally loaded rectangular piles in layered elastic media. The differential equations governing the displacements of the pile–soil system are derived using variational principles. Closed‐form solutions of pile deflection, the slope of the deflected curve, the bending moment and the shear force profiles can be obtained by this method for the entire pile length. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. The new analysis allows insights into the lateral load response of square, rectangular and circular piles and how they compare. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

19.
This paper presents a simplified nonlinear solution for piled raft foundations in layered soils under vertical loading. Based on the elastic–plastic analysis of a single pile in a layered soil, the shielding effect between a receiver pile and the soil is taken into account to modify the conventional interaction factor between two piles. An approximate approach with the concept of the interaction factor is employed to study the nonlinear behavior of pile groups with a rigid cap. Considering the variation of soil properties, the solution to multilayered elastic materials is used to calculate the settlement of the soil. The interactions between pile–soil–raft are taken into account to determine the stiffness matrix of the piled raft. By solving the stiffness matrix equations, the settlement and the load shared by the piles and raft could be obtained. Compared with results of the available published literatures, the proposed solution provides reasonable results.  相似文献   

20.
An analysis is developed to determine the response of laterally loaded piles in layered elastic media. The differential equations governing pile deflections in different layers due to a concentrated static force and/or moment acting at the pile head are obtained using the principle of minimum potential energy and calculus of variations. The differential equations are solved analytically using the method of initial parameters. Pile deflection, slope of the deformed axis of the pile, bending moment and shear force can be reliably obtained by this method for the entire pile length. The input parameters needed for the analysis are the pile geometry and the elastic constants of the soil and pile. It is observed that soil layering has a definite impact on pile response and must be taken into account for proper analysis and design. The analysis forms the basis for future formulations that can consider stress–strain nonlinearity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号