首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have used the Giant Meterwave Radio Telescope (GMRT) to measure the Galactic HI 21-cm line absorption towards 102 extragalactic radio continuum sources, located at high (|b| > 15°) Galactic latitudes. The Declination coverage of the present survey is δ}> - 45°. With a mean rms optical depth of ∼ 0.003, this is the most sensitive Galactic HI 21-cm line absorption survey to date. To supplement the absorption data, we have extracted the HI 21-cm line emission profiles towards these 102 lines of sight from the Leiden Dwingeloo Survey of Galactic neutral hydrogen. We have carried out a Gaussian fitting analysis to identify the discrete absorption and emission components in these profiles. In this paper, we present the spectra and the components. A subsequent paper will discuss the interpretation of these results.  相似文献   

2.
The sample of nearby LIRGs and ULIRGs for which dense molecular gas tracers have been measured is building up, allowing for the study of the physical and chemical properties of the gas in the variety of objects in which the most intense star formation and/or AGN activity in the local universe is taking place. This characterisation is essential to understand the processes involved, discard others and help to interpret the powerful starbursts and AGNs at high redshift that are currently being discovered and that will routinely be mapped by ALMA. We have studied the properties of the dense molecular gas in a sample of 17 nearby LIRGs and ULIRGs through millimeter observations of several molecules (HCO+, HCN, CN, HNC and CS) that trace different physical and chemical conditions of the dense gas in these extreme objects. In this paper we present the results of our HCO+ and HCN observations. We conclude that the very large range of measured line luminosity ratios for these two molecules severely questions the use of a unique molecular tracer to derive the dense gas mass in these galaxies.  相似文献   

3.
We report the observations of 289 methanol maser sources at 6.7 GHz obtained over a two month period with the Torun 32 m telescope. The data form a catalogue of all objects north of δ = –22° brighter than 7.5 Jy in the peak emission. The positions of sub‐arcsecond accuracy are updated for 76 % of the objects. We find that about one third of the sources show changes in the peak fluxes by a factor of two or more on time scales of 8.5–9.5 years (© 2012 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
Several QSO pairs have been reported and their redshifts determined, where the two objects in each pair are locatedacross an active galaxy. The usually accepted explanation of such occurrences is that the pair is ejected from the parent galaxy. Currently interpreted redshifted spectra for both the QSOs imply that both the objects are receding from the observer. However, ejection can occur towards and away from the observer with equal probability. We argue that for a system with two QSOs lyingacross the parent galaxy, ejection should have occurred in opposite directions, whereby one object will be approaching us and the other will be receding from us. The former would exhibit a blueshifted spectrum. We analyse here a sample of four such pairs and show that the observed spectrum of one QSO in each pair can be interpreted as blueshifted. The other exhibits the usual redshifted spectrum. A scenario based on the ‘sling-shot’ mechanism of ejection is presented to explain the occurrences of the pairs in opposite sides of the active galaxies moving in opposite directions.  相似文献   

5.
We discuss observations of the first galaxies, within cosmic reionization, at centimeter and millimeter wavelengths. We present a summary of current observations of the host galaxies of the most distant QSOs (z∼6). These observations reveal the gas, dust, and star formation in the host galaxies on kpc-scales. These data imply an enriched ISM in the QSO host galaxies within 1 Gyr of the big bang, and are consistent with models of coeval supermassive black hole and spheroidal galaxy formation in major mergers at high redshift. Current instruments are limited to studying truly pathologic objects at these redshifts, meaning hyper-luminous infrared galaxies (L FIR ∼1013 L ). ALMA will provide the one to two orders of magnitude improvement in millimeter astronomy required to study normal star forming galaxies (i.e. Ly-α emitters) at z∼6. ALMA will reveal, at sub-kpc spatial resolution, the thermal gas and dust—the fundamental fuel for star formation—in galaxies into cosmic reionization.  相似文献   

6.
7.
The hyperfine-structure lines of highly charged ions may allow one to look at hot rarefied astrophysical plasmas from a new perspective. In this paper, we discuss the spectral lines of ions and isotopes abundant at temperatures 105–107 K characteristic of a warm-hot intergalactic gas, a hot interstellar medium, starburst galaxies, their superwinds, and young supernova remnants. Observations of these lines will make it possible to study the bulk and turbulent motions in the observed objects and will supplement the information about the ionization state and chemical and isotopic compositions of the gas. The line of the main nitrogen isotope with wavelength λ = 5.65 mm is of particular interest. The wavelength of this line is well suited for observations of objects at z ≈ 0.15−0.6, when it is redshifted to the spectral range 6.5–9 mm widely used in ground-based radio observations, and, for example, for z ≥ 1.3, when the line is redshifted to 1.3 cm or farther. Modern and future radio telescopes and interferometers are capable of observing the 14N VII absorption by the warm-hot intergalactic gas at redshifts higher than z ≈ 0.15 in the spectra of the brightest millimeter-band sources. The submillimeter emission lines of the most abundant isotopes with hyperfine splitting may also be detected in the spectra of young supernova remnants. The article was translated by the authors.  相似文献   

8.
Optical variability of extragalactic objects, viz., QSOs, BL Lacs and Seyfert galaxies has been monitored systematically over an appreciable period of time and a large amount of data have accumulated. The present work reports results of investigations involving statistical analysis of updated data on relationships between variability and various observed properties of the objects, viz., redshift, color indices, radio spectral index and absorption lines. It is found that at high frequencies (rest frame) radio spectral index does not change significantly with the degree of variability. However, the degree of variability depends on redshifts. On the other hand, presence or absence of absorption lines is significantly associated with variability for QSOs with larger redshifts (z > 1.0), while no such relationship exists for QSOs at smaller redshifts (z < 1.0) or other objects. Correlation between color indices and redshifts depends on the degree of variability and the sample chosen for the color index.  相似文献   

9.
We have carried out a sensitive high-latitude (|b| > 15°) HI 21 cm-line absorption survey towards 102 sources using the GMRT. With a 3σ detection limit in optical depth of ∼ 0.01, this is the most sensitive HI absorption survey. We detected 126 absorption features most of which also have corresponding HI emission features in the Leiden Dwingeloo Survey of Galactic neutral Hydrogen. The histogram of random velocities of the absorption features is well-fit by two Gaussians centered at V1sr ∼ 0 km s−1 with velocity dispersions of 7.6 ± 0.3 km s−1 and 21 ± 4 km s−1 respectively. About 20% of the HI absorption features form the larger velocity dispersion component. The HI absorption features forming the narrow Gaussian have a mean optical depth of 0.20 ± 0.19, a mean HI column density of (1.46 ± 1.03) × 1020 cm−2, and a mean spin temperature of 121 ± 69 K. These HI concentrations can be identified with the standard HI clouds in the cold neutral medium of the Galaxy. The HI absorption features forming the wider Gaussian have a mean optical depth of 0.04 ± 0.02, a mean HI column density of (4.3 ± 3.4) × 1019 cm−2, and a mean spin temperature of 125 ± 82 K. The HI column densities of these fast clouds decrease with their increasing random velocities. These fast clouds can be identified with a population of clouds detected so far only in optical absorption and in HI emission lines with a similar velocity dispersion. This population of fast clouds is likely to be in the lower Galactic Halo.  相似文献   

10.
ALMA will be able to detect a broad spectrum of molecular lines in galaxies. Current observations indicate that the molecular line emission from galaxies is remarkably variable, even on kpc scales. Imaging spectroscopy at resolutions of an arcsecond or better will reduce the chemical complexity by allowing regions of physical conditions to be defined and classified.  相似文献   

11.
High-resolution CO maps are an essential tool to search for observational evidence of AGN fueling in galaxy nuclei. While their capabilities will be surpassed by ALMA, current mm-interferometers can already provide relevant information on scales which are critical for the process of angular momentum transfer in fueling the AGN. In this context we present the latest results issued from the NUclei of GAlaxies (NUGA) project, a high-resolution (0.5′′–1′′) CO survey of low luminosity AGNs conducted with the IRAM Plateau de Bure interferometer (PdBI). The use of more specific molecular tracers of dense gas can probe the feedback influence of activity on the chemistry and energy balance in the interstellar medium of nearby galaxies, a prerequisite to understanding how feedback operate at higher redshift galaxies. We discuss the results obtained in an ongoing study devoted to probe the feedback of activity from nearby Seyferts to high-redshift QSO.  相似文献   

12.
We present a new survey for Hα emission objects in the Circinus cloud complex and introduce an efficient photometric method for detecting Hα emission via observations in a narrow‐band filter. The observed flux is compared to a blackbody fit of the continuum. Our search strategy reveals 20 stars with strong Hα emission (EW > 10 Å), eight of them being new detections. All Hα stars display infrared excess corroborating their youth. On the other hand, the region contains a number of infrared excess objects that do not show Hα emission. Our results support the picture that accretion – as witnessed by Hα emission – is a highly variable phenomenon. Therefore, Hα surveys can only trace the temporarily active objects. In contrast, infrared excess is a more robust tracer that reveals most of the population of young stellar objects in a star forming region. Our analysis of the general stellar content of the region yields a reliable distance of 450 pc for the Circinus cloud. Moreover, we find a ratio of total‐to‐selective extinction of RV = 2.8 suggesting that smaller‐than‐normal dust grains may be present. (© 2013 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
The early-stage structure and evolution of a supernova remnant (SNR) depends largely on its ambient interstellar medium, so the interstellar medium becomes the valid probe for investigating the evolution of SNRs. We have observed the 12CO (J = 1 − 0) line emission around the remnant of SN 1572 with the 13.7m millimeter-wave telescope at the Qinghai Station of PMO, in order to investigate the distribution of the CO molecular gas around SN 1572 and provide some observational basis for studying the relationship of SN 1572 with its ambient molecular gas and the evolution of this SNR. The observed result indicates that the molecular gas in the velocity range of VLSR = −69∼ −58 km/s is associated with SN 1572, and this velocity component comes from a large-scale molecular cloud. The molecular gas is distributed along the periphery of the radio shell, continually but not uniformly, and forms a semi-closed molecular shell around the SNR. The enhanced emission exists in its whole eastern half, especially the CO emission is strongest on the northeastern edge. At the emission peak position, the spectral line exhibits a broadened velocity feature (>5 km/s). Combining with available observations in the optical, infrared, X-ray and other wavebands, it is demonstrated that the fast shock wave and ejecta are expanding into the molecular gas on the northeastern edge, and interacting with the dense gas. This interaction will have an important influence on the future evolution of SN 1572.  相似文献   

14.
We have mapped 16 molecular clouds toward a new OB association in the Pup-CMa region to derive their physical properties. The observations were carried out in the 12CO (J = 1 – 0) line with the Southern millimetre-wave Telescope at Cerro Tololo, Chile. Distances have been determined kinematically using the rotation curve of Brand with R = 8.5 kpc and V = 220 km/s. Masses have been derived adopting a CO luminosity to H2 conversion factor X = 3.8 . 1020 molecules cm-2 (K km/s)-1. The observed mean radial velocity of the clouds is comparable with the mean radial velocity of stars composing an OB association in Pup-CMa; it is in favor of the close connection of clouds with these stars. __________ Published in Astrofizika, Vol. 48, No. 4, pp. 491–501 (October–December, 2005).  相似文献   

15.
Molecular line emission is a useful tool for probing the highly obscured inner kpc of starburst galaxies and buried AGNs. Molecular line ratios serve as diagnostic tools of the physical conditions of the gas—but also of its chemical properties. Both provide important clues to the type and evolutionary stage of the nuclear activity. While CO emission remains the main tracer for molecular distribution and dynamics, molecules such as HCN, HNC, HCO+, CN and HC3N are useful for probing the properties of the denser (n≳104 cm−3), star-forming gas. Here I discuss current views on how line emission from these species can be interpreted in luminous galaxies. HNC, HCO+ and CN are all species that can be associated both with photon dominated regions (PDRs) in starbursts—as well as X-ray dominated regions (XDRs) associated with AGN activity. HC3N line emission may identify galaxies where the starburst is in the early stage of its evolution.  相似文献   

16.
The combination of dispersion measures of pulsars, distances from the model of Cordes & Lazio (2002) and emission measures from the WHAM survey enabled a statistical study of electron densities and filling factors of the diffuse ionized gas (DIG) in the Milky Way. The emission measures were corrected for absorption and contributions from beyond the pulsar distance. For a sample of 157 pulsars at |b | > 5. and 60° < ℓ < 360°, located in mainly interarm regions within about 3 kpc from the Sun, we find that: (1) The average volume filling factor along the line of sight and the mean density in ionized clouds are inversely correlated: ( ) = (0.0184 ± 0.0011) –1.07 ± 0.03 for the ranges 0.03 < < 2 cm–3 and 0.8 > > 0.01. This relationship is very tight. The inverse correlation of and causes the well‐known constancy of the average electron density along the line of sight. As (z ) increases with distance from the Galactic plane |z |, the average size of the ionized clouds increases with |z |. (2) For |z| < 0.9 kpc the local density in clouds n c(z ) and local filling factor f (z ) are inversely correlated because the local electron density n e(z ) = f (z )n c(z ) is constant. We suggest that f (z ) reaches a maximum value of >0.3 near |z | = 0.9 kpc, whereas n c(z ) continues to decrease to higher |z |, thus causing the observed flattening in the distribution of dispersion measures perpendicular to the Galactic plane above this height. (3) For |z | < 0.9 kpc the local distributions n c(z ), f (z ) and (z ) have the same scale height which is in the range 250 < h ≲ 500 pc. (4) The average degree of ionization of the warm atomic gas (z ) increases towards higher |z | similarly to (z ). Towards |z | = 1 kpc, (z ) = 0.24 ± 0.05 and (z ) = 0.24 ± 0.02. Near |z | = 1 kpc most of the warm, atomic hydrogen is ionized. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
ALMA is now fully operational, and has been observing in early science mode since 2011. The millimetric (mm) and sub-mm domain is ideal to tackle galaxies at high redshift, since the emission peak of the dust at 100 \(\upmu \)m is shifted in the ALMA bands (0.3–1 mm) for \(z=\) 2–9, and the CO lines, stronger at the high-J levels of the ladder, are found all over the 0.3–3 mm range. Pointed surveys and blind deep fields have been observed, and the wealth of data collected reveal a drop at high redshifts (\(z>6\)) of dusty massive objects, although surprisingly active and gas-rich objects have been unveiled through gravitational lensing. The window of the reionization epoch is now wide open, and ALMA has detected galaxies at \(z=8\)–9 mainly in continuum, [CII] and [OIII] lines. Galaxies have a gas fraction increasing steeply with redshift, as \((1+z)^2\), while their star formation efficiency increases also but more slightly, as \((1+z)^{0.6}\) to \((1+z)^1\). Individual object studies have revealed luminous quasars, with black hole masses much higher than expected, clumpy galaxies with resolved star formation rate compatible with the Kennicutt–Schmidt relation, extended cold and dense gas in a circumgalactic medium, corresponding to Lyman-\(\alpha \) blobs, and proto-clusters, traced by their brightest central galaxies.  相似文献   

18.
The unsurpassed sensitivity and resolution of the Square Kilometer Array (SKA) will make it possible for the first time to probe the continuum emission of normal star forming galaxies out to the edges of the universe. This opens the possibility for routinely using the radio continuum emission from galaxies for cosmological research as it offers an independent probe of the evolution of the star formation density in the universe. In addition it offers the possibility to detect the first star forming objects and massive black holes.In deep surveys SKA will be able to detect Hi in emission out to redshifts of z ≈ 2.5 and hence be able to trace the conversion of gas into stars over an era where considerable evolution is taking place. Such surveys will be able to uniquely determine the respective importance of merging and accreting gas flows for galaxy formation over this redshift range (i.e. out to when the universe was only one third its present age). It is obvious that only SKA will able to see literally where and how gas is turned into stars.These and other aspects of SKA imaging of galaxies will be discussed.  相似文献   

19.
Class 0 objects, which are thought to be the youngest protostars, are identified in terms of NIR or radio emission and/or the presence of molecular outflows. We present combined hydrodynamic and radiative transfer simulations of the collapse of a star‐forming molecular core, which suggest two criteria for identifying dense cores with deeply embedded very young protostars that may not be observable in the NIR or radio with current telescopes. We find that cores with protostars are relatively warm (T > 15 K) with their SEDs peaking at wavelengths <170 µm, and they tend to appear circular. (© 2005 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
In recent years there has been much debate, both observational and theoretical, about the nature of star formation at high redshift. In particular, there seems to be strong evidence of a greatly enhanced star formation rate early in the Universe’s evolution. Simulations investigating the nature of the first stars indicate that these were large, with masses in excess of 100 solar masses. By the use of a chemical model, we have simulated the molecular signature of massive star formation for a range of redshifts, using different input models of metallicity in the early Universe. We find that, as long as the number of massive stars exceeds that in the Milky Way by factor of at least 1000, then several ‘hot-core’ like molecules should have detectable emission. Although we predict that such signatures should already be partly detectable with current instruments (e.g. with the VLA), facilities such as ALMA will make this kind of observation possible at the highest redshifts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号