首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A study of the seasonal succession of dominant copepod species was conducted during the period May, 1972 to June, 1973 in the Navesink River estuary, a tributary of the New York Bight. The replacement of the copepod Acartia tonsa by Acartia clausi, a phenomenon well-documented in the middle Atlantic estuaries for the late winter and early spring seasons, was not observed during this study, indicating that this succession may not take place in the Navesink. Instead, the more brackish-water calanoids, Pseudodiaptomus coronatus and Eurytemora affinis replaced A. tonsa, increasing in numbers markedly as the A. tonsa population declined. Although A. clausi is known to occur in temperatures and salinities comparable to those of the Navesink, this study supports the results of Yamazi (1966) that the occurrence of A. clausi in the Navesink is a rarity.  相似文献   

2.
Maryland Coastal Bays differ in hydrography from river-dominated estuaries because of limited freshwater inflow from tributary creeks and more marine influence. Consequently, the copepod community structure may be different from that of the coastal ocean and river-dominated estuaries in the mid-Atlantic region. A 2-year study was conducted to describe copepod species composition and seasonal patterns in abundance and factors influencing the community structure. Seven copepod genera, Acartia, Centropages, Pseudodiaptomus, Parvocalanus, Eurytemora, Oithona, and Temora, in addition to harpacticoids were found. The copepod community was dominated by Acartia spp. (64%), followed by Centropages spp. (30%), unlike in river-dominated estuaries in the region where the copepod community is usually dominated by Acartia spp. followed by Eurytemora affinis. Acartia tonsa was the most abundant in summer and fall whereas Centropages spp., Temora sp., Oithona similis, E. affinis, and harpacticoids were most abundant in winter and early spring. Parvocalanus crassirostris and Pseudodiaptomus pelagicus were present in fall and winter but at relatively low densities. The highest mean density of copepods occurred in winter 2012 (36,437 m?3) and the lowest in spring 2013 (347 m?3). Low densities occurred through early summer (614 m?3) coinciding with peak spawning by bay anchovy (Anchoa mitchilli). Bottom-up control via low phytoplankton biomass coupled with top-down control by ctenophores (Mnemiopsis sp.), mysids (Neomysis americana), and bay anchovy was probably responsible for the low copepod densities in spring and early summer. Temperature and salinity were also important factors that influenced the seasonal patterns of copepod species occurrence. The observed seasonal differences in the abundance of copepods have important implications for planktivorous fishes as they may experience lower growth rates and survival due to food limitation in spring/early summer when copepod densities are relatively low than in late summer/fall when copepod abundance is higher.  相似文献   

3.
The lower Neuse River Estuary is a temperate mesohaline system which forms the major southern tributary of Pamlico Sound, North Carolina. The crustacean zooplankton of this well-mixed system were sampled for a 20-month period from May 1988 through December 1989. A submersible pump was used to sample both the entire water column and the sediment surface. Seasonal dominants included the calanoid copepodsAcartia tonsa andParacalanus crassirostris in summer, the cyclopoid copepodOithona colcarva in fall, the cladoceranPodon polyphemoides in winter, and harpacticoid copepods in spring. Non-naupliar biomass over the study period consisted of 38.8%A. tonsa, 7.7%P. crassirostris, 21.2%O. colcarva 23.6% harpacticoid copepods, and 6.0% cladocerans. The remainder of the biomass consisted ofPseudodiaptomus coronatus and barnacle nauplii. Mean total copepod densities ranged from 600 m?3 in May 1988 to 180,000 m?3 in August 1988. Mean copepod densities for 1989 were 25,000 m?3. Maximum densities during both years occurred during summer, with subsequent descreases throughtout the year until early spring. Abundances of total copepods, and ofAcartia tonsa in particular, were significantly correlated with water temperature, but with neither chlorophylla, phytoplankton productivity, nor any of an array of other physical or chemical variables. Regression analyses using data from this investigation, and supported by results from other regional studies, indicate that water temperature is likely the single most important variable predicting zooplankton temporal abundance in North Carolina estuaries.  相似文献   

4.
Egg production of planktonic copepods, is commonly measured as a proxy for secondary production in population dynamics studies and for quantifying food limitation. Although limitation of copepod egg production by food quantity or quality is common in natural waters, it appears less common or severe in estuaries where food concentrations are often high. San Francisco Estuary, California, has unusually low concentrations of chlorophyll compared to other estuaries. We measured egg production rates of three species ofAcartia, with dominate the zooplankton biomass at salinity above 15 psu, on 36 occasions during 1999–2002. Egg production was determined by incubating up to 40 freshly collected individual copepods for 24 h in 140 ml of ambient water. Egg production was less than 10 eggs female−1 d−1 most of the year, but as high as 52 eggs female−1 d−1 during month-long spring phytoplankton blooms. Egg production was a saturating function of total chlorophyll concentration with a mean of 30 eggs female−1 d−1 above a chlorophyll concentration of 12±6 mg chl m−3. We take chlorophyll to be a proxy for total food ofAcartia, known to feed on microzooplankton as well as phytoplankton. These findings, together with long-term records of chlorophyll, concentration and earlier studies of abundance of nauplius larvae in the estuary, imply chronic food limitation ofAcartia species, with sufficient food for maximum egg production <10% of the time over the last 25 yr. These results may show the most extreme example of food limitation of copepod reproduction in any temperate estuary. They further support the idea that estuaries may provide suitable habitat forAcartia species by virtue of other factors than high food concentration.  相似文献   

5.
The calanoid copepod community was surveyed semi-monthly, from May to July 1992, at three stations in the Navesink-Shrewsbury rivers system, the southernmost branch of the Hudson-Raritan estuary (New York-New Jersey). The dominant species collected during the survey wasAcartia hudsonica, followed byA. tonsa. A comparison of this survey with three earlier surveys suggests that the calanoid copepod community and relative abundance of dominant species have not changed substantially since the 1960s. Findings from a 1972 study, which noted the absence ofA. hudsonica andPseudodiaptomus coronatus as dominant species, were probably reflecting a temporary situation. The variations may have been related to a change in water quality, caused by an upgrade in sewage treatment, completed just prior to the 1972 survey, and/or resulted from the residual effects of Tropical Storm Agnes on this estuary.  相似文献   

6.
Zooplankton and chlorophyll-a samples and associated hydrographic data were collected at approximately weekly intervals in the Peconic Bay estuary for most of the period between May 1978 and June 1979. Surface zooplankton samples were obtained by simultaneously-towed 73 μm- and 202 μm-mesh nets, and subsurface samples were collected with 505 μm-mesh nets. Zooplankton numbers and displacement volumes fluctuated widely throughout the year, with highest values in early spring and summer. Juvenile or adult copepods accounted for means of 90.0% and 85.0% of the animals recorded for the 202 μm- and 73 μm-net samples, respectively. The combination of Acartia tonsa and A. hudsonica adults+copepodids accounted for a mean of 81.4% of the zooplankton recorded for the 202 μm-net samples, and the combination of copepod nauplii, Acartia spp. adults+copepodids, Oithona colcarva and Parvocalanus crassirostris accounted for a mean of 82.7% of the animals recorded for the 73 μm-net samples. Copepod nauplii were the most abundant zooplankters collected in the 73 μm-net samples, and they were generally collected in higher numbers than the total number of animals in the 202 μm-net samples. During the colder months, late copepodids and adults of larger copepod species comprised greater proportions of the total zooplankton than during the warmer months when nauplii and copepodids of smaller copepod species were predominant. The ctenophore Mnemiopsis leidyi and the medusa Cyanea capillata also had periods of abundance during warmer months. Differences between numbers of larger zooplankters collected over different depth intervals or in successive replicate tows over the same depth intervals, reveal the likely effects of both vertical and horizontal patchiness. Comparisons of zooplankton numbers from the present investigation, which were obtained with relatively fine-mesh nets, with values from previous studies in adjacent waters which used coarser-mesh nets, suggest that many previous investigations have seriously underestimated the numbers of smaller zooplankters, particularly copepod nauplii.  相似文献   

7.
The scyphomedusa, Chrysaora quinquecirrha, preys on a variety of estuarine organisms. A series of experiments were conducted to measure the feeding rate of adult medusae on zooplankton prey. Artemia was used as a substitute for the endemic and abundant copepod, Acartia tonsa. The feeding rates ranged from three Artemia per hour per ml of medusae volume to 107 per hour per ml in 51 trials. The consumption was also linearly related to the initial prey concentration. Certain results suggested that a toxic factor might be exuded by the medusae, affecting the observed feeding rates. The results verify the possibility that Acartia may be a major prey organism in estuarine environments.  相似文献   

8.
Larvae of 15 species or genera of crabs were collected and identified during a six month (May 26 to October 28, 1978) study in the mouth of Delaware Bay. Seasonal abundance and vertical distribution of each species were investigated. Most species studied had peak abundance in July and August except forCancer irroratus andOvalipes ocellatus which showed peak occurrence in May and June, respectively. Larvae of species strongly dependent on estuarine habitats, such asUca spp.,Pinnixa chaetopterana, andP. sayana, showed a tendency to congregate in near-bottom waters where net flow of water is landward, thus favoring retention within the estuary. Larvae ofOvalipes ocellatus, Cancer irroratus, andCallinectes sapidus were more common at the surface. This vertical distribution suggests that these larvae are flushed out of the estuary. The mechanisms of recruitment and replenishment of adult populations within the estuary would therefore depend on migration of megalopa and juveniles. *** DIRECT SUPPORT *** A01BY019 00006  相似文献   

9.
Seasonal occurrence patterns within the Mobile Bay estuary, Alabama, of five species of cumaceans are described.Oxyurostylis smithi was most abundant, followed byLeucon americanus, Cyclaspis varians, Eudorella monodon andAlmyracuma proximoculi. With the exception of the oligohalineA. proximoculi, the cumaceans encountered within the estuary are euryhaline marine species that are most abundant at the lower bay stations and that utilize the estuary only when environmental conditions are favorable.  相似文献   

10.
Larval fishes were sampled weekly from late fall to early spring in the Newport River estuary just inside Beaufort Inlet, North Carolina. Quantitative samples were taken during darkness at mid-flood tide with paired 60-cm bongo nets (505-μm mesh). Larvae of 22 species from 15 families were collected. Seventy-seven percent of the species and 97% of the individuals were fishes that had been spawned on the continental shelf and had immigrated to the estuary. In descending order, the five most abundant species, accounting for 90% of the individuals, were spot (Leiostomus xanthurus), Atlantic croaker (Micropogonias undulatus), Atlantic menhaden (Brevoortia tyrannus), pinfish (Lagodon rhomboides), and speckled worm ell (Myrophis punctatus). Most species immigrated through-out the winter and into spring, but there were distinct patterns in their temporal abundances.  相似文献   

11.
A year-long trawl survey of the mangrove-fringed Laguna Joyuda, Puerto Rico yielded 41 species of juvenile and adult fishes. Twelve percent of the species and 55% of the individuals were residents in the lagoon; 56% of the species and 44% of the individuals were cyclic visitors, mostly juveniles of species which spawn offshore. The lagoon yielded fewer species than tropical estuaries in continental regions of the Caribbean and temperate estuaries of North America. However, paralleling other estuarine habitats, Laguna Joyuda supported three primary types of fishes, a resident small flatfish (Achirus lineatus), a complex of transient juveniles (Gerreidae, paralleling the Sciaenidae of higher latitudes), and small planktivores (Anchoa spp.). Seasonal patterns in the abundance of individual species were not strong, but overall abundance showed a wet season maximum, particularly because of recruitment of anchovies and cyclic visitors in April, May, and June. Wet season abundance corresponded with highest water column productivity and detrital input to the benthos. Fishes associated with the water column appeared to show greater variation in abundance than those associated with more stable benthic food webs.  相似文献   

12.
Seasonal occurrence and vertical distribution of larvae of two genera of brachyuran crab were studied in a secondary estuary flowing into Delaware Bay. Spawning in the xanthid crabRhithropanopeus harrisii occurred earlier with peak abundance of larvae in June and with a distinct decline in abundance in August. In contrast,Uca spp. larvae reached peak abundance in August. All zoeal stages ofR. harrisii were collected in the river suggesting that larvae of this species are retained in secondary estuaries near areas of prime adult habitat. Only zoea stage I larvae and megalopa ofUca spp. were collected in the river indicating that larvae of these speies may be flushed into the Delaware Bay and may not return to secondary estuaries near areas suitable for adult habitat until the megalopa stage is reached. It is not clear if this dispersal pattern is an active or passive process. *** DIRECT SUPPORT *** A01BY019 00004  相似文献   

13.
A hypothesis on the formation and seasonal evolution of Atlantic menhaden (Brevoortia tyrannus) juvenile nurseries in coastal estuaries is described. A series of cruises were undertaken to capture postmetamorphic juvenile menhaden and to characterize several biological and physical parameters along estuarine gradients. The two study systems, the Neuse and Pamlico rivers in North Carolina, contain important menhaden nursery grounds. Juvenile menhaden abundance was found to be associated with gradients of phytoplankton biomass as evidenced by chlorophylla levels in the upper water column. Fish abundances were only secondarily associated with salinity gradients as salinity was a factor that moderated primary production in the estuary. The persistence of spatial and temporal trends in the distribution of phytoplankton in the Neuse and Pamlico estuaries was reviewed. The review suggested that postmetamorphic juvenile menhaden modify their distribution patterns to match those created by phytoplankton biomass, which in turn makes them most abundant in the phytoplankton maxima of estuaries. Because the location of these maxima varies with the mixing and nutrient dynamics of different estuaries, so will the location of the nursery.  相似文献   

14.
Spatial patterns of abundance of the zooplankton of Tomales Bay, California, were studied over one year from August 1987 to September 1988. Samples were taken on six transects up the long axis of the bay, and the species composition and abundance of common species were determined. Distribution patterns were similar to those observed in other estuaries and bays, with species from nearby neritic waters occurring in the outer bay and a few resident species in the inner bay. This pattern may be best explained by size-selective predation within the bay. Most alternative explanations can be ruled out for Tomales Bay, except for possible temperature effects on cool-temperate neritic species. The four common species ofAcartia in Tomales Bay were in two subgenera, each of which included a neritic species and a smaller inner-bay species. The occurrence of the smaller of each pair in the inner bay, which has been observed forAcartia and other species in other estuaries and bays, may also be a result of size-selective predation.  相似文献   

15.
Seasonal changes in phytoplankton biomass and production, total zooplankton biomass, and biomass and potential production rates of the two dominant copepods, Acartia hudsonica (formerly called Acartia clausi) and Acartia tonsa are described for several stations in Narragansett Bay, R.I. Plankton in the bay behaved as a single population with simultaneous changes occurring at the upper bay (Station 5) and the lower bay (Station 1). Phytoplankton biomass was higher in the upper bay ( \(\bar x\) =16.95 mg chl a·m?3) than in the lower bay ( \(\bar x\) =6.37 mg chl a·m?3) and these 0269 0101 V differences in biomass were reflected in the phytoplankton production rates. The zooplankton, which was dominated by A. hudsonica in the spring and early summer and A. tonsa during summer and fall, showed no such consistent differences between the stations. Mean A. hudsonica biomass (St 1, \(\bar x\) ;=82.7 mg dry wt·m?3; St 5, _ \(\bar x\) ;=95.2 mg dry wt·m?3) exceeded that of A. tonsa (St 1, \(\bar x\) ;=56.7 mg dry wt·m?3; St 5, \(\bar x\) ;=60.0 mg dry wt·m?3). Potential production rates of the two Acartia 0269 0101 V spp. were strongly temperature dependent. Despite the higher biomass levels of A. hudsonica, low temperatures resulted in lower potential production rates ( \(\bar x\) ; St 1=7.25 mg C·m?3 day?1; \(\bar x\) ; St 5=10.77mg C·m?3 day?1) and biomass doubling times of up to 9.6 days. Potential production rates of A. tonsa at summer temperatures were high ( \(\bar x\) ; St 1=19.0 mg C·m?3 day?1; \(\bar x\) ; St 5=22.9 mg C·m?3 day?1) and biomass doubling times were generally less than one day.  相似文献   

16.
Establishing links between migration patterns and trophic dynamics is paramount to ecological studies investigating the functional role habitats provide to resident and transient species. Natural tags in fishes, such as otolith chemistry and tissue stable isotopes, can help reconstruct previous environmental and dietary histories, although these approaches are rarely combined. A novel multiproxy natural tag approach was developed to estimate immigration patterns of juvenile Atlantic croaker Micropogonias undulatus, across contrasting salinity gradients in three subtropical estuaries of the western Gulf of Mexico. Juvenile young-of-year Atlantic croaker were collected along a latitudinal gradient that included positive, neutral, and negative estuaries, based on physicochemical (temperature, salinity, dissolved element) and isotopic (δ15N and δ13C) parameters. Otolith elemental chronologies of Sr/Ca and Ba/Ca were used to classify migratory types within each estuary, while tissue-specific isotope ratios revealed time since recent (liver~weeks) and longer term (muscle~months) diet shifts. Nitrogen isotopes in both liver and muscle tissues were highly correlated, suggesting tissue equilibrium and estuarine residence of at least 3 months, with geographic δ15N gradients reflecting the magnitude of anthropogenic nutrient enrichment within each estuary. Differences in isotopic equilibrium of muscle-liver δ13C values and variation in marginal edge otolith Sr/Ca and Ba/Ca suggested recent shifts in carbon source and habitat utilization, reflecting individualized movement across seascapes and connectivity of habitat mosaics. The multiproxy approach presented here identified diverse migration patterns and linked feeding and movement on regional (inter-estuary), local (intra-estuary), and individual scales to improve our understanding of habitat function across estuarine gradients.  相似文献   

17.
Macroalgal biomass and competitive interactions among primary producers in coastal ecosystems may be controlled by bottom-up processes such as nutrient supply and top-down processes such as grazing, as well as other environmental factors. To determine the relative importance of bottom-up and top-down processes under different nutrient loading conditions, we estimated potential amphipod and isopod grazer impact on a dominant macroalgal species in three estuaries in Waquoit Bay, Cape Cod, Massachusetts, that are subject to different nitrogen loading rates. We calculated growth increases and grazing losses in each estuary based on monthly benthic survey data of macrophyte biomass and herbivore abundance, field grazing rates of amphipods (Microdeutopus gryllotalpa andCymadusa compta) and an isopod (Idotea baltica) on the preferred and most abundant macroalga (Cladophora vagabunda) and laboratory grazing rates for the remaining species, and in situ macroalgal growth rates. As nitrogen loading rates increased, macroalgal biomass increased (3×), eelgrass (Zostera marina) was lost, and herbivore abundance decreased (1/4×). Grazing rates increased with relative size of grazer (I. baltica > C. compta > M. gryllotalpa) and, for two of the three species investigated, were faster on algae from the high-nitrogen estuary in comparison to the low-nitrogen estuary, paralleting the increased macroalgal tissue percent nitrogen with nitrogen load. Macroalgal growth rates increased (2×) with increasing nitrogen loading rate. The comparison between estimated growth increases versus losses ofC. vagabunda biomass to grazing suggested first, that grazers could lower macroalgal biomass in midsummer, but only in estuaries subject to lower nitrogen loads. Second, the impact of grazing decreased as nitrogen loading rate increased as a result of the increased macroalgal growth rates and biomass, plus the diminished abundance of grazers. This study suggests the relative impact of top-down and bottom-up controls on primary producers varies depending on rate of nitrogen loading, and specifically, that the impact of herbivory on macroalgal biomass decreases with increasing nitrogen load to estuaries.  相似文献   

18.
Seasonal and interannual patterns in the spatial distribution of bluefish (Pomatomus saltatrix) within a Middle Atlantic Bight estuary were examined using multipanel gillnets fished biweekly at 14 fixeds stations in the Sandy Hook Bay-N avesink River estuary during May–November of 1998 and 1999. To characterize habitats along the estuarine gradient, we measured several abiotic and biotic variables concurrently with gillnet sampling. Juvenile (age-0 and age-1+) bluefish were captured regularly during both years along with large numbers of Atlantic menhaden (Brevoortia tyrannus), which were confirmed by diet analyses to be bluefish’s primary forage species. The date of initial appearance of age-0 bluefish and menhaden in the estuary varied between years and may have been related to interannual differences in seawater temperatures on the continental shelf during spring. Delayed estuarine arrival of prey fishes may have contributed to variability in bluefish diets between years. Within the estuary, bluefish spatial distribution were consistent across seasons and years: bluefish were most common in areas associated with high concentrations of suspended materials and the presence of menhaden. Community analyses also indicated habitat overlap between bluefish and menhaden. Spatial distribution patterns revealed the consistent occurrence of piscivorous bluefish in shallow estuarine habitats that retained suspended materials and aggregated prey fishes. Foraging success of bluefish and other estuarine piscivores may be closely linked with the availability of these productive habitat, highlighting the need for future study of biological interactions and the governing physical processes.  相似文献   

19.
The ichthyofauna of the Sundays Estuary was investigated by monthly seine netting over a period of a year. Forty-seven species were captured though 23 of these were represented by a total catch of less than 25 specimens each. The small clupeidGilchristella aestuarius was numerically dominant and constituted 80%, of the catch. The study confirms that in addition to this species, two species of goby,Caffrogobius multifasciatus andPsammogobius knysnaensis and the soleSolea bleekeri complete their life cycles in the estuary. Many other species such as mullet, utilize the estuary as a juvenile nursery area. First year juveniles ofRhabdosargus holubi, Lithognathus lithognathus, Pomadasys commersonni andMonodactylus falciformis, by virtue of their abundance in the Sundays Estuary and other South African estuaries, and their absence from other coastal environments, appear to be dependent on estuaries as juvenile nursery areas.  相似文献   

20.
The seasonal occurrence and relative abundance of larval and juvenile fishes, particularly members of the family Sciaenidae, from a Virginia Atlantic coast estuary were determined from ichthyoplankton and otter trawl collections made from March 1979 to March 1980. The larvae of 19 species in 14 families were identified in the ichthyoplankton. Larvae of the engraulid, Anchoa mitchilli (bay anchovy), and the atherinid, Menidia menidia (Atlantic silverside), dominated the samples and made up 13 and 22%, respectively, of the 9,440 larvae collected. Peak occurrence of all larvae was from May to August. The juveniles of 28 species in 19 families were identified from otter trawl collections. Juvenile sciaenids numerically dominated the trawl collecions and made up 68% of the trawl catch. Juvenile density peaked during September through December.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号