首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is often presumed that salt marshes provide a predation refuge for small fishes, but predation risks have rarely been compared in intertidal and subtidal habitats, making the importance of salt marshes as a predation refuge speculative. We measured relative survival of tethered mummichog (Fundulus heteroclitus) in four habitats in a salt marsh?Ctidal creek system: unvegetated and vegetated intertidal areas and the subtidal creek at high and low tide. At high tide, mummichog in the intertidal zone had significantly higher survival than in the subtidal creek in June through August. Survival rates in unvegetated and vegetated intertidal habitats were not significantly different, suggesting that higher intertidal survival was due to less abundant predators compared with the creek, rather than predators being less effective in vegetation. The lower predation risk experienced by mummichog in the intertidal marsh suggests that access to intertidal habitats will be important for production of small estuarine fishes.  相似文献   

2.
Salt marsh intertidal creeks are important habitats for dozens of species of nekton, but few studies have attempted to quantify patterns of tidal movement. We used the sweep flume, a new sampling device, to investigate relationships between depth and movements of nekton inside the mouths of intertidal creeks. Sweep flumes located in three creek beds were used to collect nekton at 10 cm increments (10–100 cm of water depth) during flood and ebb tides in the North Inlet, South Carolina, salt marsh. Of the 37 taxa collected, 13 comprised>99.5% of the total catch and were the focus of the analysis. A nonlinear mixed modeling procedure was used to determine, the depth at which each major taxon reached peak abundance during flood tides. With high degrees of spatial and temporal consistency, resident taxa entered early on the rpsing tide and transient taxa entered during mid to late tide. Depths of peak migrations varied among taxa and were consistent between creeks, days (within months), and years. As summer progressed, depths of peak migration increased for young-of-the-yearLeiostomus xanthurus, Lagodon rhomboides, Mugil curema, Eucinostomus argenteus, andLitopenaeus setiferus as their median sizes increased. Within tides, depths of migration increased as a function of size forL. xanthurus andM. curema. Comparisons between flood and ebb tides indicated that most taxa exited the creeks at approximately the same depths at which they entered. Relationships between major taxa pairs suggested that biotic interactions may have contributed to the structure of the migrations observed in this study. Our results are the first to demonstrate quantitatively that the migrations of nektonic taxa into intertidal creeks are structured and related to depth.  相似文献   

3.
The fall and winter population of larval fish in a small intertidal creek was measured. The creek was blocked at high tide, and the immature fish were captured in a channel net designed for consistent quantitative sampling as they left with the ebbing tide. A total of 573,739 individuals with a biomass (preserved wet weight) of 66.1 kg were captured during the eight month sampling period (October 1974–May 1975). Twelve families, 13 genera, and 16 species were represented, with five species comprising 99.3% of the fish captured. The five species were:Leiostomus xanthurus (53.5%),Lagodon rhomboides (31.7%),Brevoortia tyrannus (11.9%),Micropogon undulatus (1.7%), andMyrophis punctatus (0.5%). The net was efficient, the catch was seasonal, and the greatest larval abundance occurred in February and March.  相似文献   

4.
Patterns of nekton occurrence on the salt marsh surface at high tide and in an adjacent intertidal creek pool at low tide were used to investigate movements of nekton in an intertidal basin. Paired collections were made in North Inlet estuary, SC on 67 dates over 9 years. Comparisons of high- and low-tide total abundance indicated that what remained in the creek pool at low tide was representative of the nekton on the flooded marsh. Of the 64 taxa collected, the same 8 species ranked in the top 10 in both the high- and low-tide collections. Abundances of most resident species were positively correlated with the area of marsh flooded, but mummichog (Fundulus heteroclitus), the most abundant resident, was not. Abundances of young-of-the-year transient species were not related to the extent of tidal flooding. Some transient species used the flooded marsh but did not occupy the pool at low tide, and others found in the pool did not use the marsh. Differences in abundance, biomass, and length between the marsh and pool collections indicated differences in the tendency of species and life stages to retreat downstream of the pool to the subtidal channel. Proportionately more of the nekton that were present on the flooded marsh left the intertidal basin when large changes in temperature and salinity occurred between high and low tides. More transients left the basin following higher tides, but more residents did not. The results demonstrate a wide range of taxonomic and ontogenetic patterns among nekton using intertidal salt marsh basins and the underappreciated importance of intertidal creek pools as alternative low-tide refuges.  相似文献   

5.
Salt marsh habitats influenced by southern California's mixed, semi-diurnal tides are, on average, accessible to fishes less than 16% of the time. However, five species (four natives, one oxotic) and a variety of juvenile and adult size classes were collected on the marsh surface during a year-long sampling from June 1997 through June 1998 at Sweetwater Marsh National Wildlife Refuge on San Diego Bay.Fundulus parvipinis andGillichthys mirabilis were the most abundant fish species using the marsh. Analyses of their guts revealed that the marsh surface provides a rich foraging area for fishes on high spring tides.F. parvipinnis with marsh access consumed six times as much food as fishes restricted to creek habitats (on a g-food g-fish?1 basis) and also fed on additional prey types. Because the salt marsh is an important foraging area for fishes, we recommend that restoration projects (especially those intended to mitigate lost fish habitat) include vegetated areas with interconnecting tidal creeks.  相似文献   

6.
Flume nets of various lengths and a 3-m seine were used to sample the fishes and macrocrustaceans using a flooded Louisiana salt marsh and the adjacent tidal creek. The experiment allowed for species-specific comparisons of the flooded marsh at the creek edge versus the interior. Of the 37,667 organisms collected in flume nets from January through November 1989, 89% were decapods (nine species) and 11% were fish (29 species). An additional 18,539 organisms (75% decapods and 25% fish) were collected from concurrent seine samples taken from July through November. Comparison of catches among different flume lengths and low tide versus high tide seine collections revealed distinct patterns of marsh habitat utilization. Densities of most organisms were highest within 3 m of the water’s edge, but significant numbers of marsh-resident fish species used the interior marshes. The edge marshes appeared to be used by both transient and resident species; however, the interior marshes were used primarily by marsh-resident species (Cyprinodontiformes andPalaemonetes sp.) that are excellent food sources for adult transient-species. Four zonations of marsh use are described for transients, residents, and rare species.  相似文献   

7.
The fish assemblages of two South Carolina estuarine tide pools located in the North Edisto River were sampled from June to October 1977, and during June and July 1978, by haul seine, lift net and channel net. The nekton was dominated numerically byFundulus heteroclitus, Leiostomus xanthurus, Menidia menidia andAnchoa mitchilli. Oyster reef areas were dominated numerically byGobiosoma bosci andF. heteroclitus. The relative abundance of tide pool fishes differs from deep water areas of the North Edisto River as described from otter trawls, but is similar to that described by others for South Carolina tidal creeks.  相似文献   

8.
The mummichog,Fundulus heteroclitus, is one of the most abundant macrofaunal components of salt marsh ecosystems along the east coast of the United States. During April–November 1998, we determined the habitat use and movement patterns of young-of-the-year (YOY) and adult mummichogs in a restored marsh, formerly a salt hay farm, and an adjacent creek in order to expand our understanding of the ecology of the species and evaluate the success of the restoration. Four major fish habitat types (large first-order natural creek, second-order created creek, linear drainage ditch, and marsh surface) were identified within the study site. Patterns of relative abundance and mark and recapture using coded wire tags were used to determine the habitat use, tidal movements, home range, and site fidelity of the species within these habitat types. A total of 14,784 fish, ranging from 20–100 mm SL, were captured with wire mesh traps and tagged, and 1,521 (10.3%) fish were recaptured. A variety of gears were used to attempt to recapture fish across all habitat types, including wire mesh traps, push nets, and otter trawls. Based on abundance and recaptures of tagged fish, the YOY and adults primarily used the shallow subtidal and intertidal areas of the created creek, the intertidal drainage ditches, and the marsh surface of the restored marsh but not the larger, first-order natural creek. At low tide, large numbers were found in the subtidal areas of the created creek; these then moved onto the marsh surface on the flooding tide. Elevation, and thus hydroperiod, appeared to influence the microscale use of the marsh surface. We estimated the home range of adults and large YOY (20–100 mm SL) to be 15 ha at high tide, which was much larger than previously quantified. There was strong site fidelity to the created creek at low tide. The habitat use and movement patterns of the mummichog appeared similar to that reported for natural marshes. Coupled with the results of other studies on the feeding, growth, and production of this species in this restoreh, the species appeared to have responded well to the restoration.  相似文献   

9.
Variability in early life stages of species that are permanent residents of the estuarine nekton is poorly understood, especially in systems with extensive areas of emergent vegetation (e.g., salt marshes and mangroves). Sampling small mobile nekton in these shallow intertidal habitats presents a difficult methodological challenge. Simulated aquatic microhabitats (SAMs) were used to collect the early life stages of resident nekton that remained on the emergent marsh surface after it was exposed by the tide and could not be adequately sampled by traditional methods. Where the intertidal is a prominent areal component of the estuary, a large portion of young nekton could be overlooked using other common survey methods (e.g., plankton tows or block nets). Populations of young fishes and natant crustaceans were monitored for a year at 3-d to 6-d intervals from both low and high intertidal elevations within each of two marsh sites on Sapelo Island, Georgia, USA. Three species accounted for >99% of the 41,023 individuals collected. These were the killifishesFundulus heteroclitus (57.0%) andF. luciae (4.0%), and the daggerblade grass shrimp,Palaemonetes pugio (38.4%). YoungF. heteroclitus were used in field enclosure experiments to relate abundance data to actual areal densities. Average annual estimated density of young nekton on the surface of the intertidal marsh at low tide was 7.2 individuals m?2. Early life stages of estuarine resident species, particularly those with demersal young, are not affected by the same physical processes influencing larval supply and recruitment variability in marine-spawned species. In salt marshes, biotic factors (e.g., adult reproductive activity, predation, and food limitation) may be more important as proximate causes of variation during the early life histories of resident nekton.  相似文献   

10.
Fishes and invertebrate macrofauna (nekton) were sampled biweekly (July through October 1985) from the surface of tidal freshwater marshes. Samples were collected with flume nets at three different stream orders (orders 2, 3 and 4+) along a marsh stream order gradient. Twenty-five species of fishes (5,610 individuals, 17.072 kg preserved wet weight) representing 13 families, and three species of invertebrates (19,570 individuals, 13.026 kg preserved wet weight) were collected. The most abundant species were grass shrimp (Palaemonetes pugio), mummichogs (Fundulus heteroclitus), banded killifish (F. diaphanus), inland silversides (Menidia beryllina), and blue crabs (Callinectes sapidus). Invertebrate catches (mostly grass shrimp and blue crabs) were not significantly different among stations. Total numbers of fishes were significantly greater at both headwater (order 2) and main creek (order 3) stations than river (order 4+) stations, but catches of headwater and main creek stations were not significantly different. The relationship between marsh stream order and fish abundance may partly be related to the distribution of submerged aquatic vegetation (SAV) within marsh tidal creeks. Submerged aquatic vegetation decreases in abundance with increasing stream order. Some species may use SAV as a refuge from predators or as a foraging area during low tide when the marsh surface is inaccessible. The presence of SAV in tidal creeks may enhance the habitat value of adjacent marshes.  相似文献   

11.
Average summer densities of the xanthid crab,Eurytium limosum, in an intertidal salt marsh on Sapelo Island, Georgia were in the range of 7.5 to 80.0 individuals m?2. Crab densities were lowest in wet, lowlying marsh and highest in well-drained creekbank and mussel mound habitats. An analysis of crab stomach contents indicated that feeding occurred mostly around high tide, especially at night. Although the diet included some plant material,Eurytium limosum is primarily predatory and consumed crabs, polychaetes, ostracods, bivalves, and snails. In the laboratory, under simulated low-tide field conditions, both small (11–15 mm carapace width) and large (20–37 mm CW)Eurytium could capture and consume young killifish (Fundulus heteroclitus). Large crabs consumed the entire size range (7–19 mm total length) of larval/juvenile fish offered, but small crabs did not prey upon fish >11.5 mm TL. The potential importance ofE. limosum as a predator on young killifish may not be realized in the field because alternative prey are available and the crabs feed primarily at high tide, when young killifish are dispersed in the water column and are less vulnerable to benthic predators.  相似文献   

12.
The amount of nitrogen present as ammonia, nitrate, nitrite, dissolved organic nitrogen, and particulate nitrogen was determined for nearshore Georgia shelf waters and for tidal water inundating a 0.5 hectare dikedSpartina alterniflora salt marsh in the adjacent estuary. Concentrations of ammonia, nitrate, and nitrite were comparatively low in offshore water (<2.2 μg-at N/1), and in high tide water in the marsh (<9.9 μg-at N/1). High concentrations of ammonia, up to 73.4 μg-at N/1, were measured in low tide water draining from marsh. The largest pools of nitrogen in offshore water and in high tide water in the marsh creek were dissolved organic nitrogen (DON) (2.5 to 20.4 μg-at N/1) and particulate nitrogen (PN) (0.1 to 30.0 μg-at N/1). Concentrations in marsh creek water at low tide were higher, ranging from 4.4 to 38.0 μg-at N/1 for DON and from 13.0 to 239.0 μg-at N/1 for PN. Comparisons of the average concentrations of dissolved and particulate forms of nitrogen in the marsh tidal creek during flood and during ebb tide suggested no net movement of the inorganic nitrogen nutrients, a net influx of PN to the marsh, and a net outflux of DON from the marsh.  相似文献   

13.
Surface films on marsh creeks form water-air interfaces of high biological activity. The development, movement, deposition, and breakup of the tidal creek surface film in a naturalSpartima alterniflora-dominated salt marsh in Delaware were followed seasonally over tidal cycles. The metabolic activity, i.e., photosynthesis and respiration, of the surface film and underlying water were determined in the field at the time of peak film formation, just prior to high tide, and the particulate material and chlorophylla were quantified over the tidal cycles. The quantities of organic and inorganic components of the particulate material were all significantly higher in the surface film than in the underlying water (on a volume basis). Numbers of algal cells and quantities of chlorophyll were orders of magnitude greater in the surface film than in the water column. Photosynthesis and respiration were significantly higher in the surface film than in the underlying water. The spectrum of fatty acids was more diverse and their total content was significantly greater in the surface film than in the water column, indicating a concentrated food source contributed by the film as well as a biological richness of the film. When water in the creek flooded the marsh plain at high tide, film deposition was greatest on simulated creek bankS. alterniflora stems, compared to stems along rivulets in the marsh and those in the marsh plain. Using surface film dry weight measurements on an areal basis and film velocity in the creek, both measured throughout a tidal cycle during the summer, it was determined that approximately 12 kg (dry weight) of particulate material moved on the creek surface (2 m wide) past a given point on the flood tide, and 14 kg moved in the opposite direction on the ebb tide. The biological and physical data collected in this study illuminate the contribution of the surface film to the biological (food web) and physical (sediment transport and deposition) functions of a salt marsh.  相似文献   

14.
Large-scale marsh restoration efforts were conducted to restore normal salt marsh structure and function to degraded marshes (i.e., former salt hay farms) in the mesohaline lower Delaware Bay. While nekton response has been previously evaluated for the marsh surface and subtidal creeks in these marshes, little effort has been focused on intertidal creeks. Nekton response in intertidal creeks was evaluated by sampling with seines to determine if restored (i.e., former salt hay farms restored in 1996) and reference (i.e., natural or relatively undisturbed) salt marshes were utilized by intertidal nekton in a similar manner. The overall nekton assemblage during June–October 2004–2005 was generally comprised of the same species in both the restored and reference marshes. Intertidal creek catches in both marsh types consisted primarily ofFundulus heteroclitus andMenidia menidia, with varying numbers of less abundant transient species present. Transient nekton were more abundant at restored marshes than reference marshes, but in insufficient numbers to cause differences in nekton assemblages. In both marsh types, low tide stages were characterized by resident nekton, dominated byF. heteroclitus, while high tide stages were characterized by a variable mix of transient and resident nekton. Assemblage level analyses indicated that intertidal creeks in restored and reference marshes were generally utilized in a similar manner by a similar nekton assemblage, so restoration efforts were deemed successful. This is in agreement with multiple comparative studies from the ame marshes examining fish, invertebrates, and vegetation in different marsh habitats.  相似文献   

15.
Subtidal accumulations of oyster shell have been largely overlooked as essential habitat for estuarine nekton. In southeastern U.S. estuaries, where oyster reef development is mostly confined to the intertidal zone, eastern oyster (Crassostrea virginica) shell covered bottoms are often the only significant source of hard subtidal structure. We characterized and quantified nekton use of submerged shell rubble bottoms, and compared it to use of intertidal reefs and other subtidal bottoms in the North Inlet estuary, South Carolina. Replicate trays (0.8 m2) filled with shell rubble were deployed in shallow salt marsh creeks, and were retrieved after soak times of 1 to 25 days from May 1998 to March 2000. Thirty six species of fishes, representing 21 families, were identified from the 455 tray collections. Water temperature, salinity, soak time and the presence of a shell substrate all affected the catch of fishes in the trays. Catches during the warmer months were two to five times greater than those during the winter. Fishes were present in 98% of the trays with an overall average of 5.7 fish m?2. The assemblage was numerically dominated by small resident species including naked goby (Gobiosoma bose), oyster toadfish (Opsanus tau), and crested blenny (Hypleurochilus geminatus). Transient species accounted for 23% of all individuals and 62% of the total biomass due to the presence of relatively large sheepshead (Archosargus probatocephalus) and black sea bass (Centropristis striata). Both the transient and resident species displayed distinct periods of recruitment and rapid growth from April to October. Lower abundances of juvenile gobies and blennies during 1998 were attributed to long periods of depressed salinity caused by high rainfall associated with El Niño conditions in spring. Crabs and shrimps, which were often more abundant than the fishes, accounted for comparable biomass in the tray collections. In comparisons of subtidal tray and trawl catches, trays yielded 10 to 1,000 fold higher densities of some demersal fish groups. Comparisons of intertidal and subtidal gear catches indicated that many species remain in the subtidal shell bottom at all stages of the tide. This study suggests that subtidal shell bottom may be essential fish habitat for juvenile seabass, groupers, and snappers and that it may be the primary habitat for a diverse assemblage of ecologically important resident fishes and crustaceans. Given the high levels of nekton use and the areal extent of oyster shell bottoms in eastern U.S. and Gulf estuaries, increased attention to protection and restoration of these areas appears justified.  相似文献   

16.
Three polyhaline subtidal marsh creeks in southern New Jersey were sampled with weirs and seines to determine seasonal patterns of utilization by fishes and macroinvertebrates. Sixty-four species of fish, 13 invertebrates, and the diamondback terrapin were collected in 69 weir and 57 seine samples from April to November 1988 and April to October 1989. Average abundance, biomass, and faunal composition were strongly seasonal with greatest abundances during spring and summer, and peaks in May and August. Sixteen species were represented by all life-history stages, including the five most important species by combined ranks of percent frequency, mean abundance, and mean biomass. These five species were important during spring, summer, and fall and included the fishes Menidia menidia and Fundulus heteroclitus, the shrimps Palaemonetes vulgaris and Crangon septemspinosa, and the crab Callinectes sapidus. In addition, there were distinct seasonal assemblages of other species which utilized the creeks primarily as young-of-the-year. Importnat species in spring collections included the fishes Clupea harengus, Alosa aestivalis, Alosa pseudoharengus, Pollachius virens, and Urophysics regia, while Leiostomus xanthurus, Pomatomus saltatrix, Paralichthys dentatus, Mugil curema, and Strongylura marina were important in the summer. Fall samples were best characterized by declining abundances of summer species. Thus, subtidal marsh creeks in southern New Jersey appear to be valuable nurseries for a variety of species which spawn over the continental shelf, as well as one of the most important habitats for estuarine residents.  相似文献   

17.
Mummichog,Fundulus heteroclitus, were collected weekly from a southern New Jersey high-salinity salt marsh from October 1988 to June 1989 and from September 1989 to June 1990 to determine the overwintering habitat. Major habitat types sampled within the salt marsh were subtidal creek, intertidal creeks, and salt-marsh pools. Few individuals were collected in the intertidal creek or the subtidal creek from the end of October through the beginning of May for both years, when creek water temperatures were low. Both young-of-the-year and adults of both sexes were abundant in the salt-marsh pools (total lengths ranged from 29 mm to 125 mm) throughout the winter. In the spring, catch per unit effort (CPUE) within the tidal creek increased with increasing water temperature, while CPUE in marsh pools decreased with increases in estuarine water temperature. These collection patterns indicate that the majority ofF. heteroclitus may move from subtidal and intertidal creeks into salt-marsh pools in the late fall and leave in the spring. This seasonal movement could explain how fish survive winter environmental conditions because daily average water temperatures of salt-marsh pools were warmer than subtidal creek temperatures for much of the winter.  相似文献   

18.
The larvae of winter spawning fishes immigrating through Beaufort Inlet into the Pamlico Sound estuarine system (North Carolina, United States) were passively sampled during 14 flood tides and nine of the following ebb tides. Five taxa were abundant in the catches. Pelagic species were represented by Atlantic menhaden, Brevoortia tyrannus. Nonpelagic taxa were represented by Atlantic croaker, Micropogonias undulatus, spot, Leiostomus xanthurus, pinfish, Lagodon rhomboides, and flatfishes of the genus Paralichthys. The sampling was continuous and the sample duration varied between 4 min and 32 min. The longest samples furnished the most accurate and precise estimates of the mean tidal abundance. Sampling 10 min each hour of the tide was the most efficient protocol for determining the mean tidal abundance. The abundance patterns was shown to differ according to the pelagic or nonpelagic behavior of the larvae. Analyses suggested the nonpelagic taxa rely on astronomical tides and vertical migrations synchronous with the direction of the tide flow to be transported upstream in the estuary. These larvae were not dependent upon the strength of the tide to penetrate the inlet. In contrast, menhaden larvae seemed to rely primarily on strong food tides to enter the estuarine area, probably because the vertical positioning of the species within the water column is not dependent upon the direction of the tide. However, if larvae were present outside of the inlet, strong flood tides indiscriminately brought pelagic and nonpelagic species into the estuary.  相似文献   

19.
Delaware Bay is one of the largest estuaries on the U.S. eastern seaboard and is flanked by some of the most extensive salt marshes found in the northeastern U.S. While physicochemical and biotic gradients are known to occur along the long axis of the bay, no studies to date have investigated how the fish assemblage found in salt marsh creeks vary along this axis. The marshes of the lower portion of the bay, with higher salinity, are dominated bySpartina spp., while the marshes of the upper portion, with lower salinity, are currently composed primarily of common reed,Phragmites australis, S. alterniflora, or combinations of both. Extensive daytime sampling (n=815 tows) during May–November 1996 was conducted with otter trawls (4.9 m, 6 mm mesh) in six intertidal and subtidal marsh creek systems (upper and lower portions of each creek) where creek channel depths ranged from 1.4–2.8 m at high tide. The fish taxa of the marsh creeks was composed of 40 species that were dominated by demersal and pelagic forms including sciaenids (5 species), percichthyids (2), and clupeids (7), many of which are transients that spawn outside the bay but the early life history stages are abundant within the bay. The most abundant species wereMorone americana (24.3% of the total catch),Cynoscion regalis (15.4%),Micropogonias undulatus (15.3%),Anchoa mitchilli (12.0%), andTrinectes maculatus (10.8%). Non-metric Multi-Dimensional Scaling ordination of catch per unit effort (CPUE) data indicated two fish assemblages that were largely independent of the two major vegetation types, but generally corresponded with spatial variation in salinity. This relationship was more complex because some of the species for which we could discriminate different age classes by size had different patterns of distribution along the salinity gradient.  相似文献   

20.
The surface of the salt marsh is an important, but largely unrecognized, site for fish reproduction and larval growth. In an attempt to determine the composition and distribution of fishes utilizing these habitats, we sampled larval and juvenile fish with plankton nets, dip nets, and traps at a variety of microhabitats (tidal and nontidal ponds and ditches and the marsh surface) in three New Jersey high marshes. Two of the three marshes had been altered for mosquito control. During April to September 1980, we collected over 2,400 larvae and juveniles. All study sites were dominated by the larvae of the resident killifishes (Fundulus heteroclitus, Cyprinodon variegatus, F. luciae, andLucania parva) and less commonlyMenidia beryllina. However, the occurrence and abundance of each species varied with microhabitat. Larval production in all three marshes peaked during June–July, but extended from May until September. In most instances juveniles of the dominant fishes had microhabitat preferences similar to the larvae. High marshes may be more important for fish production than previously recognized because they serve as nursery areas for the resident killifishes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号