首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A laboratory experiment was conducted to determine whether retention of waterborne sand by salt marsh cordgrass, Spartina alterniflora Loisel, is directly related to the number of stems per unit area. Waves generated in a trough washed over a sloping beach planted with S. alterniflora sprigs: a range of stem densities (0–108 stems/m2) was examined in separate trials. The amount of sand accumulated after 60 waves is a positive nonlinear function of stem density. The greatest accretion coincided with the highest stem density tested. Shape of the beach profile was also strongly influenced by the number of stems per m2.  相似文献   

2.
Net annual productivity of tall and medium form cordgrass,Spartina alterniflora, was estimated by a new clip sampling method in a sloping foreshore salt marsh at Wallops Island, Virginia. This method measured live standing crops only, to avoid problems of measuring dead biomass inherent in other methods. Losses from live standing crops by shoot mortality and by leaf shedding were estimated from these measurements and added separately to production of live tillers and of live culms. This allowed quantification of various components of production.Spartina tillering in different zones of the marsh produced 62 to 211 g dry weight per m2 per yr. Tiller mortality removed 37 to 106 g per m2 per yr from live standing crops. Culms produced 348 to 1,132 g per m2 before flowering and die-back. Culm mortality removed 28 to 246 g per m2 before flowering. Leaf shedding removed an additional 83 g per m2 in tall formSpartina. Altogether, net annual productivity These estimates are much higher than previous estimates of productivity and standing crops inSpartina marshes nearby.  相似文献   

3.
Burning has been employed as an oil spill remediation technique in coastal marshes, even though the combined and interactive effects of oil and burning on vegetation are poorly understood. Variation among clones of perennial marsh grasses in response to these perturbations is not known. We performed a greenhouse experiment designed to assess the effects of Venezuelan crude oil alone and of oil followed by burning on three clonal genets ofSpartina alterniflora. The fully-crossed 6-mo experiment involved five dosages of oil (0 l m−2, 4 l m−2, 8 l m−2, 16 l m−2, and 24 l m−2) and two burn treatments (burned or unburned) applied to ramets from three clones. All oil-only dosages reduced survival, but burning after oiling (oil + burn treatments) increased survival relative to oil-only groups in all except the highest two oil dosages. Higher oil-only treatments also reduced ramet densities and inhibited density increases over 6 mo. Burning after treatment with the 16 l m−2 oil concentration allowed increased production of new ramets, but burning exacerbated the negative impacts on ramet density at the oil concentration of 24 l m−2. At some intermediate oil dosages, burning remediated the negative effects of oil on aboveground biomass production and growth in height. There was a significant effect of oil-only treatments on numbers of flowering ramets produced, in which two clones responded with decreased flower production and one exhibited increased flowering. There was no main effect of oil + burn on flowering. There were significant among-clones differences in all response variables to one or both treatments. Our experiment demonstrates that burning of oiledS. alterniflora marshes may have little measurable effect at low levels of Venezuelan crude oil, can remediate the effects of oil at intermediate oil concentrations, but can increase the negative impacts at high concentrations of oil. These results indicate that oil spills have the potential to adversely affect genetic diversity inS. alterniflora populations by eliminating some sensitive clonal variants or changing the relative dominance of genets. These results suggest certain clones may be better suited for phytoremediation or restoration planting following oil spills.  相似文献   

4.
5.
The supply of nutrients from surface and subsurface water flow into the root zone was measured in a developing barrier island marsh in Virginia. We hypothesize that high production of tall-formSpartina alterniflora in the lower intertidal zone is due to a greater nitrogen input supplied by a larger subsurface flux. Individual nitrogen inputs to the tall-form and short-formS. alterniflora root zones were calculated from water flow rates into the root zone and the nutrient concentration corresponding to the source of the flow. Total dissolved inorganic nitrogen (DIN) input (as ammonium and nitrate) was then calculated using a summation of the hourly nutrient inputs to the root zone over the entire tidal cycle based on hydrologic and nutrient data collected throughout the growing season (April–August) of 1993 and 1994. Additionally, horizontal water flow into the lower intertidal marsh was reduced experimentally to determine its effects on nutrient input and plant growth. Total ammonium (NH4 +) input to the tall-formS. alterniflora root zone (168 μmoles 6 h?1) was significantly greater relative to the short-form (45 μmoles 6 h?1) during flood tide. Total NH4 + input was not significantly different between growth forms during ebb tide, and total nitrate (NO3 ?) and total DIN input were not significantly different between growth forms during either tidal stage. During tidal flooding, vertical flow from below the root zone accounted for 71% and horizontal flow from the adjacent mudflat accounted for 19% of the total NH4 + input to the tall-formS. alterniflora root zone. Infiltration of flooding water accounted for 15% more of the total NO3 ? input relative to the total NH4 + input at both zones on flood tide. During ebb tide, vertical flow from below the root zone still accounted for the majority of NH4 + and NO3 ? input to both growth forms. After vertical flow, horizontal subsurface flow from upgradient accounted for the next largest percentages of NH4 + and NO3 ? input to both growth forms during ebb tide. After 2 yr of interrupted subsurface horizontal flow to the tall-formS. alterniflora root zone, height and nitrogen content of leaf tissue of treatment plants were only slightly, but significantly, lower than control plants. The results suggest that a dynamic supply of DIN (as influenced by subsurface water flows) is a more accurate depiction of nutrient supply to macrophytes in this developing marsh, relative to standing stock nutrient concentrations. The dynamic subsurface supply of DIN may play a role in spatial patterns of abovegroundS. alterniflora production, but determination of additional nitrogen inputs and the role of belowground production on nitrogen demand need to also be considered.  相似文献   

6.
A one-year field study was conducted of the growth, mortality, and loss dynamics of aSpartina alterniflora low marsh in the Minas Basin, a macrotidal estuary at the head of the Bay of Fundy. Data were used to examine the suitability of four methods for estimating annual net aerial primary production (NAPP) of a marsh subject to energetic tidal flooding. Shoots start to grow in April and reach maximum height (about 0.5 m) and weight in October. Maximum shoot density (900–1,600 m?2) occurs around June and drops thereafter due to the export of entire shoots. The average shoot produces about seven leaves and at least 2–3 are lost during the growing season. All remaining vegetation dies before the end of November. Methods based on harvesting vegetation underestimated NAPP, especially at lower elevations where export is greater due to more frequent and prolonged tidal flooding. The highest NAPP values, on the order of 500–600 g m?2 y?1, were obtained using methods based on the population dynamics of individual shoots. These methods are recommended for energetic tidal environments because they include the production of vegetation exported during the growing season.  相似文献   

7.
Spartina alterniflora, smooth cordgrass, invading San Francisco Bay, California (USA), is attacked by high densities of a plant hopper, Prokelisia marginata, and a mirid bug, Trigonotylus uhleri. Both herbivores are sap-feeders. We investigated the impact of these herbivores on S. alterniflora's growth rate, vegetative spread, and seed production by manipulating herbivore densities in the field and in a greenhouse. Herbivore densities in the field peaked in early fall, with P. marginata averaging more than 300 individuals per mature culm of S. alterniflora (about 100,000 per m2) and T. uhleri densities exceeding 10 per culm (about 3,000 per m2). Field reductions of herbivore densities by approximately 70% with insecticidal soap did not result in greater vegetative growth rates or lateral spread of plants; plants grew vigorously with the highest densities of insects. In the greenhouse study, conducted with seedlings, herbivory significantly reduced plant mass and tiller number in some but not all replicate herbivory treatments. In both field and greenhouse, there were significant differences between some clones' growth rates independent of herbivory. Inflorescence production in the field was not affected by reduced-herbivory treatments. Seed set was low under conditions of both natural and reduced herbivory, averaging 0.4%. Despite densities of P. marginata and T. uhleri that are much higher than typically observed in areas where S. alterniflora is native, herbivory by these particular insects appears to have little impact and in unlikely to limit S. alterniflora’s spread through San Francisco Bay. *** DIRECT SUPPORT *** A01BY070 00009  相似文献   

8.
Spartina alterniflora was first introduced into south San Francisco Bay in the 1970’s. Since that time it has spread to new areas within the south bay and is especially well established at four sites. The spread of this introduced species was evaluated by comparing its vegetative and reproductive characteristics to the native cordgrass, Spartina foliosa. The characters studied were intertidal distribution, phenology, aboveground and belowground biomass, growth rates, seed production, and germination rates. Spartina alterniflora has a wider intertidal distribution than S. foliosa and outproduced the native cordgrass in all aspects that were studied. These results indicate that the introduced species has a much better chance of becoming established in new areas than the native species, and once established, it spreads more rapidly vegetatively than the native species. Spartina alterniflora is likely to continue to spread to new areas in the bay and displace the native plant. In addition, this introduced species may effect sedimentation dynamics, available detritus, benthic algal production, wrack deposition and disturbance, habitat structure for native wetland animals, benthic invertebrate populations, and shorebird and wading bird foraging areas. *** DIRECT SUPPORT *** A01BY058 00013  相似文献   

9.
Tagging studies ofSpartina alterniflora Loisel showed no significant differences in stem longevity of short, medium, and tall height forms. Mean stem longevity was 7.9 months, and the experimental turnover rate was 1.5 crops per yr. Five methods to measure productivity (peak standing crop, Milner and Hughes, Smalley, Wiegert and Evans, and Lomnicki, et al.) yielded annual net aerial primary production (NAPP) estimates ranging from 214 to 1,038 g dry wt per m2 per yr in a stand of shortSpartina. Turnover rates were computed for each of the methods by dividing the respective production value by the peak standing crop (242 g dry wt per m2 per yr). Each computed turnover rate was compared with the experimental value of 1.5 crops per yr to ultimately determine that the methods of peak standing crop, Milner and Hughes, and Smalley were underestimates and that the Wiegert and Evans method was an overestimate of NAPP in tidal marsh systems. Based on its calculated turnover rate of 1.9 crops per yr, a modified Lomnicki, et al. method provided the best NAPP estimate (454 g dry wt per m2 per yr).  相似文献   

10.
Coastal salt marshes represent an important coastal wetland system. In order to protect coastlines from erosion and rapid increase in accumulation rate, Spartina alterniflora (S. alterniflora) was introduced into the Chinese coast. Two study areas (Wanggang and Quanzhou Bay) were selected that represent the plain type and embayment type of the coastal salt marshes. In situ measurements show that the tidal current velocities are stronger on the intertidal mudflat without S. alterniflora than that with S. alterniflora, and the velocity above the canopy surface is larger than that in the salt marsh canopy. The existence of S. alterniflora also influences the velocity structure above the bare flat during ebb tide. With the decrease in current flow velocity when seawater enters into the S. alterniflora marsh, suspended sediments are largely entrapped on the marsh surface, leading to increase in sedimentation rates and change in physical evolution processes of the coastal salt marshes. The highly developed root systemof S. alterniflora induces sediment mixing and exchange between subsurface sediment strata and affects the vertical sediment distribution remarkably. The sedimentation rate of S. alterniflora marsh at the Wanggang area is much higher than the relative sea level rise rate, where rapid progradation of theWanggang saltmarshes that is protecting the coast from sea erosion is observed.  相似文献   

11.
Experimental chambers were used in a Virginia salt marsh to partition the tidal flux of dissolved nutrients occurring at the marsh surface and in the water column. On five dates from June to October 1989, six replicate chambers in the short Spartina alterniflora zone were monitored over complete tidal cycles. When reservoir water, used to simulate tidal flooding in the chambers, was initially low in dissolved nutrients, the marsh surface was a source of both ammonium and phosphate to the water column. Calculations of the physical processes of diffusion and advection could not account for total nutrient release from the marsh surface. We hypothesize the primary source of nutrients was organic matter mineralization in surface sediments, which released nutrients into the flooding water column. Assimilation (uptake) of phosphate measured in water-column incubation experiments was nearly equal to phosphate released from the marsh surface. Surface release of ammonium, however, was somewhat greater than water-column uptake. In this salt marsh, benthic production and release of ammonium and phosphate is comparable in magnitude to pelagic consumption, thereby yielding only a small “net” transfer of these nutrients to the estuary.  相似文献   

12.
Two types of hyphal-extraction, direct-count methods of estimating fungal biovalume in standing-dead, autumn leaves of Spartina alterniflora were compared with a clearing+staining method which does not require homogenization. Bacterial biovolume also was estimated, by an acridine-orange direct-count method. Type of homogenization had little effect on measured fungal volume, but counts made using water-soluble-aniline-blue epifluorescence were consistently lower than those made using phase-contrast (by 6–10x). Clearing+staining could not be used to estimate hyphal lengths, but was of use in estimating total ascocarp volume (=0.06 mm3 per mm3 of leaf). Estimated fungal hyphal volume was approximately 0.27 mm3 per mm3 of leaf. Bacterial volume was <3% of fungal volume.  相似文献   

13.
Responses ofSpartina alterniflora marsh to combinations of feral horse grazing, clipping, simulated trampling, and a late winter burn were studied on Cumberland Island National Seashore, Georgia. Replicated 200-m2 plots were established and sampled bimonthly from July 1983 to November 1984. Clipping and trampling each reduced peak aboveground biomass by 20% in 1983 and 50% (clipping) and 55% (trampling) in 1984. A March burn reduced peak aboveground biomass by 35% in 1984. Trampling and burning earch reduced net aboveground primary production (NAPP) by 35%, but clipping did not reduce NAPP. Standing stocks of live rhizomes were correlated with aboveground biomass and were reduced with experimental treatments. Abundance of the periwinkle snail (Littorina irrorata) was also reduced. Horse grazing had a substantial impact on standing stocks and NAPP ofSpartina, but grazing was not uniform throughout the marsh. Moderately grazed plots had NAPP reduced by 25% compared to ungrazed plots. Heavily grazed plots had extremely low NAPP, and abovegroundSpartina never exceeded 40 g m?2 dry mass compared to 360 g m?2 within exclosures.  相似文献   

14.
The distribution of δ13C values for organic seston and sediment was determined in three sounds in the Spartina marsh estuaries along the Georgia coast, which had high, moderate, and low inputs of freshwater. Organic matter in all three sounds had similar carbon isotope compositions, for the most part within the range of marine values (δ13C of ?18%. to ?24%.). It appears that river flow does not introduce significant quantities of particulate C3 plant material (δ13C of ?25%. to ?28%.) to Georgia estuaries. Evaluation of δ13C values of estuarine seston and three size fractions of sediment indicated that while Spartina carbon (δ13C of ?13%.) can be an important component of organic matter in intertidal sediments (mean δ13C of ?14.3%. to ?20.0%.), it is less so in subtidal sediments (mean δ13C of ?18.8%. to ?21.2%.), and it is hardly present at all in the seston (mean δ13C of ?24.5%.). δ13C values of dissolved inorganic carbon (DIC) in several water samples ranged between ?2.5%. and ?5.6%., suggesting that the isotope composition of estuarine DIC is influenced by respiratory CO2 derived from metabolism of 13C-depleted plant carbon. Phytoplankton production utilizing this comparatively light DIC could be a source of relatively negative δ13C carbon in the estuary. Additional origins of estuarine organic matter greatly depleted in 13C compared to Spartina carbon remain to be identified.  相似文献   

15.
Because tall cordgrass (Spartina foliosa) is needed for nesting by the endangered light-footed, clapper rail, managers of constructed salt marshes in southern California are proposing large-scale nitrogen fertilization to improve cordgrass growth. How this might affect an existing infestation of scale insects (Haliaspis spartina) and the degree of damage these insects cause to their cordgrass hosts was unknown. We explored the effects of timing and duration of fertilization onHaliaspis damage to cordgrass, as well as the timing ofHaliaspis dispersal, in a constructed marsh at Sweetwater Marsh National Wildlife Refuge in San Diego Bay, California. Fertilization did not result in increasedHaliaspis abundance. After a large dispersal pulse in late May,Haliaspis establishment in the long-term fertilized plots was greater than in the controls; however, this trend reversed in August, when many more stems in the control plots were infested with large numbers ofHaliaspis. Since adultHaliaspis cannot leave a feeding site, losses of individuals in the fertilized plots were apparently due to mortality, perhaps resulting from mechanical or chemical changes in the fertilized plants or increased predation. Late in the growing season, plots fertilized with 10 applications of urea over 20 wk had the lowest meanHaliaspis abundance. Plots fertilized only in March, April, June, or August did not differ from controls in meanHaliaspis abundance.Haliaspis was never abundant in the fertilized or control plots in the adjacent natural marsh. This study suggests that fertilization, of constructed salt marshes in San Diego Bay may proceed without concern that furtherHaliaspis outbreaks will be facilitated.  相似文献   

16.
We estimated lateral growth rates of nonindigenous Spartina alterniflora patches in Willapa Bay, Washington, over three intervals between 1970 and 1990, to reconstruct recruitment frequency since S. alterniflora was initially introduced c. 1890. Black and white aerial photographs (1∶24,000 scale) of four representative sites where S. alterniflora has invaded were analyzed. Individual patches were digitized on a computer, and diameter and area were computed for each patch for all years and sites sampled using CAD software. Lateral growth rates of individual. S. alterniflora patches increased linearly at 79.3 (± 1.674 SE) cm yr−1. Back calculations of origin dates for individual patches based on mean lateral growth rates indicate that recruitment of new patches has been episodic and increasing in frequency since initial introduction. Environmental factors such as sea surface temperature, sea level, and precipitation may account for some of this recruitment variability. These data may be useful in existing and future models of S. alterniflora expansion in Pacific Northwest estuaries.  相似文献   

17.
A greenhouse experiment was conducted to examine the effects of salinity, nitrogen, and aeration on the growth of Spartina alterniflora Loisel. The experiment was conducted in a factorial arrangement of treatments with salt marsh substrate at three salinity levels (15, 30, 45‰), at two nitrogen levels (0 and 168 kg/ha) and at two aeration levels (zero and oxygen saturation). The maximum biomass was found in the low salinity, nitrogen enhanced, aerated treatment which had 11 times more biomass than the highest (45‰) salinity, nitrogen poor, unaerated treatment. the average effect of nitrogen over the three salinity levels was a 2.01, 1.47, 1.25, and 1.52 times increase in aerial biomass, density, height, and belowground biomass of the plants, respectively. The main effect of aeration was a 2.49, 2.01, 1.57, and 1.85 times increase in the same variables. The combination effect of aeration and nitrogen additions enhanced biomass by 453%. An increase in salinity from 15‰ to 45‰ decreased biomass, density, height and belowground biomass of S. alterniflora by 66, 53, 38, and 61%, respectively. The effect of salinity was more pronounced between 30 and 45‰ than it was between 15 and 30‰. N, P, K, Ca, Mg, Na, Fe, Mn, Zn, Cu, and S concentrations in the aerial living biomass were also examined. There was no evidence to suggest that elemental concentrations (on a per gram basis) were consistently correlated with increased or decreased growth. In relation to salinity, correlations between growth and elemental concentrations were negative while for nitrogen enhanced and/or aerated systems, the correlations were positive.  相似文献   

18.
Primary production by algal epiphytes of dead Spartina alterniflora shoots in a Georgia salt marsh was measured using the 14C technique. A 23 factorial design was used to quantify the effects of light intensity and inundation frequency (stem height) on carbon fixation at two sites along a salt marsh creek. Algae inundated daily fixed carbon more rapidly than those which had dried for several days, but this may have been the results of greater biomass on more frequently immersed stems. This result corroborates studies showing desiccation is not always a severe stress for intertidal algae. Similarity of epiphyte algal productivity to that of salt marsh benthic diatoms suggests that, given adequate substrate, the epiphytes may be an important source of primary production during some seasons of the year.  相似文献   

19.
Packets of freshly harvested liveSpartina alterniflora were placed on the marsh surface, in a tidal ditch, in a pool contacting sides and bottom, and in the center-bottom of the same pool in September 1972. Rates of loss were the same for all four sites through day 242. After that packets on the marsh surface decomposed slower. A second experiment was begun in July only at the marsh surface and pool side sites. These lost dry weight much more rapidly than packets started in September. Populations of bacteria, fungi, diatoms, flagellates, ciliates and nematodes within the packets peaked within 60 days then decreased proportionately with the loss of dry weight in packets through day 242. After this, bacterial numbers decreased more rapidly presumably in response to a qualitative change in the packet material. Populations of flagellates and ciliates also declined rapidly after day 300. This decline occurred in new packets at around this date as well. In a limited set of samples 12 taxa were analyzed for date or detritus-age dependent occurrence. Of these, eight were data dependent, two were dependent on packet age, and two could not be determined from the data.  相似文献   

20.
Belowground production of roots and rhizomes in the top 20 cm of soil was 2.2 kg m?2 yr?1 based on a maximum minus minimum estimation procedure in a giant cordgrass (Spartina cynosuroides (L.) Roth) marsh in Mississippi. Approximately 1.9 kg m?2 (86%) of this production occurred in late spring-summer and 0.3 kg m?2 in late fall. This estimate ignores any production below 20 cm depth and is thus an underestimate. Production values increased to 4.0 kg m?2 yr?1 using Smalley’s technique and accounting for decomposition. Aboveground tissues (leaves and stems) were depleted in nitrogen in July which corresponded to peaks in both above- and belowground biomass. The low root/shoot ratio (2.6) on this marsh does not suggest that growth is nutrient limited. Indeed, total productivity (above- and belowground) for this marsh was high (between 4.4 and 6.2 kg m?2 yr?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号