首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 56 毫秒
1.
The Heihe River Basin is a typical arid inland river basin for examining stress on groundwater resources in northwest China. The basin is composed of large volumes of unconsolidated Quaternary sediments of widely differing grain size, and during the past half century, rapid socio-economic development has created an increased demand for groundwater resources. Understanding the hydrogeochemical processes of groundwater and water quality is important for sustainable development and effective management of groundwater resources in the Heihe River basin. To this end, a total of 30 representative groundwater samples were collected from different wells to monitor the water chemistry of various ions and its quality for irrigation. Chemical analysis shows that water presents a large spatial variability of chemical facies (SO4 2−–HCO3, SO4 2−–Cl, and Cl–SO4 2−) as groundwater flow from recharge area to discharge area. The ionic ratio indicates positive correlation between the flowing pairs of parameters: Cl and Na+(r = 0.95), SO4 2− and Na+ (r = 0.84), HCO3 and Mg2+(r = 0.86), and SO4 2− and Ca2+ (r = 0.91). Dissolution of minerals, such as halite, gypsum, dolomite, silicate, and Mirabilite (Na2SO4·10H2O) in the sediments results in the Cl, SO4 2−, HCO3 , Na+, Ca2+ and Mg2+ content in the groundwater. Other reactions, such as evaporation, ion exchange, and deposition also influence the water composition. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. The results show that most of the groundwater samples are suitable for irrigation uses barring a few locations in the dessert region in the northern sub-basin.  相似文献   

2.
Hydrogeochemical investigations are carried out in the different blocks of Burdwan district, West Bengal, India in order to assess its suitability for drinking as well as irrigation water purpose. Altogether 49 representative groundwater samples are collected from bore wells and the water chemistry of various ions viz. Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42− and NO3 are carried out. The chemical relationships in Piper and Gibbs diagram suggest that the groundwater mainly belongs to alkali type and Cl group and are controlled by rock dominance. A comparison of groundwater quality in relation to drinking water quality standards proves that most of the water samples are suitable for drinking water purpose whereas groundwater in some areas of the district has high salinity and high sodium adsorption ratio (SAR), indicating unsuitability for irrigation water and needs adequate drainage.  相似文献   

3.
About 24 samples from hand-dug wells and boreholes were used to characterize concentrations of the main inorganic ions in a laterite environment under semi-arid climatic conditions in Tikaré, northern Burkina Faso. It was found that the most represented groundwater anion in groundwater was HCO3 with average levels of 49.1 mg/L in the dry season and 33.5 mg/L in the rainy season. The most represented cation was Ca2+ with mean concentrations of 13.7 and 9.5 mg/L, respectively. The main processes, which influence the concentrations of these ions, are evaporation (dry season), local enrichment of recharge water in some elements, ion exchange and fixation by clay minerals (in case of K+). The best correlations were found between Ca2+ and Mg2+ (r = 0.95), Cl and Na+ (r = 0.95), HCO3 and Mg2+ (r = 0.89), HCO3 and Ca2+ (r = 0.89), and between HCO3 and Na+ (r = 0.80). In general, the quality of the groundwater from the different wells sampled for this study was good enough to serve as drinking water. However, there were situations where the quality of water was polluted because of anthropogenic contaminants (mainly NO3 , K+, Cl) from septic tanks and manure pits located in the vicinity of some sampled wells. In addition, application of fertilizers also represents a potential anthropogenic contamination source with regard to SO4 2−, Ca2+, K+, Na+, and Mg2+. Considering the high concentrations of SO4 2−, Mg2+, Na+ and Ca2+ found in one borehole, the deeper, fractured aquifers were also likely to be enriched in these elements. In contrast, the shallow aquifers are likely to be contaminated with Cl, NO3 and K+. Cl and K+ seem to be locally present in recharge water as shown by their relative higher mean concentrations in the rainy season samples.  相似文献   

4.
This study was carried out to analyze groundwater quality in selected villages of Nalbari district, Assam, India, where groundwater is the main source of drinking water. 40 groundwater samples collected from hand pumps and analyzed for pH, EC, TDS, Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, Cl and F. Chemical analysis of the groundwater showed that mean concentration of cations in (mg/L) is in the order Ca2+ > Mg2+ > Na+ > K+ while for anions it is HCO3  > Cl > SO4 2− > F. Fluoride concentration was recorded in the range of 0.02–1.56 mg/L. As per the desirable and maximum permissible limits for fluoride in drinking water recommended by WHO and by Bureau of Indian Standards (BIS), which is 1.5 mg/L, the groundwater of about 97% of the samples were found to be suitable for drinking purpose. The suitability of the groundwater for irrigation purpose was investigated by some determining factors such as sodium adsorption ratio, soluble sodium percentage, Kelly’s ratio and electrical conductivity. The value of the sodium absorption ratio and electrical conductivity of the groundwater samples were plotted in the US Salinity laboratory diagram for irrigation water. Most of the groundwater samples fall in the field of C2S1 and C3S1 indicating medium to high salinity and low sodium water, which can be used for irrigation on almost all types of soil with little doubt of exchangeable sodium. The hydrochemical facies shows that the groundwater is Ca-HCO3 type.  相似文献   

5.
In this study, 92 groundwater samples were collected from the Attica region (Greece). Moreover, geographical information system database, geochemistry of groundwater samples and statistics were applied. These were used for studying the chemical parameters (NO3 , Mg2+, Ca2+, Cl, and Na+) and conductivity spatial distribution and for assessing their environmental impact. The ranges of chemical parameters of the water samples (in mg L−1) are: NO3 1–306, Mg2+ 2–293, Ca2+ 3–453, Cl 5–1,988, and Na+ 4–475. The elevated concentrations of sodium, Mg2+, Clare attributed to natural contamination (seawater intrusion). On the other hand, NO3 elevated concentrations are attributed to anthropogenic contamination (nitrate fertilizers). The results of the GIS analysis showed that elevated values of Na+, Mg2+, Clare related to shrubby and sparsely vegetated areas, while elevated values of NO3 are connected with urban and agricultural areas.  相似文献   

6.
Hydrochemical investigations were carried out in Damagh area, Hamadan, western Iran, to assess chemical composition of groundwater. Forty representative groundwater samples were collected from different wells to monitor the water chemistry of various ions. Chemical analysis of the groundwater showed that the mean concentration of the cations is in the order Na+ > Ca2+ > Mg2+ > K+, while that for anions was HCO3 > Cl > SO42 − > NO3. All of the investigated groundwaters present two different chemical facies (Ca–HCO3 and Na–HCO3) which is in relation with their interaction with the geological formations of the basin, cation exchange between groundwater and clay minerals and anthropogenic activities. The principal component analysis (PCA) performed on groundwater identified three principal components controlling their variability in groundwater. Electrical conductivity, Mg2+, Na+, SO42−, and Cl content were associated in the same component (PC1) (salinity), determined principally by anthropogenic activities. The pH, CO32 −, HCO3, and Ca2+ (PC2) content were related to the geogenic factor. Finally, the NO3, Cl and K+ (PC3) were controlled by anthropogenic activity as a consequence of inorganic fertilizers.  相似文献   

7.
An integrated study has been carried out to elucidate the distribution and occurrence of arsenic in selected groundwater samples in the area of Sherajdikhan, Bangladesh. Arsenic and other parameters (T, pH, EC, Na+, K+, Ca2+, Mg2+, Cl, NO3 , SO4 2−, HCO3 , PO4 3−, Fe, Mn and DOC) have been measured in groundwater samples collected from shallow/deep tube wells at different depths. Hydrogeochemical data suggest that the groundwaters are generally Ca–Mg–HCO3 and Mg–Ca–HCO3 types with bicarbonate (HCO3 ) as the dominant anion, though the other type of water has also been observed. Dissolved arsenic in groundwater ranged from 0.006 to 0.461 mg/l, with 69% groundwater samples exceeded the Bangladesh limit for safe drinking water (0.05 mg/l). Correlation and principal component analysis have been performed to find out possible relationships among the examined parameters in groundwater. Low concentrations of NO3 and SO4 2−, and high concentrations of DOC, HCO3 and PO4 3− indicate the reducing condition of subsurface aquifer where sediments are deposited with abundant organic matter. Distinct relationship of As with Fe and Mn, and strong correlation with DOC suggests that the biodegradation of organic matter along with reductive dissolution of Fe–Mn oxyhydroxides has being considered the dominant process to release As in the aquifers studied herein.  相似文献   

8.
The Markandeya River Basin stretches geographically from 15o56′ to 16o08′ N latitude and 74o37′ to 74o58′ E longitude, positioned in the midst of Belgaum district, in the northern part of Karnataka. The groundwater quality of 54 pre-monsoon samples in the Markandeya River Basin was evaluated for its suitability for drinking and irrigation purposes by estimating pH, EC, TDS, hardness and alkalinity besides major cations (Na+, K+, Ca2+, Mg2+) and anions (HCO3–, Cl–, SO42–, PO43-, F-, NO3–), boron, SAR, % Na, RSC, RSBC, chlorinity index, SSP, non-carbonate hardness, Potential Salinity, Permeability Index, Kelley’s ratio, Magnesium hazard and Index of Base Exchange. Negative Index of Base Exchange indicates the chloro-alkaline disequilibrium in the study area and the majority of water samples fall in the rock dominance field based on Gibbs’ ratio. Permeability indices of classes I and II suggest suitability of groundwater for irrigation. Based on Cl, SO4, HCO3 concentrations, water samples can be classified as normal chloride (96.3%) and normal sulfate (94.4%) and normal bicarbonate (44.4%) water types.  相似文献   

9.
Pollution of groundwater by seawater intrusion poses a threat to sustainable agriculture in the coastal areas of Korea. Therefore, seawater intrusion monitoring stations were installed in eastern, western, and southern coastal areas and have been operated since 1998. In this study, groundwater chemistry data obtained from the seawater intrusion monitoring stations during the period from 2007 to 2009 were analyzed and evaluated. Groundwater was classified into fresh (<1,500 μS/cm), brackish (1,500–3,000 μS/cm), and saline (>3,000 μS/cm) according to EC levels. Among groundwater samples (n = 233), 56, 7, and 37% were classified as the fresh, brackish, and saline, respectively. The major dissolved components of the brackish and saline groundwaters were enriched compared with those of the fresh groundwater. The enrichment of Na+ and Cl was especially noticeable due to seawater intrusion. Thus, the brackish and saline groundwaters were classified as Ca–Cl and Na–Cl types, while the fresh groundwater was classified as Na–HCO3 and Ca–HCO3 types. The groundwater included in the Na–Cl types indicated the effects of seawater mixing. Ca2+, Mg2+, Na+, K+, SO4 2−, and Br showed good correlations with Cl of over r = 0.624. Of these components, the strong correlations of Mg2+, SO4 2−, and Br with Cl (r ≥ 0.823) indicated a distinct mixing between fresh groundwater and seawater. The Ca/Cl and HCO3/Cl ratios of the groundwaters gradually decreased and approached those of seawater. The Mg/Cl, Na/Cl, K/Cl, SO4/Cl, and Br/Cl ratios of the groundwaters gradually decreased, and were similar to or lower than those of seawater, indicating that Mg2+, Na+, K+, SO4 2−, and Br, as well as Cl in the saline groundwater can be enriched by seawater mixing, while Ca2+ and HCO3 are mainly released by weathering processes. The influence of seawater intrusion was evaluated using threshold values of Cl and Br, which were estimated as 80.5 and 0.54 mg/L, respectively. According to these criteria, 41–50% of the groundwaters were affected by seawater mixing.  相似文献   

10.
Geochemical mixing models were used to decipher the dominant source of freshwater (rainfall, canal discharge, or groundwater discharge) to Biscayne Bay, an estuary in south Florida. Discrete samples of precipitation, canal water, groundwater, and bay surface water were collected monthly for 2 years and analyzed for salinity, stable isotopes of oxygen and hydrogen, and Sr2+/Ca2+ concentrations. These geochemical tracers were used in three separate mixing models and then combined to trace the magnitude and timing of the freshwater inputs to the estuary. Fresh groundwater had an isotopic signature (δ 18O = −2.66‰, δD −7.60‰) similar to rainfall (δ 18O = −2.86‰, δD = −4.78‰). Canal water had a heavy isotopic signature (δ 18O = −0.46‰, δD = −2.48‰) due to evaporation. This made it possible to use stable isotopes of oxygen and hydrogen to separate canal water from precipitation and groundwater as a source of freshwater into the bay. A second model using Sr2+/Ca2+ ratios was developed to discern fresh groundwater inputs from precipitation inputs. Groundwater had a Sr2+/Ca2+ ratio of 0.07, while precipitation had a dissimilar ratio of 0.89. When combined, these models showed a freshwater input ratio of canal/precipitation/groundwater of 37%:53%:10% in the wet season and 40%:55%:5% in the dry season with an error of ±25%. For a bay-wide water budget that includes saltwater and freshwater mixing, fresh groundwater accounts for 1–2% of the total fresh and saline water input.  相似文献   

11.
Sources of deep groundwater salinity in the southwestern zone of Bangladesh   总被引:2,自引:2,他引:0  
Twenty groundwater samples were collected from two different areas in Satkhira Sadar Upazila to identify the source of salinity in deep groundwater aquifer. Most of the analyzed groundwater is of Na–Cl–HCO3 type water. The trends of anion and cation are Cl > HCO3  > NO3  > SO4 2− and Na+ > Ca2+ > Mg2+ > K+, respectively. Groundwater chemistry in the study area is mainly governed by rock dissolution and ion exchange. The dissolved minerals in groundwater mainly come from silicate weathering. The salinity of groundwater samples varies from ~1 to ~5%, and its source is possibly the paleo-brackish water which may be entrapped during past geologic periods.  相似文献   

12.
The area in Guntur district, Andhra Pradesh, India, is selected to discuss the impact of seasonal variation of groundwater quality on irrigation and human health, where the agriculture is the main livelihood of rural people and the groundwater is the main source for irrigation and drinking. Granite gneisses associated with schists and charnockites of the Precambrian Eastern Ghats underlie the area. Groundwater samples collected seasonally, pre- and post-monsoons, during three years from forty wells in the area were analyzed for pH, EC, TDS, TA, TH, Ca2+, Mg2+, Na+, K+, CO32−, HCO3, Cl, SO42−, NO3and F. The chemical relationships in Piper’s diagram, Chebotarev’s genetic classification and Gibbs’s diagram suggest that the groundwaters mainly belong to non-carbonate alkali type and Cl group, and are controlled by evaporation-dominance, respectively, due to the influence of semi-arid climate, gentle slope, sluggish drainage conditions, greater water–rock interaction, and anthropogenic activities. A comparison of the groundwater quality in relation to drinking water quality standards proves that most of the water samples are not suitable for drinking, especially in post-monsoon period. US Salinity Laboratory’s and Wilcox’s diagrams, and %Na+ used for evaluating the water quality for irrigation suggest that the majority of the groundwater samples are not good for irrigation in post-monsoon compared to that in pre-monsoon. These conditions are caused due to leaching of salts from the overlying materials by infiltrating recharge waters. A management plan is suggested for sustainable development of the area.  相似文献   

13.
This study was conducted to evaluate factors regulating groundwater quality in an area with agriculture as main use. Thirty groundwater samples have been collected from Razan area (Hamadan, Iran) for hydrochemical investigations to understand the sources of dissolved ions and assess the chemical quality of the groundwater. The chemical compositions of the groundwater are dominated by Na+, Ca2+, HCO3 , Cl and SO4 2−, which have been derived largely from natural chemical weathering of carbonate, gypsum and anthropogenic activities of fertilizer’s source. The production of SO4 2− has multiple origins, mainly from dissolution of sulphate minerals, oxidation of sulphide minerals and anthropogenic sources. The major anthropogenic components in the groundwater include Na+, Cl, SO4 2− and NO3 , with Cl and NO3 being the main contributors to groundwater pollution in Razan area.  相似文献   

14.
In India, the quantity and quality of water available for irrigation is variable from place to place. Assessment of water quality has been carried out to determine the sources of dissolved ions in groundwater. Quality of groundwater in a 398 km2 Peddavanka watershed of a semi-arid region of south India is evaluated for its suitability for drinking and irrigation purposes. The middle Proterozoic Cuddapah Supergroup and Kurnool Group of rocks underlie most of the watershed. The main lithologic units consist chiefly of quartzite, limestone, and shale. Seventy-six water samples were collected from open-wells and bore-holes. Water samples were collected representative of the post-monsoon (winter) and pre-monsoon (summer). The quality assessment is made through the estimation of Ca2+, Mg2+, Na+, K+, Cl, SO42−, CO32−, HCO3, total hardness as CaCO3, TDS, EC, and pH. Based on these analyses, parameters like sodium adsorption ratio, % sodium, residual sodium carbonate, non-carbonate hardness, potential salinity, Kelley’s ratio, magnesium ratio, index of base exchange and permeability index were calculated. According to Gibbs‘ ratio samples in both seasons fall in the rock dominance field. The overall quality of waters in the study area in post-monsoon season is high for all constituents ruling out pollution from extraneous sources.  相似文献   

15.
This study applied a comprehensive quantitative approach including statistical, principal component and gray relation analyses to assess the groundwater chemistry based on monitored data from 840 samples collected from the lower reaches of Tarim River from 2000 to 2009. The main findings were: (1) there were six types of groundwater chemistry in the lower reaches of Tarim River where Cl·SO4–Na·Mg was the dominant type accounting for 73.57% in all samples. There were linear relationships among chemical parameters, where TDS had significant multiple correlations with Na+, K+, Mg2+, Ca2+ and Cl, respectively. (2) Three principal components (PC1, PC2 and PC3) were extracted. They included comprehensive measurements for salinization, alkalinity and pH, respectively. Most parameters showed decreasing trends during the period of 2000–2009, as well as the scores on PC1, because the concentrations of various chemical substances were diluted due to the uplift of the groundwater table in the lower reaches and the implementation of the ecological water delivery project in 2000. (3) HCO3 was the most sensitive chemical parameter affected by the groundwater table followed by TA, Mg2+, TH, SO42−, K+, TDS and TS. PC2 was the most sensitive principal component to the change of the groundwater table followed by PC1 and PC3.  相似文献   

16.
Water resources are a key factor, particularly for the planning of the sustainable regional development of agriculture, as well as for socio-economic development in general. A hydrochemical investigation was conducted in the Friuli Venezia Giulia aquifer systems to identify groundwater evolution, recharge and extent of pollution. Temperature, pH, electric conductivity, total dissolved solids, alkalinity, total hardness, SAR, Ca2+, Na+, K+, Mg2+, Cl, SO4 2−, NO3 , HCO3 , water quality and type, saturation indexes and the environmental stable isotope δ18O were determined in 149 sampling stations. The pattern of geochemical and oxygen stable isotope variations suggests that the sub-surface groundwater (from phreatic and shallow confined aquifers) is being recharged by modern precipitations and local river infiltrations. Four hydrogeological provinces have been recognised and mapped in the Friuli Venezia Giulia Plain having similar geochemical signatures. These provinces have different degrees of vulnerability to contamination. The deep confined groundwater samples are significantly less impacted by surface activities; and it appears that these important water resources have very low recharge rates and would, therefore, be severely impacted by overabstraction.  相似文献   

17.
The Zhangye Basin, located in arid northwest China, is an important agricultural and industrial center. In recent years rapid development has created an increased demand for water, which is increasingly being fulfilled by groundwater abstraction. Detailed knowledge of the geochemical evolution of groundwater and water quality can enhance understanding of the hydrochemical system, promoting sustainable development and effective management of groundwater resources. To this end, a hydrochemical investigation was conducted in the Zhangye Basin. Types of shallow groundwater in the Zhangye Basin were found to be HCO3 , HCO3 –SO4 2−, SO4 2−–HCO3 , SO4 2−–Cl, Cl–SO4 2− and Cl. The deep aquifer groundwater type was found to be HCO3–SO42− throughout the entire area. Ionic ratio and saturation index calculations suggest that silicate rock weathering and evaporation deposition are the main processes that determine the ionic composition in the study area. The suitability of the groundwater for irrigation was assessed based on the US Salinity Laboratory salinity classification and the Wilcox diagram. In the study area, the compositions of the stable isotopes δ18O and δD in groundwater samples were found to range from −4.00 to −9.28‰ and from −34.0 to −65.0‰, respectively. These values indicate that precipitation is the main recharge source for the groundwater system; some local values indicate high levels of evaporation. Tritium analysis was used to estimate the ages of the different groundwaters; the tritium values of the groundwater samples varied from 3.13 to 36.62 TU. The age of the groundwater at depths of less than 30 m is about 5–10 years. The age of the groundwater at depths of 30–50 m is about 10–23 years. The age of the groundwater at depths of 50–100 m is about 12–29 years. For groundwater samples at depths of greater than 100 m, the renewal time is about 40 years.  相似文献   

18.
Geochemical processes that take place in the aquifer have played a major role in spatial and temporal variations of groundwater quality. This study was carried out with an objective of identifying the hydrogeochemical processes that controls the groundwater quality in a weathered hard rock aquifer in a part of Nalgonda district, Andhra Pradesh, India. Groundwater samples were collected from 45 wells once every 2 months from March 2008 to September 2009. Chemical parameters of groundwater such as groundwater level, EC and pH were measured insitu. The major ion concentrations such as Ca2+, Mg2+, Na+, K+, Cl, and SO4 2− were analyzed using ion chromatograph. CO3 and HCO3 concentration was determined by acid–base titration. The abundance of major cation concentration in groundwater is as Na+ > Ca2+ > Mg2+ > K+ while that of anions is HCO3  > SO4 2− > Cl > CO3 . Ca–HCO3, Na–Cl, Ca–Na–HCO3 and Ca–Mg–Cl are the dominant groundwater types in this area. Relation between temporal variation in groundwater level and saturation index of minerals reveals the evaporation process. The ion-exchange process controls the concentration of ions such as calcium, magnesium and sodium. The ionic ratio of Ca/Mg explains the contribution of calcite and dolomite to groundwater. In general, the geochemical processes and temporal variation of groundwater in this area are influenced by evaporation processes, ion exchange and dissolution of minerals.  相似文献   

19.
Groundwater regime and mineralization process in moraine sandy loam and peat soils of the active sulphatic karst zone (karst processes develop in the Upper Devonian gypsum–dolomites) in Lithuania and the dependence of chemical compounds concentrations on water level fluctuations are reviewed. According to ion sum, groundwater mineralization in peat soil is 1.1–1.3 times higher than in loam soil. Based on this result, lower levels of groundwater predetermine a more intensive mineralization process. A stronger correlation was determined between groundwater levels and concentrations of chemical compounds (Ca2+, Mg2+, SO4 2− and HCO3 ) enhancing groundwater mineralization. In mineral soil (sandy loam) nitrate (NO3) concentration is highly influenced by changing stages of groundwater level as well as by nearby sinkholes.  相似文献   

20.
A water quality investigation was carried out in the Deoria district, Ganga plain, to assess the suitability of surface and groundwaters for domestic, agricultural, and industrial purposes. As much as 50 representative samples from river and groundwater were collected from various stations to monitor the water chemistry of various ions, comprising Ca2+, Mg2+, Na+, K+, HCO3 , SO4 2−, NO3 , Cl, F, and trace metals, such as Fe, Cu, Mn, Zn, Cd, and Pb. The results showed that electrical conductance (EC), total dissolved solids (TDS), HCO3 , Mg2+, Na+, and total hardness (TH) are above the maximum desirable limit, and apart from Fe and Mn all other trace metals are within the maximum permissible limit for drinking water. The calculated values for sodium absorption ratio (SAR), salinity, residual sodium carbonate (RSC), and permeability index (PI) indicate well to permissible use of water for irrigation. High values of Na%, RSC, and Mg-hazard (MH) at some stations restrict its use for agricultural purpose. Anthropogenic activities affect the spatial variation of water quality. Economic and social developments of the study area is closely associated with the characteristics of the hydrological network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号