首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A seismic swarm of more than 7200 earthquakes occurred in Aysen Fjord, southern Chile, from January to June 2007. It started suddenly on 23 January 2007 with an earthquake of magnitude Mw=5.3, followed by five earthquakes with magnitudes increasing from Mw=5.2 to 6.2 within three months. Two large earthquakes of magnitudes Mw=6.1 and 6.2 occurred on 02 and 21 April 2007, respectively. The latest earthquake generated landslides that induced a tsunami within the fjord, killing 10 people. This swarm has been examined using international seismic catalogues and seismicity located with a local seismic network; in particular its double tectonic and volcanic origin has been explored. All the focal mechanisms are compatible with the long- and short-term tectonics of the Liquiñe-Ofqui Fault Zone, a major intra-arc fault system of the Patagonian fjord land. The space, time, and size distributions of these earthquakes, that occurred within an active volcanic area revealed by the presence of several Holocene monogenetic volcanoes, may be explained both by fluid-induced (magma and/or hydrothermal fluids) activity combined with tectonic activity. The co-existence of these two tectonic and volcanic phenomena is a good example of retroactive links between fluids and tectonic fractures.  相似文献   

2.
A Ms 6.2 strong earthquake occurred at 16:07 on October 20,1990 in a juncture of the three counties of Jingtai,Tianzhu,Gulang in Gansu Province.Field observations indicate that the macroseismic epicenter lies from Xiatang to Daquanwan and that its geographical location is at 37°07'N and 103°37.5'E.The epicentral intensity is Ⅷ degree.The meizoseismal region,covering about 20 km-,is an elliptical area with its long axis orienting NWW.In the circled areas with the earthquake intensity from VI to Ⅷ degree,the formation cause of high intensity(Ⅷ)anomalous area appeared in the Ⅶ area has been discussed in this paper.According to the data of direct aftershock area,epicentrai intensity area,focal mechanism solution and the direction of the ground motion,etc.,this strong earthquake was caused by latest sinistral lateral movement of Laohushan fault that has been the most active fault since the Holocene.  相似文献   

3.
On 23 October 2011 at 1341 local time, a strong earthquake (Mw?=?7.1) occurred east of Lake Van (KOERI; Kandilli Observatory and Earthquake Research Institute). The focal parameters of the main shock and 29 aftershocks with M?≥?4.0 were obtained from regional broadband seismic data from KOERI network by using Regional Moment Tensor Inversion Code (Dreger 2002). It is confirmed that the main shock had thrust faulting mechanism. The stress tensor analysis was completed using the focal mechanism solutions and the software developed by (Gephart Comp Geosci 16: 953-989, 1990). The maximum principal stress (P compressional) of the main shock is aligned in a N-S (NNW/SSE) direction and the tensional axis (T dilatation) is aligned in an E-W (ENE-WSW) direction. The b value is calculated as 0.96 using the maximum likelihood method (Utsu 1999).  相似文献   

4.
The Cheliff region has experienced some significant earthquakes in the last century (1937, 1954, and 1980). The most destructive one is that of El Asnam on October 10, 1980, Ms = 7.3 (Io = IX), which destroyed the Chlef city (formerly El Asnam) and its surrounding villages. On December 16, 2006 a moderate earthquake (Mw = 5.0) hit the Cheliff region. The maximum observed intensity (Io = V: MSK-scale) was observed at Abou El Hassen, Benaria, Bouzghaïa and Tadjena. No damages or human losses were recorded. Nevertheless, minor cracks on walls of the old school at Tadjena were observed. The point source focal mechanism of the event was determined by inverting the waveforms of three regional broadband stations of the ADSN (Algerian Digital Seismic Network). It corresponds to thrust-reverse faulting with a strike-slip component. The stress tensor obtained by the inversion of the 15 focal mechanisms available in the Cheliff region exhibits a well constrained compression axis σ1 horizontal and trending N145°. The NW dipping nodal plane indicating a NE–SW thrust fault with a right-lateral component (strike, dip, rake = 249, 38, 137) is more compatible with the regional stress tensor than the steep dipping NNE-SSW nodal plane showing reverse faulting with a left-lateral component (strike, dip, rake = 15, 65, 60). Accordingly, the Tadjena moderate size earthquake can be related to the Boukadir active fault bordering the lower Cheliff basin to the north, a situation similar to that of the El Asnam fault bordering the middle Cheliff basin to the north.  相似文献   

5.
A moderate-size earthquake (Mw = 6.2) occurred on 3 February 2002 (07:11:28 GMT) in the Sultanda??-Çay region of southwest Turkey. The mainshock was followed by a strong aftershock of Mw = 6.0 just 2 h after the mainshock, at 09:26:49 GMT. A temporary seismic network of 27 vertical component seismometers was installed to monitor aftershock activity. One thousand sixty nine aftershocks (0.2 < ML < 3.3) were recorded during the period from 5 to 10 February 2002. We analyzed the P and S arrival times and P wave first motion data to obtain high-quality hypocenters and focal mechanisms, which revealed fine details of the fault zone. We infer that the mainshock has ruptured a segment of the Sultanda? Fault Zone that is approximately 37 km long and 7 km wide at depth. The average slip over the rupture plane during the mainshock is estimated to be 32 cm. The linear distribution of the aftershocks and the location of the mainshock epicenter suggest that rupture has initiated in the eastern bending of the fault and propagated unilaterally to the west. The majority of fault plane solutions indicate E–W to ESE–WNW striking oblique–normal faulting mechanisms with an average dip angle of 62° N ± 10° . The high-resolution aftershock seismicity image also shows that faulting involved a complex array of synthetic and possibly antithetic structures during the evolution of the aftershock sequence. The steady increase of the b value towards the west implies that the highest moment release of the mainshock occurred to the west of the epicenter. The study clearly shows the activation of the WNW–ESE-trending Sultanda? Fault Zone along the southern margin of the Ak?ehir-Afyon Graben (AAG). The westernmost end of the aftershock activity corresponds to a structurally complex zone distinct from the main rupture. It is characterized by both ENE–WSW- and NNE–SSW-trending oblique-slip normal faulting mechanisms, the latter being associated with the NNE–SSW-trending Karam?k Graben. The intersection of these two grabens, AAG and Karam?k Graben, provides abundant faults available for failure in this region. The occurrence pattern of large events in recent years indicates a possible migration of earthquakes from east to west. Thus, we conclude that this has an important implication for earthquake hazard for the city of Afyon, which lies along the same fault line and only 20 km west of the termination point of the aftershock zone.  相似文献   

6.
The influences upon aftershocks of Coulomb failure stress change (CFSC) generated by the main-shock of the October 8, 2005, Pakistan earthquake are calculated and analyzed. The following factors are included in the calculation: (1) the difference between the pore fluid pressure and the medium elastic constant in the fault plane area and those of its surrounding medium; (2) the tectonic stress direction of the seismic source area; (3) the aftershock failure mechanism of aftershocks is calculated by stacking the tectonic stress with the stress change generated by the main-shock. Our study, which includes many factors, fits fairly well with the aftershock distribution. It indicates that most of the aftershocks were triggered by the Pakistan main-shock that occurred on October 8, 2005.  相似文献   

7.
8.
The earth-resistivity change recorded before the Jingtai earthquake(EQ).with Ms=6.2 at 11 geoelectric stations within 400 km of the EQ was discussed in this paper,and the following conclusions are made:1) imminent variations of earth-resistivity prior to the EQ were recorded at the Wuwei,Dingxi and Shandan stations immediately before the EQ;2) the recordability of the imminent variations at a station was related to the active deep faults and the strongly active faults inside and outside the focal zone,and to the causative stress field as well;3) the temporal and spatial characteristics of the earth-resistivity change immediately before the EQ showed that the EQ was probably induced by the NNW direction stress field(or by another one of similar direction)which was greatly increased during a short period immediately before the EQ and that the northern wall of the focal fault played a major role in the process of the EQ preparation and occurrence of the EQ.  相似文献   

9.
Based on the Morlet complex wavelet transformation, the authors put forward a kind of new method for distinguishing periods of seismic activity and quietude and a new physical thought on the time-dependent wavelet accumulation energy spectrum with periods, the time-frequency distribution of wavelet vibration period spectrum and period-specific wavelet vibration spectrum. By applying the above methods to a time series which is composed of earthquake accumulation energy per year for the world, the Chinese continent and North China,respectively, we obtained some new information about the rhythm of shallow earthquake activity. Considering the historic earthquakes and the rhythm characteristics of current strong earthquake activity, the earthquake tendency in the next years is discussed.  相似文献   

10.
Hua Wei 《中国地震研究》2006,20(4):371-384
INTRODUCTIONTheM6·2 andM6·1 earthquakes occurred successivelyin Dayao,Yunnan Province on July 21and October 16 ,2003 and bothinduced human casualty and economic loss to some extent .Adequatehistorical information reveals that ,earthquakes bigger thanM6·0 in Yunnan are distributed mainlyalong some active tectonic faults and seismic belts . Dayao and Yao an are in the Dianzhong tectonicblock andthere are noapparentfaultsthere(Su Youjing,2004) .Seismic activitylevel inthisregioniswea…  相似文献   

11.
Izvestiya, Physics of the Solid Earth - Abstract—A detailed study has been carried out regarding temporal variations of seismicity in the region of Greece’s eastern coast of the Aegean...  相似文献   

12.
The great Haiyuan earthquake occurred at 20:06:09 on December 16,1920 in the south of Ningxia Hui Autonomous Region.The magnitude of this earthquake is 8.5,listed as one of the three greatest earthquakes to ever occur in Chinese continent.This devastating earthquake killed about 230,000 people according to previous reports.Recent studies show that total casualties may have reached 270,000.The study of this earthquake using modern scientific and technological methods is the first in the history of earthquake research in China.Significant breakthroughs took place in the middle of last century.The earthquake surface rupture,with 200km in length and prominent left-lateral strike-slip displacement,was discovered.The first monograph on the Haiyuan earthquake was published.In the 1980s,innovative large-scale geological mapping technology for active faults was developed during studies on the Haiyuan earthquake surface ruptures,with the publication of the first large-scale map of the Haiyuan active fault.Quantitative studies were carried out on the fine structure and geometry of the fault zone,Holocene slip rate,co-seismic displacement,paleoearthquake and recurrence intervals and future earthquake risk assessment.The innovative studies also included rupture propagation along the strike-slip fault,evolution of pull-apart basins,determination of total displacement of the strike-slip fault,transition equilibrium between strike-slip displacement along its major strand and crustal shortening at the end of the strike-slip fault,and the mechanism of deformation on Liupan Mountain.On the occasion of the 90th anniversary of the Haiyuan earthquake,careful retrospect of scientific progress achieved during the recent 20 years would be helpful in providing further direction in the study of active faults and earthquake hazard reduction.While taking this occasion to remember those lost by the Haiyuan earthquake,we aim to make greater contributions to earthquake prediction and seismic hazard reduction.  相似文献   

13.
The 03 February 2002 Çay Earthquake (Mw ~6.7) occurred on the fault segment between Eber and Ak?ehir Lakes followed by a large aftershock (Mw ~5.6) near the western end of the fault and two sequential aftershocks. We computed the coseismic surface displacements from static GPS measurements to determine the fault geometry parameters and uniform slip components. The coseismic displacements were obtained through combining the regional pre-earthquake and post-earthquake GPS data. Fault geometry and slips were acquired through the inversion of GPS data modeling the events as elastic dislocations in a half-space and assuming all four events took place on the same fault plane. Results suggest that one-segment fault of ~33 km length and dipping ~43° northward suffices to model the dislocation, assuming uniform slip distribution with 0.51 m dip slip, 0.26 m left-lateral slip extending to a depth down to ~11.5 km which is consistent with seismological evidence. The results also verify the normal faulting in the eastern flank of Isparta Angle which has long been assumed as a thrusting structure. While the available data cannot identify the four individual events on the same day, an attempted distributed slip model differentiates dip slip and left-lateral slips near the hypocenter with maximum values of ~1 and 0.6 m, respectively.  相似文献   

14.
In this paper,the equivalent force inside the source which produces a large area deformation field is calculated by using the records of residual deformation,S wave radiation of shear dislocation source and Green function of the Lancang-Gengma earthquake.Under the action of equivalent force whose intensity was 1.103×1013 N,the crust derm of northeast segment of seismic fault had finished the upraise and formed permanent irrecoverable deformation within 20.46 min after the major earthquake occurred.The authors indicate that the residual deformation would split into 2 deformation fields with different propagation velocities and different directions in the Song-distance propagation process.  相似文献   

15.
Aftershock sequences of the magnitude M W =6.4 Bingöl earthquake of 1 May, 2003 (Turkey) are studied to analyze the spatial and temporal variability of seismicity parameters of the b value of the frequency-magnitude distribution and the p value describing the temporal decay rate of aftershocks. The catalog taken from the KOERI contains 516 events and one month’s time interval. The b value is found as 1.49 ± 0.07 with Mc =3.2. Considering the error limits, b value is very close to the maximum b value stated in the literature. This larger value may be caused by the paucity of the larger aftershocks with magnitude M D ≥ 5.0. Also, the aftershock area is divided into four parts in order to detect the differences in b value and the changes illustrate the heterogeneity of the aftershock region. The p value is calculated as 0.86 ± 0.11, relatively small. This small p value may be a result of the slow decay rate of the aftershock activity and the small number of aftershocks. For the fitting of a suitable model and estimation of correct values of decay parameters, the sequence is also modeled as a background seismicty rate model. Constant background activity does not appear to be important during the first month of the Bingöl aftershock sequences and this result is coherent with an average estimation of pre-existing seismicity. The results show that usage of simple modified Omori law is reasonable for the analysis. The spatial variability in b value is between 1.2 and 1.8 and p value varies from 0.6 to 1.2. Although the physical interpretation of the spatial variability of these seismicity parameters is not straightforward, the variation of b and p values can be related to the stress and slip distribution after the mainshock, respectively. The lower b values are observed in the high stress regions and to a certain extent, the largest b values are related to Holocene alluvium. The larger p values are found in some part of the aftershock area although no slip occurred after the main shock and it is interpreted that this situation may be caused by the alluvium structure of the region. These results indicate that the spatial distribution in b and p values are generally related to the rupture mechanism and material properties of an aftershock area.  相似文献   

16.
There have been 12 possible locations of the earthquakes occurring in the South Yellow Sea since 1505.In this paper,the location of the earthquake that occurred in 1505 has been determined by the collection of more historical data of the influenced field,referring the isoseismal data of earthquakes with the epicentral intensityⅨ and combining geophysical field data with tectonic condition,due to its great influence on seismic safety assessment of some significant engineering.  相似文献   

17.
An earthquake of M=8 occurred in the Linfen Basin of the Shanxi graben system in 1303,producing a surface rupture zone about 45km long.Compiling a geological map at 1:10,000 and studying in detail the rupture zone,its dextral strike-slip displacement is determined to be 4-8.6 m,and normal dip-slip displacement up to 3.5-5 m.In this paper the geochronological evidence for the formation of the surface rupture zone is provided and the Huoshan fault is confirmed to be the seismogenic structure for the M=8 earthquake.Field trenching enables us to identify two paleoseismic events having occurred along the Huoshan fault since the middle Holocene before the M8 earthquake.A recurrence interval of these three events including 1303 Hongdong M 8 earthquake is determined to be up to 1500-2000 years.The result corresponds to the mean recurrence interval calculated from slip rate on the Huoshan fault during Holocene.  相似文献   

18.
—The Erzincan strike-slip earthquake of March 13, 1992 ruptured a section of the North Anatolian fault (NAF) at the northern margin of the Erzincan basin. The focal depth of about 10 km was less than given by ISC and NEIC. Erzincan and the surrounding villages were considerably damaged. In the Erzincan basin and in the neighbouring mountains a seismic network of ten stations was installed. It was operating continuously from March 21 through June 16, 1992. More than 3,000 aftershocks were recorded of which 505 could be located. The spectral parameters of 394 and the fault-plane solutions of 53 aftershocks were determined. For the given region the frequency dependent coda Q was derived as Q c = 122 f 0.68. The aftershock area increased with time, reflecting the process of stress redistribution. Some events clustered in the immediate vicinity of the town of Erzincan close to the epicentre of the main event and seem to trace the NAF. Their source mechanism is similar to that of the main event (strike slip). About 150 aftershocks clustered in the southeastern part of the Erzincan basin where a concentration of the events in a small volume of 5 × 5 × 3 km3 was observed. The majority of fault-plane solutions available for these aftershocks showed a normal faulting mechanism with an east-west directed extension. Most of the aftershocks southeast of the basin clustered between two lineaments that were mapped by satellite images. The P-wave velocity below the Erzincan basin, derived from travel-time residual analysis, is lower compared to areas NE and SW of the basin. Three-dimen sional stress modelling of the Erzincan region qualitatively explains the occurrence of the aftershocks southeast of the basin. The calculated displacement distribution which exhibits the north-westward motion of the basin and tension at its southeastern margin, caused by the Erzincan earthquake, is in agreement with derived fault-plane solutions.  相似文献   

19.
The microstructures of fault rocks from the Wasatch fault zone in Utah (USA) have been studied using a polarizing microscope,a scanning electron microscope (SEM) and an ultrahigh-voltage electron microscope (HVHM).This fault zone may be recognized as one a with long history of seismic activity according to the microstructural characteristics such as type, deformation characteristics,melting structure and surface textures of the fault rocks.However,the main fault now present seems not to have been noticeably active since the late Pleistocene (Q_3),as shown by the eroded-surface texture on the quartz fragments in the fault gouge.Meanwhile,those faults supposed to be strongly active in modern times are branching faults much closer to the basin side and are covered by the Holocene sediments in the basin.  相似文献   

20.
In this paper,25 new terrestrial heat flow values newly observed along the mid-segment of the Tancheng-Lujiang fault zone are listed.With these geothermal data and 37 other terrestrial heat flow values(previously published),we describe the distribution features of terrestrial heat flows in the area.In this research,the two-dimensional temperature structure from the surface to lithospheric bottom of the Huaibei-Sixian-Jinhu profile is inferred by using the finite-element method and the temperature and heat flow of sedimentary,granitic,and basaltic layers is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号