首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transient microstructure in the diffuse interstellar medium (ISM) has been observed towards Galactic and extragalactic sources for decades, usually in lines of atoms and ions, and, more recently, in molecular lines. Evidently, there is a molecular component to the transient microstructure. In this paper, we explore the chemistry that may arise in such microstructure. We use a photodissociation region (PDR) code to model the conditions of relatively high density, low temperature, very low visual extinction and very short elapsed time that are appropriate for these objects. We find that there is a well-defined region of parameter space where detectable abundances of molecular species might be found. The best matching models are those where the interstellar microstructure is young (<100 yr), small (∼100 au) and dense  (>104 cm−3)  .  相似文献   

2.
A recent theoretical investigation by Terzieva & Herbst of linear carbon chains, C n where n  ≥ 6, in the interstellar medium has shown that these species can undergo efficient radiative association to form the corresponding anions. An experimental study by Barckholtz, Snow & Bierbaum of these anions has demonstrated that they do not react efficiently with molecular hydrogen, leading to the possibility of detectable abundances of cumulene-type anions in dense interstellar and circumstellar environments. Here we present a series of electronic structure calculations which examine possible anionic candidates for detection in these media, namely the anion analogues of the previously identified interstellar cumulenes C n H and C n −1CH2 and heterocumulenes C n O (where n  = 2–10). The extraordinary electron affinities calculated for these molecules suggest that efficient radiative electron attachment could occur, and the large dipole moments of these simple (generally) linear molecules point to the possibility of detection by radio astronomy.  相似文献   

3.
We present intermediate-resolution HST /STIS spectra of a high-velocity interstellar cloud ( v LSR=+80 km s−1) towards DI 1388, a young star in the Magellanic Bridge located between the Small and Large Magellanic Clouds. The STIS data have a signal-to-noise ratio (S/N) of 20–45 and a spectral resolution of about 6.5 km s−1 (FWHM). The high-velocity cloud absorption is observed in the lines of C  ii , O  i , Si  ii , Si  iii , Si  iv and S  iii . Limits can be placed on the amount of S  ii and Fe  ii absorption that is present. An analysis of the relative abundances derived from the observed species, particularly C  ii and O  i , suggests that this high-velocity gas is warm ( T k∼103–104 K) and predominantly ionized. This hypothesis is supported by the presence of absorption produced by highly ionized species, such as Si  iv . This sightline also intercepts two other high-velocity clouds that produce weak absorption features at v LSR=+113 and +130 km s−1 in the STIS spectra.  相似文献   

4.
An analysis of the intensity and spatial distribution of the discrete 5800-Å emission band in the spectrum of the Red Rectangle has been used to constrain the abundance and physical properties of the carrier of this emission. An origin in a large (>30 C atom) molecule is indicated. This molecule is formed in situ in the Red Rectangle, but is also a component of the diffuse interstellar medium. The UV photodissociation probability for this molecule is ≲10−5 per absorbed photon, and the luminescence efficiency is in the range 10−2–10−3. This molecule may be a product of the dissociation of carbonaceous dust.  相似文献   

5.
We present results from a time-dependent gas-phase chemical model of a hot core based on the physical conditions of G305.2+0.2. While the cyanopolyyne HC3N has been observed in hot cores, the longer chained species, HC5N, HC7N and HC9N, have not been considered as the typical hot-core species. We present results which show that these species can be formed under hot core conditions. We discuss the important chemical reactions in this process and, in particular, show that their abundances are linked to the parent species acetylene which is evaporated from icy grain mantles. The cyanopolyynes show promise as 'chemical clocks' which may aid future observations in determining the age of hot core sources. The abundance of the larger cyanopolyynes increases and decreases over relatively short time-scales,  ∼102.5 yr  . We present results from a non-local thermodynamic equilibrium statistical equilibrium excitation model as a series of density, temperature and column density dependent contour plots which show both the line intensities and several line ratios. These aid in the interpretation of spectral-line data, even when there is limited line information available. In particular, non-detections of HC5N and HC7N in Walsh et al. are analysed and discussed.  相似文献   

6.
In order to interpret H2 quasar absorption-line observations of damped Lyα systems (DLAs) and subDLAs, we model their H2 abundance as a function of dust-to-gas ratio, including H2 self-shielding and dust extinction against dissociating photons. Then, we constrain the physical state of the gas by using H2 data. Using H2 excitation data for DLAs with H2 detections, we derive a gas density  1.5 ≲ log n (cm−3) ≲ 2.5  , temperature  1.5 ≲ log T (K) ≲ 3  , and an internal ultraviolet (UV) radiation field (in units of the Galactic value)  0.5 ≲ log χ≲ 1.5  . We then find that the observed relation between the molecular fraction and the dust-to-gas ratio of the sample is naturally explained by the above conditions. However, it is still possible that H2 deficient DLAs and subDLAs with H2 fractions less than  ∼10−6  are in a more diffuse and warmer state. The efficient photodissociation by the internal UV radiation field explains the extremely small H2 fraction  (≲10−6)  observed for  κ≲ 1/30  (κ is the dust-to-gas ratio in units of the Galactic value); H2 self-shielding causes a rapid increase in, and large variations of, H2 abundance for  κ≳ 1/30  . We finally propose an independent method to estimate the star formation rates of DLAs from H2 abundances; such rates are then critically compared with those derived from other proposed methods. The implications for the contribution of DLAs to the cosmic star formation history are briefly discussed.  相似文献   

7.
A solid-state feature was detected at around 2175 cm−1 towards 30 embedded young stellar objects in spectra obtained using the Infrared Spectrometer and Array Camera at the European Southern Observatory Very Large Telescope. We present results from laboratory studies of CO adsorbed at the surface of zeolite wafers, where absorption bands were detected at 2177 and 2168 cm−1 (corresponding to CO chemisorbed at the zeolite surface) and 2130 cm−1 (corresponding to CO physisorbed at the zeolite surface), providing an excellent match to the observational data. We propose that the main carrier of the 2175-band is CO chemisorbed at bare surfaces of dust grains in the interstellar medium. This result provides the first direct evidence that gas–surface interactions do not have to result in the formation of ice mantles on interstellar dust. The strength of the 2175-band is estimated to be  ∼4 × 10−19 cm  molecule−1. The abundance of CO adsorbed at bare grain surfaces ranges from 0.06 to 0.16 relative to H2O ice, which is, at most, half of the abundance (relative to H2O ice) of CO residing in H2O-dominated ice environments. These findings imply that interstellar grains have a large (catalytically active) surface area, providing a refuge for interstellar species. Consequently, the potential exists for heterogeneous chemistry to occur involving CO molecules in unique surface chemistry pathways not currently considered in gas grain models of the interstellar medium.  相似文献   

8.
We investigate the possibility of interstellar masers in transitions of the methanol isotopomers CH3OD, 13CH3OH and CH318OH, and of CH3SH. The model used, in which masers are pumped through the first and second torsionally excited states by IR radiation, has accounted successfully for the Class II masers in main species methanol, 12CH316OH. Several potential maser candidates are identified for CH3OD, their detectability depending on the enrichment of this species in star-forming regions. In 13CH3OH and CH318OH the best maser candidates are direct counterparts of the well-known 6.7- and 12.2-GHz methanol masers, but the lower interstellar abundance of these substituted species means that the expected brightness is greatly reduced. The maser candidates in CH3SH are also weak. By comparing these species we find that the large b -component of the dipole moment in methanol plays a significant role in its propensity to form masers, as does the strong torsion–rotation interaction due to the light hydroxyl frame. Thus the exceptional brightness of interstellar methanol masers is due to a favourable combination of molecular properties as well as high interstellar abundance.  相似文献   

9.
Solid CO2 is observed to be an abundant interstellar ice component towards both quiescent clouds and active star-forming regions. Our recent models of gas–grain chemistry, appropriate for quiescent regions, severely underproduce solid CO2 at the single assumed gas density and temperature. In this paper, we investigate the sensitivity of our model results to changes in these parameters. In addition, we examine how the nature of the grain surface affects the results and also consider the role of the key surface reaction between O and CO. We conclude that the observed high abundance of solid CO2 can be reproduced at reasonable temperatures and densities by models with diffusive surface chemistry, provided that the diffusion of heavy species such as O occurs efficiently.  相似文献   

10.
Several processes have been suggested as ways of returning accreted grain mantles to the gas, thus preventing the total removal of molecules from the gas phase in dark quiescent clouds. We attempt to distinguish between them by considering not only the calculated gas-phase abundances, but also the ratio of the abundances of deuterated species to non-deuterated species. We find that the D/H ratio in molecules is relatively model-independent, but that desorption due to the formation of H2 on grains gives the best overall agreement with the observations.  相似文献   

11.
A model is constructed of the material in front of the star Cygnus OB2 no. 12 in which dense cores are embedded in diffuse clumps of gas. The model reproduces the measured abundances of C2 and CO, and predicts a column density of 91010 cm2 for HCO+.  相似文献   

12.
We have used the Mopra Telescope to search for glycine and the simple chiral molecule propylene oxide in the Sgr B2 (LMH) and Orion KL, in the 3-mm band. We have not detected either species, but have been able to put sensitive upper limits on the abundances of both molecules. The 3σ upper limits derived for glycine conformer I are  3.7 × 1014 cm−2  in both Orion-KL and Sgr B2 (LMH), comparable to the reported detections of conformer I by Kuan et al. However, as our values are 3σ upper limits rather than detections we conclude that this weighs against confirming the detection of Kuan et al. We find upper limits for the glycine II column density of  7.7 × 1012 cm−2  in both Orion-KL and Sgr B2 (LMH), in agreement with the results of Combes et al. The results presented here show that glycine conformer II is not present in the extended gas at the levels detected by Kuan et al. for conformer I. Our ATCA results have ruled out the detection of glycine (both conformers I and II) in the compact hot core of the LMH at the levels reported, so we conclude that it is unlikely that Kuan et al. have detected glycine in either Sgr B2 or Orion-KL. We find upper limits for propylene oxide abundance of  3.0 × 1014 cm−2  in Orion-KL and  6.7 × 1014 cm−2  in Sgr B2 (LMH). We have detected fourteen features in Sgr B2 and four features in Orion-KL which have not previously been reported in the interstellar medium, but have not been able to plausibly assign these transitions to any carrier.  相似文献   

13.
Absorption lines of MgH and CaH N  = 1 − 0 transitions were searched for in foreground molecular clouds towards the continuum sources associated with Sgr B2 (M) and W49A (N). None of these lines was detected with our sensitivity level of ∼20 mK. Millimetric absorption lines of MgO, MgOH, CaO and CaOH were also searched for towards Sgr B2 (M) without success. The fractional abundances relative to molecular hydrogen are ≲ 1.0 × 10−11 for MgH, ≲ 7.9 × 10−13 for MgO, ≲ 1.6 × 10−10 for MgOH, ≲ 1.6 × 10−9 for CaH, ≲ 2.0 × 10−12 for CaO, and ≲ 2.5 × 10−10 for CaOH, respectively. The low abundances measured in absorption indicate that a significant fraction of interstellar magnesium and calcium cannot be tied up in their monohydrides, monoxides and monohydroxides. The low abundance of MgH also implies that grain-surface chemistry involving magnesium is not efficient and that magnesium is depleted on to grains to a factor of ≳ 102.5 in well-shielded molecular clouds.  相似文献   

14.
C18O J  = 2–1, C17O J  = 2–1 and [C  I ] 3P13P0 emission from the dense cold cloud B335 has been observed and modelled in order to determine the C/CO ratio. The observed ratio is compared with a prediction by Tarafdar who assumes a mechanism in which the CO dissociation is caused by photons of energy ∼ 13.8 eV. These were postulated by Sciama to result from the decay of dark matter neutrinos. Our value for the C/CO ratio sets an upper limit to the strength of the neutrino decay dissociation process, thus providing a significant datum for interstellar chemistry theory.  相似文献   

15.
Benzene molecules, present in the proto-planetary nebula CRL 618, are ionized and dissociated by ultraviolet (UV) and X-ray photons originated from the hot central star and by its fast wind. Ionic species and free radicals produced by these processes can lead to the formation of new organic molecules. The aim of this work is to study the photoionization and photodissociation processes of the benzene molecule, using synchrotron radiation and time-of-flight mass spectrometry. Mass spectra were recorded at different energies corresponding to the vacuum UV (21.21 eV) and soft X-ray (282–310 eV) spectral regions. The production of ions from the benzene dissociative photoionization is here quantified, indicating that C6H6 is more efficiently fragmented by soft X-ray than UV radiation, where 50 per cent of the ionized benzene molecules survive to UV dissociation while only about 4 per cent resist to X-rays. Partial ion yields of H+ and small hydrocarbons, such as  C2H+2, C3H+3, C4H+2  , are determined as a function of photon energy. Absolute photoionization and dissociative photoionization cross-sections have also been determined. From these values, half-life of benzene molecule due to UV and X-ray photon fluxes in CRL 618 was obtained.  相似文献   

16.
The formation of H2 on a pristine olivine surface [forsterite (010)] is investigated computationally. Calculations show that the forsterite surface catalyzes H2 formation by providing chemisorption sites for H atoms. The chemisorption route allows for stepwise release of the reaction exothermicity and stronger coupling to the surface, which increases the efficiency of energy dissipation. This suggests that H2 formed on a pristine olivine surface should be much less rovibrationally excited than H2 formed on a graphite surface. Gas-phase H atoms impinging on the surface will first physisorb relatively strongly  ( E phys= 1240 K)  . The H atom can then migrate via desorption and re-adsorption, with a barrier equal to the adsorption energy. The barrier for a physisorbed H atom to become chemisorbed is equal to the physisorption energy, therefore there is almost no gas-phase barrier to chemisorption. An impinging gas-phase H atom can easily chemisorb  ( E chem= 12 200 K)  , creating a defect where a silicate O atom is protonated and a single electron resides on the surface above the adjacent magnesium ion. This defect directs any subsequent impinging H atoms to chemisorb strongly (39 800 K) on the surface electron site. The two adjacent chemisorbed atoms can subsequently recombine to form H2 via a barrier (5610 K) that is lower than the chemisorption energy of the second H atom. Alternatively, the adsorbed surface species can react with another incoming H atom to yield H2 and regenerate the surface electron site. This double chemisorption 'relay mechanism' catalyzes H2 formation on the olivine surface and is expected to attenuate the rovibrational excitation of H2 thus formed.  相似文献   

17.
Maps are presented of 3 P 13 P 0[C  i ] and J =2→1 C18O line emission from the interstellar molecular cloud G35.2−0.74N. The maps are interpreted with reference to a previous model for the structure of the cloud in which opposing jets from a central object, embedded in a rotating interstellar disc, precess and drive a bipolar molecular outflow. The C18O emission traces the rotating interstellar disc, but the [C  i ] emission shows several features. An unresolved component is observed which probably results from dissociation of CO in the centre of the disc by UV radiation from the central source. Background [C  i ] emission is also observed which shares the rotation of the disc on larger scales. The C  i /CO ratio in these components is typically a few per cent. High-velocity [C  i ] emission, where C  i /CO is high (>0.1–0.4), is observed between the CO molecular outflow and the cavity exacavated by the jet. This material has probably been accelerated by the jet but dissociated by far-UV radiation propagating through the cavity. The C  i /CO ratio falls as the shocked outflow later sweeps up CO.  相似文献   

18.
We report on advances in the study of the cores of NGC 6302 and 6537 using infrared grating and echelle spectroscopy. In NGC 6302, emission lines from species spanning a large range of ionization potential, and in particular [Si  ix ] 3.934 μm, are interpreted using photoionization models (including cloudy ), which allow us to re-estimate the temperature of the central star to be about 250 000 K. All of the detected lines are consistent with this value, except for [Al  v ] and [Al  vi ]. Aluminium is found to be depleted to one hundredth of the solar abundance, which provides further evidence for some dust being mixed with the highly ionized gas (with photons harder than 154 eV). A similar depletion pattern is observed in NGC 6537. Echelle spectroscopy of IR coronal ions in NGC 6302 reveals a stratified structure in ionization potential, which confirms photoionization to be the dominant ionization mechanism. The lines are narrow (<22 km s−1 FWHM), with no evidence of the broad wings found in optical lines from species with similar ionization potentials, such as [Ne  v ] 3426 Å. We note the absence of a hot bubble, or a wind-blown bipolar cavity filled with a hot plasma, at least on 1 arcsec and 10 km s−1 scales. The systemic heliocentric velocities for NGC 6302 and 6537, measured from the echelle spectra of IR recombination lines, are found to be −34.8±1 km s−1 and −17.8±3 km s−1. We also provide accurate new wavelengths for several of the infrared coronal lines observed with the echelle.  相似文献   

19.
Recent laboratory experiments on interstellar dust analogues have shown that H2 formation on dust-grain surfaces is efficient in a range of grain temperatures below 20 K. These results indicate that surface processes may account for the observed H2 abundance in cold diffuse and dense clouds. However, high abundances of H2 have also been observed in warmer clouds, including photon-dominated regions (PDRs), where grain temperatures may reach 50 K, making the surface processes extremely inefficient. It was suggested that this apparent discrepancy can be resolved by chemisorption sites. However, recent experiments indicate that chemisorption processes may not be efficient at PDR temperatures. Here we consider the effect of grain porosity on H2 formation, and analyse it using a rate-equation model. It is found that porosity extends the efficiency of the recombination process to higher temperatures. This is because H atoms that desorb from the internal surfaces of the pores may re-adsorb many times and thus stay longer on the surface. However, this porosity-driven extension may enable efficient H2 formation in PDRs only if porosity also contributes to significant cooling of the grains, compared to non-porous grains.  相似文献   

20.
We present ultra-high-resolution (0.35 km s−1 FWHM) observations of the interstellar Ca K line towards seven nearby stars. The spectral resolution was sufficient to resolve the line profiles fully, thereby enabling us to detect hitherto unresolved velocity components, and to obtain accurate measurements of the velocity dispersions ( b values). Absorption components with velocities similar to those expected for the Local Interstellar Cloud (LIC) and the closely associated 'G cloud' were identified towards six of the seven stars. However, in most cases the b values deduced for these components were significantly larger than the b  ≈ 2.2 km s−1 (i.e. T k ≈ 7000 K, v t ≈ 1 km s−1) expected for the LIC, and it is argued that this results from the presence of additional, spectrally unresolved, components having similar velocities and physical conditions. For two stars (δ Vel and α Pav) we detect interstellar components with much smaller b values (1.1 ± 0.3 and 0.8 ± 0.1 km s−1, respectively) than are expected for low-density clouds within the Local Bubble. In the case of the narrow α Pav component, we also find an anomalously large Na  i /Ca  ii column density ratio, which is indicative of a relatively high density. Thus it is possible that, in addition to LIC-type clouds, the local interstellar medium contains a population of previously undetected cooler and denser interstellar clouds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号