首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A physical model was developed for describing the thermal environment of ponded shallow water as a model for rice fields in relation to climatic conditions. The model was used to assess probable effects of CO2-induced warming on the thermal conditions of ponded shallow water. It was assumed that an altered equilibrium climate was produced by atmospheric CO2 which was twice that of present levels. The 1951–80 climatic means of Japan were used as baseline data. Water temperature and energy balance characteristics predicted from the model were compared between both climates. The most notable results were that water temperature under CO2 doubling rose 2 to 4 °C. These increases in temperature would induce a remarkable northward shift of the 15 °C isotherm which characterizes the isochrone of safe transplanting dates for rice seedlings. CO2-warming would have a considerable influence on the energy balance characteristics, intensifying the evaporation rate from the water surface. Changes in thermal conditions of rice fields due to CO2-induced climatic warming are, therefore, expected to bring about significant effects on aquatic environments and the life forms they support.  相似文献   

3.
This article is a review of the modeling of potential CO2 effects on climate, intended for an interdisciplinary audience of mathematically oriented scientists and engineers. The carbon dioxide (CO2) content of the atmosphere has shown a systematic increase each year since regular measurements began in 1958. A major source of CO2 is the combustion of fossil fuels. A number of studies of the sensitivity of climate to increases in the CO2 content of the atmosphere have been published. This report is an assimilation of the results of some of these studies. The climate sensitivity problem is introduced through a discussion of the various atmospheric feedbacks and the ice albedo feedback. The most recent estimates of the various feedbacks are used to estimate upper and lower bounds of the globally averaged temperature increase that would accompany a doubling of atmospheric CO2 content. The results of a CO2 doubling experiment using a simple general circulation model are reviewed, and the possible response of the cryosphere is discussed.  相似文献   

4.
In a prior paper (Part I), the point was made that, assuming an unchanged climate, water use efficiency in agricultural crop production will likely be favored by the increase in CO2 concentration projected to occur within the next half century. Since climatic changeis likely to result from the CO2 concentration increase, its possible impacts on agricultural productivity must also be considered. An attempt to do so, using the Great Plains region of North America as a case study, is reported in this paper (Part II). A number of climatic models predict significant increases in surface temperature. Manabe and Wetherald's (1980) model provides the most specific projections for a hypothetical Northern hemisphere continent. That model also predicts an intensification of the hydrologic cycle with rainfall distribution altered so that some zones will receive more and some less as a result of a doubling in the atmospheric CO2 concentration. The zone between 37 and 47° N latitude will suffer a reduction in availability of soil moisture. A number of regression models of grain yield as a function of temperature and precipitation have been used to anticipate the impacts of the projected climatic changes. The value of this approach is questioned. An alternative approach - the study of the migration of major agricultural crops across strong climatic gradients - is proposed. Changes in the geographical distribution of the hard red winter wheat zone in North America provide an example. The point is also made that factorscurrently limiting food production must be considered in order to predict the possible impacts of any given climatic change. In the central Great Plains today, the energy consumed by evapotranspiration often exceeds that supplied by net radiation since sensible heat advection from dryer regions to the south and west provides a major additional input of energy. If, as models project, the excess of precipitation over evaporation increases south of 37° N, the advection of sensible heat and, hence, the rates of evapotranspiration and degree of water stress on growing plants could be reduced in the adjacent regions to the north. Published as Paper No. 6123, Journal Series, Nebraska Agricultural Experiment Station. The work reported was conducted under Regional Research Project 11-033 and Nebraska Agricultural Station Project 11-049. George Holmes Professor of Agricultural Meteorology, Center for Agricultural Meteorology and Climatology, Institute of Agriculture and Natural Resources, University of Nebraska, Lincoln, Nebraska, 68583-0728.  相似文献   

5.
A procedure to estimate the potential climatic effects of a doubling of atmospheric carbon dioxide concentration on agricultural production is illustrated. The method combines use of atmospheric general circulation models (GCMs) and process-oriented crop models. Wheat and corn (maize) yields in three important North American grain cropping regions are treated. Combined use of these two types of models can provide insights into the impacts of climate changes at the level of plant physiology, and potential means by which agricultural production practices may adapt to these changes.Specific agronomic predictions are found to depend critically on the details of the projected climate change. Uncertainties in the specification of the doubled-CO2 climate by the GCM, particularly with respect to precipitation, dictate that agricultural predictions derived from them at this time must be regarded only as illustrative of the impact assessment method.  相似文献   

6.
The Great Lakes Environmental Research Laboratory has developed conceptual daily models for simulating moisture storages in and runoff from the 121 watersheds draining into the Laurentian Great Lakes, over-lake precipitation into each lake, and the heat storages in and evaporation from each lake. We combine these components as net basin supplies for each lake to consider climate change scenarios developed from atmospheric general circulation models (GCMs). Recent scenarios of a doubling of atmospheric Co2, available from the Goddard Institute for Space Studies, the Geophysical Fluid Dynamics Laboratory, and Oregon State University are considered by making changes in historical meteorological data similar to the changes observed in the GCMs, observing the impact of the changed data in the model outputs, and comparing outputs to model results using unchanged data, representing comparison to an unchanged atmosphere. This study indicates a 23 to 51% reduction in net basin supplies to all the Great Lakes; there is significant variation in the components of these supplies among the three GCMs. The basins various moisture storages become dryer and the lakes are warmer with associated hydrological impacts.GLERL Contribution NO. 646.  相似文献   

7.
Climate change impacts on Laurentian Great Lakes levels   总被引:1,自引:1,他引:1  
Scenarios of water supplies reflecting CO2-induced climatic change are used to determine potential impacts on levels of the Laurentian Great Lakes and likely water management policy implications. The water supplies are based on conceptual models that link climate change scenarios from general circulation models to estimates of basin runoff, overlake precipitation, and lake evaporation. The water supply components are used in conjunction with operational regulation plans and hydraulic routing models of outlet and connecting channel flows to estimate water levels on Lakes Superior, Michigan, Huron, St. Clair, Erie, and Ontario. Three steady-state climate change scenarios, corresponding to modeling a doubling of atmospheric CO2, are compared to a steady-state simulation obtained with historical data representing an unchanged atmosphere. One transient climate change scenario, representing a modeled transition from present conditions to doubled CO2 concentrations, is compared to a transient simulation with historical data. The environmental, socioeconomic, and policy implications of the climate change effects modeled herein suggest that new paradigms in water management will be required to address the prospective increased allocation conflicts between users of the Great Lakes.GLERL Contribution No. 645.  相似文献   

8.
气候变化对跨境水资源影响的适应性评估与管理框架   总被引:1,自引:0,他引:1  
气候变化增加了国际河流冲突的可能性,加强跨境水资源适应性管理是流域国可持续发展的必然选择。梳理了适应性相关研究的国内外最新进展,认识到适应性管理的关键问题是要发展一套科学评估未来气候变化影响及适应性策略的程序。通过论述气候变化下跨境水资源的适应性评估与管理框架,提出一个气候变化影响决策评估工具,包括信息收集、需求分析、对策分析、综合评估以及实施与调控5个阶段。该项研究将适应性管理与气候变化、定量化脆弱性及适应能力关联评价、成本效益分析、多目标优化决策和动态调控等有机结合,为从跨界层面制定具有针对性的适应性管理对策提供了思路与方法,有利于促进国际河流流域可持续发展。  相似文献   

9.
10.
A new method is proposed to estimate future net basin supplies and lake levels for the Laurentian Great Lakes based on GCM projections of global climate change. The method first dynamically downscales the GCM simulation with a regional climate model, and then bias—corrects the simulated net basin supply in order to be used directly in a river—routing/lake level scheme. This technique addresses two weaknesses in the traditional approach, whereby observed sequences of climate variables are perturbed with fixed ratios or differences derived directly from GCMs in order to run evaporation and runoff models. Specifically, (1) land surface—atmosphere feedback processes are represented, and (2) changes in variability can be analyzed with the new approach. The method is demonstrated with a single, high resolution simulation, where small changes in future mean lake levels for all the upper Great Lakes are found, and an increase in seasonal range—especially for Lake Superior—is indicated. Analysis of a small ensemble of eight lower resolution regional climate model simulations supports these findings. In addition, a direct comparison with the traditional approach based on the same GCM projections used as the driving simulations in this ensemble shows that the new method indicates smaller declines in level for all the upper Great Lakes than has been reported previously based on the traditional method, though median differences are only a few centimetres in each case.  相似文献   

11.
The North American Laurentian Great Lakes hold nearly 20 % of the earth’s unfrozen fresh surface water and have a length of coastline, and a coastal population, comparable to frequently-studied marine coasts. The surface water elevations of the Great Lakes, in particular, are an ideal metric for understanding impacts of climate change on large hydrologic systems, and for assessing adaption measures for absorbing those impacts. In light of the importance of the Great Lakes to the North American and global economies, the Great Lakes and the surrounding region also serve as an important benchmark for hydroclimate research, and offer an example of successful adaptive management under changing climate conditions. Here, we communicate some of the important lessons to be learned from the Great Lakes by examining how the coastline, water level, and water budget dynamics of the Great Lakes relate to other large coastal systems, along with implications for water resource management strategies and climate scenario-derived projections of future conditions. This improved understanding fills a critical gap in freshwater and marine global coastal research.  相似文献   

12.
This paper characterizes potential hydrological impact of future climate in the Bagmati River Basin, Nepal. For this research, basinwide future hydrology is simulated by using downscaled temperature and precipitation outputs from the Hadley Centre Coupled Model, version 3 (HadCM3), and the Hydrologic Engineering Center's Hydrologic Modeling System (HEC-HMS). It is predicted that temperature may rise maximally during the summer rather than winter for both A2 and B2 Special Report on Emissions Scenarios (SRES) scenarios. Precipitation may increase during the wet season, but it may decrease during other seasons for A2 scenario. For B2 scenario, precipitation may increase during all the seasons. Under the A2 scenario, premonsoon water availability may decrease more in the upper than the middle basin. During monsoons, both upper and middle basins show increased water availability. During the postmonsoon season, water availability may decrease in the upper part, while the middle part shows a mixed trend. Under the B2 scenario, water availability is expected to increase in the entire basin. The analysis of the projected hydrologic impact of climate change is expected to support informed decision-making for sustainable water management.  相似文献   

13.
Frank Millerd 《Climatic change》2011,104(3-4):629-652
The higher temperatures of climate change may result in a fall in Great Lakes water levels. For vessels carrying imports into and exports out of the Great Lakes lower lake levels will lead to restrictions on vessel drafts and reductions in vessel cargos, increasing the number of trips and the cost of moving cargo. Estimates of these impacts are derived from simulations of a recent year??s international cargo movements, comparing a base case with no climate change to various climate change scenarios. The impacts vary from a 5% increase in vessel variable operating costs for a climate change scenario representing the possible climate in 2030 to over 22% for a scenario representing a doubling of atmospheric carbon dioxide. Impacts vary by commodity and route. For years of naturally occurring low water the impacts are up to 13% higher for even the most moderate climate change scenario. Climate change may also result in a shorter time of ice cover leading to an extension of the navigation season. Climate change is also expected to increase the threat of damage from aquatic invasive species, possibly leading to further requirements for ships to undertake preventive measures.  相似文献   

14.
This paper reports on recent progress towards improved predictions of a land surface-hydrological modelling system, Modélisation Environmentale–Surface et Hydrologie (MESH), via its calibration over the Laurentian Great Lakes Basin. Accordingly, a “global” calibration strategy is utilized in which parameters for all land class types are calibrated simultaneously to a number of sub-basins and then validated in time and space. Model performance was evaluated based on four performance metrics, including the Nash-Sutcliffe (NS) coefficient and simulated compared with observed hydrographs. Results from two calibration approaches indicate that in the model validation mode, the global strategy generates better results than an alternative calibration strategy, referred to as the “individual” strategy, in which parameters are calibrated individually to a single sub-basin with a dominant land type and then validated in a different sub-basin with the same dominant land type. The global calibration strategy was relatively successful despite the large number of calibration parameters (51) and relatively small number of model evaluations (1000) used in the automatic calibration procedure. The NS values for spatial validation range from 0.10 to 0.72 with a median of 0.41 for the 15 sub-basins considered. Results also confirm that a careful model calibration and validation is needed before any application of the model.  相似文献   

15.
A significant change in mean precipitation occurred over much of Australia between 1913–45 and 1946–78. This is described on a seasonal basis and related to possible changes in the atmospheric circulation. It now appears that during this time mean surface temperatures in the mid southern latitude zone increased by up to 1 °C. This temperature change could be at least partly due to an increase in atmospheric CO2 concentrations from about 260 ppmv in the early nineteenth century. In any case the observed temperature increase is similar to the predicted future effects of a 50% increase in atmospheric CO2 concentrations. Thus the climatic change which occurred earlier this century is at least a good analogy for the effects of a CO2-induced global warming which is expected to occur over a similar time interval in the future. This allows the construction of more detailed and quantitative climate scenarios. The most noteworthy conclusion is that marked changes in the seasonally of precipitation should be anticipated, with seasonal changes in some areas being of the order of 50% or more for a doubling of CO2 content. The results are in general consistent with earlier more qualitative scenarios for Australia.  相似文献   

16.
There is unequivocal evidence of increased air temperatures in Spain as a result of climate change. Using organic matter, nitrate and soluble reactive phosphorus concentrations, we reconstructed changes in water quality in 15 montane, pristine streams between 1973 and 2005 in Spain. We also measured how loading rates of these variables change as a function of shifting temperatures. Almost half of tested variables were related with hypothesized trends of climatic change for air temperature. Concerning extreme events, the hypothesis of climatic change matched in 33% of all relationships, which mostly occurred in Northern Spain. Regional gradients of population change and soil degradation, however, did not explain the geographical distribution of climatic change effects. The main reason that effects on water quality are not ubiquitous and that constraining factors are hardly detected may be that long-term signals are the outcome of several interacting processes. These are still poorly known and may act at different spatial and temporal scales. Hence, a case-by-case approach might prove more fruitful than a regional one when studying water quality responses to climatic change. Consideration of the balance between extreme and normal events (storm- vs baseflow), catchment effects (land use and its effects on evapotranspiration and runoff) and in-stream processes (outgassing, mineralization, burial) could help increase our understanding of the responses of water quality to climatic change.  相似文献   

17.
General circulation model (GCM) coarse evaluations of the climatological impact in the Eastern Mediterranean due to global doubling of the atmospheric CO2 concentration were used as input for apreliminary estimation of modifications in local processes affecting the water balance in this region. It is suggested that: (i) in the 2 × CO2 climate theaverage regional change of precipitation associated with typical mid-winter cyclonic systems is relatively small, however, it is associated with redistribution of the regional rainfall; (ii) in the elevated terrain in the northern part of the region, daytime snowmelt due to warm air advection may be enhanced, as much as 2.8 cm per day; and (iii) transpiration in the coastal area of the Eastern Mediterranean may increase by ~ 13% of its current level in the summer and somewhat more in the winter.  相似文献   

18.
How might a climate change, induced by increased CO2 in the atmosphere, affect societies? What is the range of existing and potential mechanisms for societal response? And how might research contribute to a reduction of the adverse impact (or enhancement of the unique opportunities) of a climate change by providing greater understanding of the processes involved in climate and society interaction? This paper reflects an initial effort to shed light on these questions. It offers first a framework for identifying key issues in climate-society interaction; eight major questions are suggested by the framework. A discussion of each major question is then presented with the purpose of reviewing the current state of knowledge, identifying the gaps in understanding, and offering opportunities for research to fill those gaps. In all, twenty-two research needs are outlined and are summarized at the conclusion of the paper. The perspective is inter-disciplinary, but the review draws heavily from the geographic literature, reflecting the disciplinary bias of the authors.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号