首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We consider Newton’s method for computing periodic orbits of dynamical systems as fixed points on a surface of section and seek to clarify and evaluate the method’s uncertainty of convergence. Several fixed points of various multiplicities, both stable and unstable are computed in a new version of Hill’s problem. Newton’s method is applied with starting points chosen randomly inside the maximum possible—for any method—circle of convergence. The employment of random starting points is continued until one of them leads to convergence, and the process is repeated a thousand times for each fixed point. The results show that on average convergence occurs with very few starting points and non-converging iterations being wasted.  相似文献   

2.
This paper investigates the periodic orbits around the triangular equilibrium points for 0<μ<μ c , where μ c is the critical mass value, under the combined influence of small perturbations in the Coriolis and the centrifugal forces respectively, together with the effects of oblateness and radiation pressures of the primaries. It is found that the perturbing forces affect the period, orientation and the eccentricities of the long and short periodic orbits.  相似文献   

3.
4.
This paper is devoted to the study of the transfer problem from a libration point orbit of the Earth–Moon system to an orbit around the Moon. The transfer procedure analysed has two legs: the first one is an orbit of the unstable manifold of the libration orbit and the second one is a transfer orbit between a certain point on the manifold and the final lunar orbit. There are only two manoeuvres involved in the method and they are applied at the beginning and at the end of the second leg. Although the numerical results given in this paper correspond to transfers between halo orbits around the \(L_1\) point (of several amplitudes) and lunar polar orbits with altitudes varying between 100 and 500 km, the procedure we develop can be applied to any kind of lunar orbits, libration orbits around the \(L_1\) or \(L_2\) points of the Earth–Moon system, or to other similar cases with different values of the mass ratio.  相似文献   

5.
The restricted problem of the motion of a point of negligible mass (asteroid) in anN-planetary system is considered. It is assumed that all the planets move about the central body (Sun) along circular orbits in the same plane and the mean motions of the asteroid and the planets are incommensurable. The asteroid orbit evolution is described as a first approximation by secular equations with the perturbing function averaged by the mean longitudes of the asteroid and the planets. For small values of the asteroid orbit eccentricity an expression for the secular part of the perturbing function has been obtained. This expression holds for the arbitrary values of the asteroid orbit semiaxis which are different from those of the planet orbit radii. The stability of the asteroid circular orbits in a linear approximation with respect to the eccentricity is studied. The critical inclinations for a Solar system model are calculated.  相似文献   

6.
The hypothesis on the -ray burst generation in the process of the collapse of surpermassive bodies in the nuclei of active galaxies is considered. It is shown that -ray burst properties observed may be interpreted within the frames of the given model. A statistical test for choosing a hypotheses on -ray burst nature is discussed.  相似文献   

7.
We consider a class of Hamiltonian systems with two degrees of freedom with singularities. This class includes several symmetric subproblems of the $n$ -body problem where the singularities are due to collisions involving two or more bodies. “Schubart-like” periodic orbits having two collisions in one period, are present in most of these subproblems. The purpose of this paper is to study the existence of families of such a periodic orbits in a general setting. The blow up techniques of total collision and infinity are applied to our class of Hamiltonian system. This allows us to derive sufficient conditions to ensure the existence of families of double symmetric “Schubart-like” periodic orbits having many singularities. The orbits in the family can be parametrized by the number of singularities in one period. The results are applied to some subproblems of the gravitational $n$ -body problem.  相似文献   

8.
In this paper, we have studied periodic orbits generated by Lagrangian solutions of the restricted three body problem when more massive body is a source of radiation and the smaller primary is an oblate body. We have determined periodic orbits for fixed values of μ, σ and different values of p and h (μ mass ratio of the two primaries, σ oblate parameter, p radiation parameter and h energy constant). These orbits have been determined by giving displacements along the tangent and normal to the mobile co-ordinates as defined by Karimov and Sokolsky (in Celest. Mech. 46:335, 1989). These orbits have been drawn by using the predictor-corrector method. We have also studied the effect of radiation pressure on the periodic orbits by taking some fixed values of μ and σ.  相似文献   

9.
The Halo orbits originating in the vicinities of both,L 1 andL 2 grow larger, but shorter in period, as they shift towards the Moon. There is in each case a narrow band of stable orbits roughly half-way to the Moon. Nearer to the Moon, the orbits are fairly well-approximated by an almost rectilinear analysis. TheL 2 family shrinks in size as it approaches the Moon, becoming stable again shortly before penetrating the lunar surface. TheL 1-family becomes longer and thinner as it approaches the Moon, with a second narrow band of stable orbits with perilune, however, below the lunar surface.  相似文献   

10.
In this work an analysis of a series of complex cosmic ray events that occurred between 17 January 2005 and 23 January 2005 using solar, interplanetary and ground based cosmic ray data is being performed. The investigated period was characterized both by significant galactic cosmic ray (GCR) and solar cosmic ray (SCR) variations with highlighted cases such as the noticeable series of Forbush effects (FEs) from 17 January 2005 to 20 January 2005, the Forbush decrease (FD) on 21 January 2005 and the ground level enhancement (GLE) of the cosmic ray counter measurements on 20 January 2005. The analysis is focusing on the aforementioned FE cases, with special attention drawn on the 21 January 2005, FD event, which demonstrated several exceptional features testifying its uniqueness. Data from the ACE spacecraft, together with GOES X-ray recordings and LASCO CME coronagraph images were used in conjunction to the ground based recordings of the Worldwide Neutron Monitor Network, the interplanetary data of OMNI database and the geomagnetic activity manifestations denoted by K p and D st indices. More than that, cosmic ray characteristics as density, anisotropy and density gradients were also calculated. The results illustrate the state of the interplanetary space that cosmic rays crossed and their corresponding modulation with respect to the multiple extreme solar events of this period. In addition, the western location of the 21 January 2005 solar source indicates a new cosmic ray feature, which connects the position of the solar source to the cosmic ray anisotropy variations. In the future, this feature could serve as an indicator of the solar source and can prove to be a valuable asset, especially when satellite data are unavailable.  相似文献   

11.
For any positive integer N ≥ 2 we prove the existence of a new family of periodic solutions for the spatial restricted (N +1)-body problem. In these solutions the infinitesimal particle is very far from the primaries. They have large inclinations and some symmetries. In fact we extend results of Howison and Meyer (J. Diff. Equ. 163:174–197, 2000) from N = 2 to any positive integer N ≥ 2.   相似文献   

12.
Designing a statistical solar flare forecasting technique can benefit greatly from knowledge of the flare frequency of occurrence with respect to sunspot groups. This study analyzed sunspot groups and Hα and X-ray flares reported for the period 1997 – 2007. Annual catalogs were constructed, listing the days that numbered sunspot groups were observed (designated sunspot group-days, SSG-Ds) and for each day a record for each associated Hα flare of importance category one or greater and normal or bright brightness and for each X-ray flare of intensity C 5 or higher. The catalogs were then analyzed to produce frequency distributions of SSG-Ds by year, sunspot group class, likelihood of producing at least one flare overall and by sunspot group class, and frequency of occurrence of numbers of flares per day and flare intensity category. Only 3% of SSG-Ds produced a substantial Hα flare and 7% had a significant X-ray flare. We found that mature, complex sunspot groups were more likely than simple sunspot groups to produce a flare, but the latter were more prevalent than the former. More than half of the SSG-Ds with flares had a maximum intensity flare greater than the lowest category (C-class of intensity five and higher). The fact that certain sunspot group classes had flaring probabilities significantly higher than the combined probabilities of the intensity categories when all SSG-Ds were considered suggest that it might be best to first predict the flaring probability. For sunspot groups found likely to flare, a separate diagnosis of maximum flare intensity category appears feasible.  相似文献   

13.
A new fully numerical method is presented which employs multiple Poincaré sections to find quasiperiodic orbits of the Restricted Three-Body Problem (RTBP). The main advantages of this method are the small overhead cost of programming and very fast execution times, robust behavior near chaotic regions that leads to full convergence for given family of quasiperiodic orbits and the minimal memory required to store these orbits. This method reduces the calculations required for searching two-dimensional invariant tori to a search for closed orbits, which are the intersection of the invariant tori with the Poincaré sections. Truncated Fourier series are employed to represent these closed orbits. The flow of the differential equation on the invariant tori is reduced to maps between the consecutive Poincaré maps. A Newton iteration scheme utilizes the invariance of the circles of the maps on these Poincaré sections in order to find the Fourier coefficients that define the circles to any given accuracy. A continuation procedure that uses the incremental behavior of the Fourier coefficients between close quasiperiodic orbits is utilized to extend the results from a single orbit to a family of orbits. Quasi-halo and Lissajous families of the Sun–Earth RTBP around the L2 libration point are obtained via this method. Results are compared with the existing literature. A numerical method to transform these orbits from the RTBP model to the real ephemeris model of the Solar System is introduced and applied.  相似文献   

14.
We study the parametric evolution of the regions where three-dimensional motions of a charged particle are allowed in the combined electromagnetic field produced by two rotating magnetic stars. We discuss the changes in the topology of the zero-velocity surfaces, as well as in the trapping regions of the particle motion for various values of the dipoles’ magnetic moments.  相似文献   

15.
P. K. Manoharan 《Solar physics》2010,265(1-2):137-157
In this paper, I investigate the three-dimensional evolution of solar wind density and speed distributions associated with coronal mass ejections (CMEs). The primary solar wind data used in this study has been obtained from the interplanetary scintillation (IPS) measurements made at the Ooty Radio Telescope, which is capable of measuring scintillation of a large number of radio sources per day and solar wind estimates along different cuts of the heliosphere that allow the reconstruction of three-dimensional structures of propagating transients in the inner heliosphere. The results of this study are: i) three-dimensional IPS images possibly show evidence for the flux-rope structure associated with the CME and its radial size evolution; the overall size and features within the CME are largely determined by the magnetic energy carried by the CME. Such a magnetically energetic CME can cause an intense geomagnetic storm, even if the trailing part of the CME passes through the Earth; ii) IPS measurements along the radial direction of a CME at ~?120 R show density turbulence enhancements linked to the shock ahead of the CME and the core of the CME. The density of the core decreases with distance, suggesting the expansion of the CME. However, the density associated with the shock increases with distance from the Sun, indicating the development of a strong compression at the leading edge of the CME. The increase of stand-off distance between ~?120 R and 1 AU is consistent with the deceleration of the CME and the continued outward expansion of the shock. The key point in this study is that the magnetic energy possessed by the transient determines its radial evolution.  相似文献   

16.
Recently, a tachyonic field was presented as a dark energy model to represent the present acceleration of the Universe. In this paper, we consider a mixture of tachyonic fluid with a perfect fluid. For this purpose we consider barotropic fluid and Generalized Chaplygin gas (GCG). We present a particular form of the scale factor. We solve the equations of motion to get exact solutions of the density, tachyonic potential and the tachyonic field. We introduce a coupling term to show that the interaction decays with time. We also show that the nature of the potentials vary, so the interaction term reduces the potential in both cases.  相似文献   

17.
18.
Régulo  C.  Roca Cortés  T. 《Solar physics》2001,200(1-2):381-391
It is presently widely accepted that the solar low p modes show asymmetric profiles when their power spectrum is analysed and that the fact of fitting symmetric profiles yields systematic effects in the obtained frequencies which could affect the results of inversions. In this paper the low p-mode profiles are analysed using wavelets to denoise the power spectra of the modes. This denoising method is applied both to artificial data generated by Kosovichev (the Hare and Hound exercise) and to real data obtained with the GOLF instrument. The asymmetries as well as the frequencies obtained are studied in both cases. The results show that although the obtained p-mode profiles present a slightly negative asymmetry, the use of symmetric profiles to fit the power spectra does not introduce any systematic effect in the obtained frequencies.  相似文献   

19.
In this work, we have simulated orbits of a particle moving in gravitational field of the Sun-Jupiter system. The effect of solar radiation pressure, including Poynting Robertson drag, on the evolution of particle orbits in phase space have been studied for different values of the parameter β 1 (the ratio of radiation to gravitational force) and initial conditions. Characteristics of various computed trajectories have been studied using wavelet transform (WT), Fourier transform (FT) and Poincare surface of section method. We use wavelet analysis to identify transitions of a trajectory in time-frequency plane and further apply it to classify it as regular or chaotic in phase space. Unlike the Fourier transform method (FT), we observe that the wavelet transform (WT) also provides a basis to identify ‘sticky’ trajectories in the present dynamical system.  相似文献   

20.
In this paper, families of Lyapunov and halo orbits are presented with a solar sail equipped with a reflectance control device in the Earth–Moon system. System dynamical model is established considering solar sail acceleration, and four solar sail steering laws and two initial Sun-sail configurations are introduced. The initial natural periodic orbits with suitable periods are firstly identified. Subsequently, families of solar sail Lyapunov and halo orbits around the \(L_{1}\) and \(L_{2}\) points are designed with fixed solar sail characteristic acceleration and varying reflectivity rate and pitching angle by the combination of the modified differential correction method and continuation approach. The linear stabilities of solar sail periodic orbits are investigated, and a nonlinear sliding model controller is designed for station keeping. In addition, orbit transfer between the same family of solar sail orbits is investigated preliminarily to showcase reflectance control device solar sail maneuver capability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号