首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
J. Ebbing  O. Olesen 《Tectonophysics》2005,411(1-4):73-87
We investigate the Scandes mountain range by analysing the gravity field, the geoid heights and the degree of isostatic compensation of the lithosphere. Topographically, the Scandes mountain range can be divided in the Northern and Southern Scandes. Comparisons between the present topographic expression and the gravity field and the geoid show that the axis of highest elevation in the Northern Scandes is shifted eastwards compared to the minimum of the Bouguer anomaly, while the two coincide perfectly in the Southern Scandes. Geoid heights reduced by the effect of topographic masses show a large-scale minimum in the Northern Scandes, but no anomaly in the Southern Scandes.Regional, flexural isostatic calculations yield a flexural rigidity of D = 1023 Nm for the lithosphere of the Southern Scandes and the isostatic gravity and geoid residuals point to additional isostatic support by low-density rocks below the Moho. On the other side, for the lithosphere in the Northern Scandes no significant flexural rigidity can be resolved. Here, the Bouguer anomaly is best modelled with a small flexural rigidity, indicating nearly Airy isostatic behaviour. Local subsurface loading and horizontal tectonic forces overprint the isostatic compensations and increase the tectonic complexity of the Northern Scandes. These distinctive features of the Scandes cannot be explained by currently existing models of the present and Neogene uplift and the isostatic mechanism of the Scandes.  相似文献   

2.
The 3-D lithospheric-density model for the southeastern part of the Caspian Sea and the Transcaspian area, practically coinciding with the territory of the Turkmen Republic, has been constructed based on geophysical data and in accordance with the principle of isostasy. From the model selected the anomalous density of the subcrustal layer between the Moho discontinuity and the 100-km depth level is found to be — 100 kg/m3 under the Tien-Shan, − 50 kg/m3 under the Kopet-Dag mountain area, + 80 kg/m3 under the central region of the South Caspian basin, −50 kg/m3 under the eastern part of the basin, known as the West Turkmenian depression, and + 45 kg/m3 under the Murgab depression.

Significant disturbances of the local isostasy are determined both in the northern and central areas of the South Caspian basin and also in the area of the Kara-Bogaz swell of the Turan platform and for the Kopet-Dag foredeep. indicating a high level of stresses in the lithosphere. The shape of the Turan plate determined by the seismic profiling is accounted for by elastic deformation resulting from the forces acting on the southern edge of the plate in the area of the Turan plate-Kopet-Dag collision. The elastic thickness of the Turan plate is estimated as 25 ± 5 km. The results obtained seem to confirm the idea that the decomposition of the Turan plate has taken place in the zone of the plates interaction and the decomposed material is situated under the Kopet-Dag ridge.

We propose that the Kara-Bogaz swell is supported by the mantle material upwelling whereas the subsidence of the adjacent part of the South Caspian basin may be due to the downgoing mantle flow i.e., a small convection cell is suggested in that area.  相似文献   


3.
The continental tectosphere and Earth's long-wavelength gravity field   总被引:2,自引:0,他引:2  
To estimate the average density contrast associated with the continental tectosphere, we separately project the degree 2–36 non-hydrostatic geoid and free-air gravity anomalies onto several tectonic regionalizations. Because both the regionalizations and the geoid have distinctly red spectra, we do not use conventional statistical analysis, which is based on the assumption of white spectra. Rather, we utilize a Monte Carlo approach that incorporates the spectral properties of these fields. These simulations reveal that the undulations of Earth's geoid correlate with surface tectonics no better than they would were it randomly oriented with respect to the surface. However, our simulations indicate that free-air gravity anomalies correlate with surface tectonics better than almost 98% of our trials in which the free-air gravity anomalies were randomly oriented with respect to Earth's surface. The average geoid anomaly and free-air gravity anomaly over platforms and shields are significant at slightly better than the one-standard-deviation level: −11±8 m and −4±3 mgal, respectively. After removing from the geoid estimated contributions associated with (1) a simple model of the continental crust and oceanic lithosphere, (2) the lower mantle, (3) subducted slabs, and (4) remnant glacial isostatic disequilibrium, we estimate a platform and shield signal of −8±4 m. We conclude that there is little contribution of platforms and shields to the gravity field, consistent with their keels having small density contrasts. Using this estimate of the platform and shield signal, and previous estimates of upper-mantle shear-wave travel-time perturbations, we find that the average value of ∂lnρ/∂lnνs within the 140–440 km depth range is 0.04±0.02. A continental tectosphere with an isopycnic (equal-density) structure (∂lnρ/∂lnνs=0) enforced by compositional variations is consistent with this result at the 2.0σ level. Without compositional buoyancy, the continental tectosphere would have an average ∂lnρ/∂lnνs≈0.25, exceeding our estimate by 10σ.  相似文献   

4.
We investigate the use of a ductile material with temperature-sensitive viscosity for thermomechanical modelling of the lithosphere. First, we consider the scaling of mechanical and thermal properties. For a normal field of gravity, the balance of stresses and body forces sets the stress scale, in proportion to the linear dimensions and the densities. The equation of thermal conduction sets the time scale. The activation enthalpy for creep sets the temperature scale; but the thermal expansivity provides an additional constraint on this temperature scale.

Gum rosin appears to be a suitable material for lithospheric modelling. We have measured its flow properties, at various temperatures, in a specially designed rotary viscometer with unusually low machine friction. The rosin is almost Newtonian. Strain rate depends upon stress to the power n, where 1.0 <n < 1.14. The viscosity varies over 5 orders of magnitude, from about 102 Pa s at 80°C, to about 107 Pa s at 40°C. The activation enthalphy is thus about 250 kJ/mol. Measured with a needle probe, the thermal conductivity is 0.113 ± 0.001 W m−1K−1; the thermal diffusivity, (6±3) ×10−7 m2 s−1. Calculated from X-ray profiles, the thermal expansivity is about 3 × 10−4 K−1. These thermal and mechanical properties make gum rosin suitable for thermomechanical models, where linear dimensions scale down by a factor of 106; time, by 1011; viscosity, by 1017; and temperature change, by 101.  相似文献   


5.
The gravitational signal of the upper mantle density structures is investigated in the refined gravity data which are corrected for the gravitational contributions of the crust density structures and the Moho geometry. The gravimetric forward modeling is applied to compute these refined gravity data globally on a 1 × 1 arcdeg grid using the global geopotential model (EGM2008), the global topographic/bathymetric model (DTM2006.0) including the ice-thickness data, and the global crustal model (CRUST2.0). The characteristics of the upper mantle density structures are further analyzed in association with the Moho parameters (i.e., Moho depths and density contrast). The 1 × 1 arcdeg global data of the Moho parameters are estimated by applying the combined least-squares approach based on solving Moritz’s generalization of the Vening–Meinesz inverse problem of isostasy. The refined gravity data exhibit mainly the mantle lithosphere structures attributed to the global mantle convection. A significant correlation found over oceans between the refined gravity data and the Moho density contrast is explained by the increasing density of the oceanic lithosphere with age. Despite the lithosphere structures attributed to the global mantle convection are confirmed also in the refined gravity data over continents, the significant correlation between the refined gravity data and the Moho parameters is in this case absent. Instead, the significant proportion of lateral variations of the Moho density contrast within the continental lithosphere is attributed to the depth-dependant density changes due to pressure and thermal gradient.  相似文献   

6.
The absolute abundance of the chromium isotopes in chromite   总被引:1,自引:0,他引:1  
Isotopic assays have been made on the chromium in eighteen chromite samples from countries responsible for 81 per cent of the chromite production between 1900 and 1950. The use of mixtures of separated isotopes to determine the accuracy indicates that the measurements are absolute. On the basis of these assays, the natural abundances of the chromium isotopes in atoms per cent are: Cr50 = 4·352 ± 0·024, Cr52 = 83·764 ± 0·036, Cr53 = 9·509 ± 0·027, Cr54 = 2·375 ± 0·018. where the limits cited represent 3β. No variation in the isotopic composition of the chromium in any of the chromites examined was found within the stated limits.

The chemical atomic weight, computed on the basis of these abundance values and the latest accepted values for the masses of the involved isotopes, is 51·9985 ± 0·0013.  相似文献   


7.
王明明  吴健生 《地球科学》2017,42(10):1707-1714
台湾海峡及邻区地处欧亚板块与菲律宾海板块相互作用的构造前锋部位,经历了挤压、剪切和伸展交替或并重的构造作用,这种复杂应力环境下岩石圈的均衡调整对台湾地区的构造演化具有深远影响.通过采用均衡响应函数法计算穿越台湾海峡及邻区剖面岩石圈的有效弹性厚度,利用剥离法消除台湾海峡及东邻岛区较厚沉积层的影响,得到了穿越台湾海峡地区剖面岩石圈弹性厚度的变化.结合反演的莫霍面和居里面深度对剖面有效弹性厚度的构造意义进行了综合分析.结果表明:台湾海峡及邻区岩石圈有效弹性厚度变化范围为22~8 km,剖面有效弹性厚度整体上自西往东呈楔形递减趋势,反映中国东部大陆岩石圈往东伸展减薄;台湾岛附近有效弹性厚度出现局部向东倾斜增大的趋势,可能与东侧菲律宾海板块的仰冲挤压有关.有效弹性厚度与居里面具有较高相关性,反映了有效弹性厚度受岩石圈热结构的影响.   相似文献   

8.
The three-dimensional (3D) lithospheric density structure of the Eastern Alps was investigated by integrating results from reflection seismics, receiver function analyses and tomography. The modelling was carried out with respect to the Bouguer gravity and the geoid undulations and emphasis were laid on the investigations of the importance of deep lithospheric features. Although the influence of inhomogeneities at the lithosphere–asthenosphere boundary on the potential field is not neglectable, they are overprinted by the response of the density contrast at the crust–mantle boundary and intra-crustal density anomalies. The uncertainties in the interpretations are in the same order of magnitude as the gravity field generated by the deep lithosphere.After including the deep lithospheric geometry from the tomographic model it is shown that full isostatic equilibrium is not achieved below the Eastern Alps. However, calculation of the isostatic lithospheric thickness shows two areas of lithospheric thickening along the central axis of the Eastern Alps with a transition zone below the area of the TRANSALP profile. This is in agreement with the tomographic model, which features a change in lithospheric subduction direction.  相似文献   

9.
Intrinsic magmatic processes are considered as critical operators of plate movements. Here we demonstrate the role of extrinsic processes consequent to intrinsic processes as a catalyst for anomalous rapid plate movement. The rapid and accelerated flight of the Indian subcontinent since Deccan volcanism until its collision with Eurasia remains as one of the geological conundrums. Data on seismic tomography, peninsular geomorphology and inferences on continuum of subcrustal structures are utilized to address this enigma. We propose geomorphic isostasy as the mechanism that has driven this fastest drift ever recorded in geological history. It was initiated by sudden instability after the Deccan volcanism and resultant extensive accumulation of lava pile over continental lithosphere of northern India, northern-eastern tilt due to crustal thickness heterogeneity and subcrustal thermal stratification. The drift was sustained by Carlsberg and Central Indian ridge-push until collision and sediment top loading at northeast thenceforth. These inferences and geomorphic isostasy as a catalytic mechanism necessitate variability of drift rates as integral inputs for any continental scale modeling.  相似文献   

10.
The complete gravity data set from France and part of the neighboring countries has been analyzed to compute the topography of the Moho undulations. This work is based on an improved filtering technique and an appropriate assumed density contrast between the crust and the upper mantle. Comparison with deep seismic refraction data reveals that this relief map expresses the continuity and geometry of the Moho undulations better than the sparsely distributed seismic refraction data in France. This gravity Moho map, though may not give absolute depths at places, provides a far better correlation with surface geology than the result from other geophysical techniques. Four domains have been recognized: (a) the Alpine domain where all the Moho undulations are concentric with the Alps; (b) the Armorican domain in which all the undulations are north-west/south-east oriented; (c) the Pyrenean domain, in which the undulations are parallel with the Mountain chain; and (d) the Massif Central Domain which does not show clear structural orientation because of the influence of the strong heat flow located at the lower crust/upper mantle interface. Study of the topography and of the superficial structures associated with these undulations reveals that the undulations delineated in the Alpine Domain result from the Tertiary compression which shaped the Alps. The Armorican Domain was first created during the Lower to Middle Cretaceous opening of the Bay of Biscay. It is now slightly affected by the Tertiary to Quaternary closure of this Bay. The Pyrenean Domain was successively shaped by the Lower Cretaceous oblique opening of the Bay of Biscay and by the Upper Cretaceous to Eocene northward displacement of Spain. Comparison between the Moho undulations map and the stress map of France reveals that most of the undulations are perpendicular to the actual shortening directions. This observation suggests that the Mesozoic, Cenozoic and Quaternary stress directions were roughly the same. Massif Central is characterized by the convergence of these three sets of undulations. Its Post-Oligocene uplift was probably the result of the converging stresses recognized in the three surrounding domains. When the Moho undulations and the topography are compared, two types of periodic crustal instabilities can be recognized. One corresponds to the buckling of the crust developed under compression, the other to boudinage which was associated with extension. Both phenomena show a typical wavelength of 200–250 km which is in agreement with the results of the actual physical and numerical modeling currently available.  相似文献   

11.
A 3-D layered structure of the Levant and the southeastern Mediterranean lithospheric plates was constructed using interpretations of seismic measurements and borehole data. Structural maps of three principal interfaces, elevation, top basement and the Moho, were constructed for the area studied. This area includes the African, Sinai and Arabian plates, the Herodotus and the Levant marine basins and the Nile sedimentary cone. In addition, an isopach map of the Pliocene sediments, as well as the contemporaneous amount of denuded rock units, was prepared to enable setting up the structural map of the base Pliocene sediment. Variable density distributions are suggested for the sedimentary succession in accord with its composition and compaction. The spatial density distribution in the crystalline crust was calculated by weighting the thicknesses of the lower mafic and the upper felsic crustal layers, with densities of 2.9 g/cm3 and 2.77 g/cm3, respectively. Results of the local (Airy) isostatic modeling with compensation on the Moho interface show significant deviations from the local isostasy and require variable density distribution in the upper mantle. Moving the compensation level to the base of the lithosphere ( 100 km depth) and adopting density variations in the mantle lithosphere yielded isostatic compensation (± 200 m) over most of the area studied. The spatial pattern obtained of a density distribution with a range of ± 0.05 g/cm3 is supported by a regional heat flux. Simulations of the flexure (Vening Meinesz) isostasy related to the Pliocene to Recent sedimentary loading and unloading revealed concentric oscillatory negative and positive anomalies mostly related to the Nile sedimentary cone. Such anomalies may explain the rapid subsidence in the Levant Basin and the arching in central Israel, northern Sinai and Egypt during Pliocene–Recent times. Comparison between the observed (Bouguer) gravity and the calculated gravity for the constructed 3-D lithospheric structure, which has variable density distributions, provided a good match and an independent constraint for the large-scale structure suggested and confirmed an oceanic nature for the Levant Basin lithosphere.  相似文献   

12.
通过对卫星重力数据的精细处理,发现欧亚大陆东缘存在一个规则分布的重力异常组合,这个异常组合与中国大陆上的已知断裂严格对应。SinoProbe探测计划实施的反射地震探测出这些断裂下方存在Moho破裂,幔源物质上涌,剩余重力异常,莫霍面破裂,高密度的幔源物质上涌和深断裂之间存在密切联系。依照这个联系规律,对已有断裂的延伸补充,显示出欧亚大陆东缘存在一个巨型深断裂系统,主断裂带南起中国广州向北延伸直至鄂霍次克海,绵延逾3000 km。沿主断裂带东侧近似等间距的平行分布着9条北东向断裂,北东向断裂向东入海至大陆边缘。采用数值方法模拟了断裂系统的形成过程,在菲律宾板块和太平洋板块近NW方向构造力的作用下,欧亚大陆东缘产生NNE向走滑断层,其东侧生成彼此平行,间距大体相等的派生断层。断层形成过程中,Moho破裂,大量地幔物质上涌,形成中国东部中生代以来的巨量火山岩浆活动,控制了内生金属矿床的分布。这个断裂系统近代还在活动,导致了郯城8.5级大地震和长白山的火山喷发。  相似文献   

13.
A two-dimensional numerical modelling that simulate the kinematic and thermal response of the lithosphere to thinning was used for the quantitative reconstruction of the late Neogene to Recent times tectonic and stratigraphic evolution of the North Sicily continental margin (southern Tyrrhenian Sea). The numerical study of the evolution of the North Sicily margin builds on the crustal image and kinematic interpretation of the margin obtained by Pepe et al. [Tectonics 19 (2000) 241] on the basis of seismic data and gravity modelling. Tectonic modeling indicate that different segments of the margin were undergoing different vertical movements, which are mainly expression of the rifting and thinning of the lithosphere occurred during tectonic evolution of the southern Tyrrhenian Sea. A prediction of the pre-rift basement topography and the Moho along the margin converges to a value of 6.5 km for the depth of necking and a temperature-dependent EET (500° isotherm). The model fails to reproduce the morphology of the Solunto High confirming its non-extensional origin. A polyphase evolution is required to reproduce the observed syn- and post-rift stratigraphy. During the first rifting stage (between 9 and 5 Ma), crustal thinning factors reach maximum values of 1.27 in the Cefalù basin. A similar value is predicted for the subcrustal thinning around 60 km NNE of the profile margin. Crustal thinning factors increase during the second rifting stage (from 4 to 2 Ma) and reach values of 2 and up to 3.5 in the Cefalù basin and in the continent–oceanic transition zone, respectively. Similarly, subcrustal lithospheric thinning factors reach values up to 2.5 in the distal sector of the margin. An uplift of more than 100 m is predicted for the North Sicily shelf and surrounding onshore areas during the post-rift stage. The evolution of thermal structure with time is very sensitive to the partial thinning factors describing the evolution of the thinning itself during time. The lithosphere preserved part of its strength during extension. The effective elastic thickness (EET) along the margin through time is 24 km at the onset of rifting and reaches values less to 8 km during the second rifting stage in the northeastern end of the margin.  相似文献   

14.
基于EIGEN-6C2重力场模型反演青藏高原地壳结构   总被引:1,自引:0,他引:1       下载免费PDF全文
郭东美  鲍李峰  许厚泽 《地球科学》2015,40(10):1643-1652
重力数据是地下场源产生的重力场的叠加, 包含了地下从浅部到深部的丰富信息.高阶卫星资料的丰富为青藏高原深部构造研究提供了重要资料.基于EIGEN-6C2模型作为原始数据, 首先对青藏高原布格重力异常和均衡重力异常分别作1~5阶尺度分解, 得到不同尺度重力异常的分布特性, 探讨不同空间尺度反映的地壳构造意义.其次, 基于径向对数功率谱估计平均深度方法理论, 进一步研究1~5阶细节反映的场源深度.再次, 利用Canny算子的多尺度边缘检测识别和分析重力异常中表现不明显的断裂, 定位断裂在地表的位置, 识别青藏高原内部断块边界, 完成活动块体和次级块体的划分.最后, 对布格重力异常进行沉积层及岩石圈改正, 采用Parker-Oldenbarg三维位场反演法反演青藏高原莫霍界面起伏.   相似文献   

15.
A 2-D gravity model, incorporating geophysical and geological data, is presented for a 110 km long transect across the northern Rhine Graben, coinciding with the 92 km long DEKORP 9-N seismic reflection profile. The Upper Rhine Graben is marked by a prominent NNE-striking negative anomaly of 30–40 mgal on Bouguer gravity maps of SW Germany. Surface geological contacts, borehole data and the seismic reflection profile provide boundary constraints during forward modelling.
Short-wavelength (5–10 km) gravity features can be correlated with geologic structures in the upper few km. At deeper levels, the model reflects the asymmetry visible in the seismic profile; a thicker, mostly transparent lower crust in the west and a thinner, reflective lower crust in the east. From west to east Moho depth changes from 31 to 26–28 km. The entire 40 mgal minimum can be accounted for by the 2–3 km of light sedimentary fdl in the graben, which masks the gravitational effects of the elevated Moho. The thickened lower crust in the west partly compensates for the mass deficit from the depressed Moho. A further compensating feature is a relatively low density contrast at the crust-mantle boundary of 0.25 g cm-3. The Variscan must displays heterogeneity along the profile which cuts at an angle across the strike of Variscan structures. The asymmetry of the integrated crustal model, both at the surface and at depth suggests an asymmetric mechanism of rift development.  相似文献   

16.
Gravity signals from the lithosphere in the Central European Basin System   总被引:1,自引:0,他引:1  
We study the gravity signals from different depth levels in the lithosphere of the Central European Basin System (CEBS). The major elements of the CEBS are the Northern and Southern Permian Basins which include the Norwegian–Danish Basin (NDB), the North-German Basin (NGB) and the Polish Trough (PT). An up to 10 km thick sedimentary cover of Mesozoic–Cenozoic sediments, hides the gravity signal from below the basin and masks the heterogeneous structure of the consolidated crust, which is assumed to be composed of domains that were accreted during the Paleozoic amalgamation of Europe. We performed a three-dimensional (3D) gravity backstripping to investigate the structure of the lithosphere below the CEBS.Residual anomalies are derived by removing the effect of sediments down to the base of Permian from the observed field. In order to correct for the influence of large salt structures, lateral density variations are incorporated. These sediment-free anomalies are interpreted to reflect Moho relief and density heterogeneities in the crystalline crust and uppermost mantle. The gravity effect of the Moho relief compensates to a large extent the effect of the sediments in the CEBS and in the North Sea. Removal of the effects of large-scale crustal inhomogeneities shows a clear expression of the Variscan arc system at the southern part of the study area and the old crust of Baltica further north–east. The remaining residual anomalies (after stripping off the effects of sediments, Moho topography and large-scale crustal heterogeneities) reveal long wavelength anomalies, which are caused mainly by density variations in the upper mantle, though gravity influence from the lower crust cannot be ruled out. They indicate that the three main subbasins of the CEBS originated on different lithospheric domains. The PT originated on a thick, strong and dense lithosphere of the Baltica type. The NDB was formed on a weakened Baltica low-density lithosphere formed during the Sveco-Norwegian orogeny. The major part of the NGB is characterized by high-density lithosphere, which includes a high-velocity lower crust (relict of Baltica passive margin) overthrusted by the Avalonian terrane. The short wavelength pattern of the final residuals shows several north–west trending gravity highs between the Tornquist Zone and the Elbe Fault System. The NDB is separated by a gravity low at the Ringkøbing–Fyn high from a chain of positive anomalies in the NGB and the PT. In the NGB these anomalies correspond to the Prignitz (Rheinsberg anomaly), the Glueckstadt and Horn Graben, and they continue further west into the Central Graben, to join with the gravity high of the Central North Sea.  相似文献   

17.
南海北部缘重力异常的多尺度分析及其构造讨论   总被引:1,自引:0,他引:1  
武粤  孟小红  刘国峰 《现代地质》2012,26(6):1162-1167
重力异常是由地下各种密度不均匀体所产生的叠加效果。采用二维小波多尺度方法对南海北部缘重力异常进行分析,解译了重力异常所反映的地下源体,对南海北部缘盆地构造进行认识。通过对南海北部缘重力异常进行分解,结合研究区域地形地貌,对盆地构造和地下岩体分布等地质特征进行分析。结果显示,四阶变换逼近主要由莫霍面起伏引起,小波变换细节主要由沉积基底面的起伏引起。利用小波多尺度对重力异常进行分析具有较好的效果,值得进一步推广研究。  相似文献   

18.
Proton-microprobe analyses of trace elements in garnet and chromite inclusions in diamonds (DI) from the Mir, Udachnaya, Aikhal and Sytykanskaya kimberlites in Yakutia, CIS, provide new insights into the processes that form diamond. Equivalent data on garnet and chromite concentrates from these pipes yield information on the thermal state and chemical stratification of the Siberian lithosphere. Peridotite-suite diamonds from Yakutia have formed over a temperature interval of ca. 600°C, as measured by Ni and Zn thermometry on garnet and chromite inclusions in diamonds. Individual diamonds contain inclusions recording temperature intervals of >400°C; ranges of >100°C are common. Diamond formation followed a severe depletion event(s), and a separate enrichment in Sr. Comparison of temperatures on DI garnet and spinel with temperatures derived from diamondiferous harzburgites, exposed inclusions in boart and concentrate minerals suggests that the diamond-containing part of the lithosphere has cooled significantly since the Siberian diamonds crystallized. The peridotite-suite diamonds probably formed mainly in response to one or more relatively short-lived thermal events, related to magmatic intrusion. The northern part of the Daldyn-Alakit district may have had a typical cratonic geotherm at the time of diamond formation, and during kimberlite intrusion. The southern part of the district, and the Malo-Botuobiya kimberlite field, probably had a relatively low geotherm (ca. 35 mW/m2). The vertical distribution of garnet and chromite types indicates that the mantle above 120 km depth is dominated by lherzolites, whereas the deeper parts of the lithosphere are a mixture of lherzolites and more depleted harzburgites and dunites.  相似文献   

19.
Isostatic hypotheses are used for different purposes in geophysics and geodesy. The Erath crustal thickness modelling is more complicated than the classical isostatic models. In this study we try to modify Airy-Hesiskanen model, utilizing a smoothing factor, to a model with regional or global isostatic model through a modern solution of the gravimetric-isostatic Vening Meinesz model and CRUST.0. In Airy-Hesiskanen’s theory there is no correlation between neighbouring crustal columns, while this must be the case in reality due to the elasticity of the Earth. The idea is to keep the simplicity of the Airy-Heiskanen model, because it needs only the topographic data, and change the model which becomes to a model with regional/global isostatic model. The isostatic assumption for compensating the topographic potential is incomplete, as there are other geophysical phenomena which should be considered. Using the isostatic hypothesis for determining the depth of crust causes some disturbing signals in the gravity anomaly (approximately 285 mGal), which influence the crustal thickness determination. In this paper a simple method use for removing these effects. Spherical harmonic potential coefficients of the topographic compensation masses are used for modifying Airy-Heiskanen’s model in a least-square adjustment procedure by estimating smoothing factor. The numerical analysis shows that below degree 10, the modified Airy-Hesiskanen and Vening Meinesz models are close together. Smoothing factors for modifying the Airy-Hesiskanen model vary from 0.75 to 0.64 between degrees 200 and 2159.  相似文献   

20.
In this paper,we analyze lithospheric density distribution of China and surrounding regions on the basis of 300300gravity data and 1 1 P-wave velocity data.Firstly,we used the empirical equation between the density and the P-wave velocity difference as the base of the initial model of the Asian lithospheric density.Secondly,we calculated the gravity anomaly,caused by the Moho discontinuity and the sedimentary layer discontinuity,by the Parker formula.Thirdly,the gravity anomaly of the spherical harmonics with 2e40 order for the anomalous body below the lithosphere is calculated based on the model of EGM96.Finally,by using Algebra Reconstruction Techniques(ART),the inversion of 300300residual lithospheric Bouguer gravity anomaly caused by the lithosphere yields a rather detailed structural model.The results show that the lithospheric density distribution of China and surrounding regions has a certain connection with the tectonic structure.The density is relatively high in the Philippine Sea plate,Japan Sea,the Indian plate,the Kazakhstan shield and the Western Siberia plain,whereas the Tibetan Plateau has low-density characteristics.The minimum value of density lies in the north of Philippines,in the Taiwan province and in the Ryukyu island arc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号