首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
The variation in free amino acids concentration was examined in halophytes under salt stress conditions during spring and autumn in an arid environment, Jordan. The experiment was conducted in the southern region of the Jordan valley, using four different halophytes namely: Atriplex halimus, Atriplex nummularia, Tamarix aphylla L., and Portulaca oleracea L. Free amino acid concentrations showed changeable patterns under salinity stress conditions compared to the non‐stress (control) with respect to plant species and seasonal variation. In general, the amino acid pool during the spring experienced increases in A. halimus with increasing salinity; and decreased in A. nummularia, P. oleracea L., and T. aphylla L., respectively. Whereas, during the autumn, the overall amino acids decreased in A. halimus and A. nummularia, and increased in T. aphylla L. and P. oleracea with increasing salinity. The amino acid pool concentrations of A. halimus L. during the autumn was similar to that in spring under stress condition. Similarly, T. aphylla L. and P. oleracea showed higher rates in the autumn. In contrast, A. nummularia L. exhibited a slight increase in amino acid composition in the autumn under stress conditions. The plantation of salt tolerant plants such as halophytes in saline sodic soils showed an effective decline in soil salinity and can be recommended to be used as a bioreclamation method instead of the traditional leaching method, which requires large amount of fresh water.  相似文献   

4.
Arie lssar  Joel Gat 《Ground water》1981,19(5):490-494
  相似文献   

5.
Liquid wastes, including metals dissolved in nitric acid, were discharged into the S-3 Ponds from 1951 to 1983. During this period, contaminants in ground water spread along shallow fracture flow paths toward nearby streams. Also, a high concentration of nitrate in one well at a depth of 110 to 240 in shows that some contaminants may have moved downdip because of differences in fluid density. Neutralization of the ponds in June 1983 caused a dramatic decrease in the contaminant concentrations of Bear Creek about three months later. Since then, the contaminant concentrations of Bear Creek have decreased at a first-order exponential rate. This average rate, which is the same for both more reactive and less reactive constituents, can be interpreted to show that the contaminant reservoir consists of the unfractured rock matrix.
Flushing caused by the natural recharge and discharge of ground water is occurring at all locations, but contaminant concentrations are controlled by the relative rates of molecular diffusion from the rock matrix and advection along the fracture flow paths. Hushing has thus been most effective near the water table. If the exponential decrease in contaminant concentrations continues, water in Bear Creek will meet drinking water standards by 2012: regardless of any remedial action, contaminants will remain in the rocks for many years.  相似文献   

6.
7.
8.
9.
10.
A nonlinear model of the decomposition of a multicomponent contaminant is developed with allowance made for the distribution of components over their reactivity. Model application is illustrated by the analysis of published empirical data on organic matter biodegradation in water column and bottom sediments, in an activated-sludge bioreactor, and the biological absorption and enzymatic destruction of organic matter by macrophytes. Photodestruction, chemical destruction, and sedimentation are also considered. The nonlinear model is compared with a first-order reaction equation.__________Translated from Vodnye Resursy, Vol. 32, No. 3, 2005, pp. 322–336.Original Russian Text Copyright © 2005 by Dolgonosov, Gubernatorova.  相似文献   

11.
Various types of models are being used to evaluate pesticide transport and transformation in the unsaturated zone. Model predictions can be used, for example, to develop alternative agricultural management strategies for pesticide use. However, intensive data requirements for transient models sometimes deter their use. Site-specific measurements are preferred, but existing data bases can be used as a source of required model parameters, especially weather and soil characteristics. These existing data bases make possible the use of models to predict leaching potential in a wide variety of environments.  相似文献   

12.
Percolation and Particle Transport in the Unsaturated Zone of a Karst Aquifer   总被引:14,自引:0,他引:14  
Recharge and contamination of karst aquifers often occur via the unsaturated zone, but the functioning of this zone has not yet been fully understood. Therefore, irrigation and tracer experiments, along with monitoring of rainfall events, were used to examine water percolation and the transport of solutes, particles, and fecal bacteria between the land surface and a water outlet into a shallow cave. Monitored parameters included discharge, electrical conductivity, temperature, organic carbon, turbidity, particle-size distribution (PSD), fecal indicator bacteria, chloride, bromide, and uranine. Percolation following rainfall or irrigation can be subdivided into a lag phase (no response at the outlet), a piston-flow phase (release of epikarst storage water by pressure transfer), and a mixed-flow phase (increasing contribution of freshly infiltrated water), starting between 20 min and a few hours after the start of recharge event. Concerning particle and bacteria transport, results demonstrate that (1) a first turbidity signal occurs during increasing discharge due to remobilization of particles from fractures (pulse-through turbidity); (2) a second turbidity signal is caused by direct particle transfer from the soil (flow-through turbidity), often accompanied by high levels of fecal indicator bacteria, up to 17,000 Escherichia coli /100 mL; and (3) PSD allows differentiation between the two types of turbidity. A relative increase of fine particles (0.9 to 1.5 μm) coincides with microbial contamination. These findings help quantify water storage and percolation in the epikarst and better understand contaminant transport and attenuation. The use of PSD as "early-warning parameter" for microbial contamination in karst water is confirmed.  相似文献   

13.
Analytical solutions for the water flow and solute transport equations in the unsaturated zone are presented. We use the Broadbridge and White nonlinear model to solve the Richards’ equation for vertical flow under a constant infiltration rate. Then we extend the water flow solution and develop an exact parametric solution for the advection-dispersion equation. The method of characteristics is adopted to determine the location of a solute front in the unsaturated zone. The dispersion component is incorporated into the final solution using a singular perturbation method. The formulation of the analytical solutions is simple, and a complete solution is generated without resorting to computationally demanding numerical schemes. Indeed, the simple analytical solutions can be used as tools to verify the accuracy of numerical models of water flow and solute transport. Comparison with a finite-element numerical solution indicates that a good match for the predicted water content is achieved when the mesh grid is one-fourth the capillary length scale of the porous medium. However, when numerically solving the solute transport equation at this level of discretization, numerical dispersion and spatial oscillations were significant.  相似文献   

14.
15.
16.
17.
18.
19.
The ability of seven hyperaccumulator macrophytes which grow naturally in the heavy metal contaminated channels of three different industries (Hindustan Aeronautical Ltd., Eveready Ltd., and Scooter India Ltd.) to accumulate heavy metals was recorded. All these industries use electroplating processes in their manufacturing and are located in the inner area of Lucknow City, U.P., India. Of the three industries monitored, effluent released from Eveready Ltd. contained the highest concentration of heavy metals. In general, accumulations of heavy metals depend upon the plant species and the metal concentration in the media. All plant samples showed heterogeneous metal accumulations, except for Fe or Cd. It was observed that some plant species accumulated high level of metals, e. g., Eichhornnia crassipes for Fe (4052.44 μg/g), Mn (788.42 μg/g), and Cu (315.50 μg/g), and Spirodela polyrhiza for Cd (12.75 μg/g), Pb (20.25 μg/g), and Cr (128.27 μg/g), even when the metal concentrations were not high in the effluent. In summary, these two plants were found to be the best accumulators at each contaminated site. The results will be helpful in the selection of plant species which can be used as bioaccumulators or bioindicators.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号