首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The variations of current circulation, salt intrusion, and vertical stratification under different river flow and wind conditions in the Pamlico River Estuary (PRE) were investigated in this paper using a three-dimensional numerical model. The model was calibrated and verified against water level variation, temperature, and salinity variations during 2003 and 2001, respectively. Eight sensitivity tests were conducted with different river flow and wind conditions specified in the model. Model results show that salinity intruded further upstream under scenarios with low flow, downriver local wind, and remote-wind-caused water level set-up conditions. In contrast, the responses of salinity stratification to different environmental forcing functions were different in different portions of the estuary. Salinity stratification was enhanced under high flow condition at the lower part of the estuary, under upriver wind near the river mouth, under downriver wind at the upstream to middle portion of the estuary, and under remote-wind-caused water level set-up condition at the majority of the estuary except near the river mouth. Model results also show that across-channel wind tended to reduce salt intrusion and salinity stratification in the PRE through increased vertical mixing.  相似文献   

2.
The concept of age of water (AW) is applied to the Chesapeake Bay to investigate the long-term transport properties for dissolved substances. A real-time calibrated hydrodynamic Chesapeake Bay model in 3 Dimensions (CH3D), employing a boundary-fitted curvilinear grid, is used for the study. The long-term transport properties, represented by AW, are investigated under the conditions of low river inflow of 1995 and high river inflow of 1996, as well as for constant mean inflows. The influences of freshwater, density-induced circulation, and wind-induced transport on age distribution have been investigated. Model results show that river inflows, wind stress, and density-induced circulation play important roles in controlling the long-term transport in the Bay. The model results shows that it requires 120–300 days for a marked change in the characteristics of the pollutant source discharged into the Bay from the Susquehanna River to affect significantly the conditions near the mouth under different hydrodynamic conditions. An increase of river discharge results in increases of downstream residual current and gravitational circulation, and thus reduces AW. The density-induced circulation contributes to the transport substantially. The dissolved substances discharged into the Bay are transported out of the Bay more rapidly when the estuary becomes more stratified. Southeasterly and southwesterly winds have strong impacts on the transport compared to the northeasterly and northwesterly winds. The former increases lateral and vertical mixing significantly. Consequently, the gravitational circulation is reduced and the transport time is increased by 50%. The model results provide useful information for understanding the long-term transport processes in the Bay.  相似文献   

3.
The influence of wind on the water age in the tidal Rappahannock River   总被引:1,自引:0,他引:1  
Wind plays an important role in regulating mixing/stratification, estuarine circulation, and transport timescale in estuaries. A three-dimensional model was used to investigate the effect of wind on transport time by using the concept of water age (WA) in the tidal Rappahannock River, a western tributary of the Chesapeake Bay, USA. The model was calibrated for water level, current, and salinity. A series of experiments regarding the effects of wind on WA was conducted under various dynamic conditions. The effect of wind on transport timescale depends strongly on the competition between the wind and buoyancy forcings, and on the pre-status of the circulation. A down-estuary wind generally decreases WA along the estuary. An up-estuary wind increases WA substantially because it changes the vertical mixing and estuarine circulation more significantly. When the buoyancy forcing increases, the up-estuary wind effect decreases whereas the down-estuary wind effect increases. A 2-day period wind pulse with a maximum speed of 15 m s−1 can alter WA for 3 days; but the wind influence on WA lasts up to 40 days in the simulation. Both local and non-local wind forcings alter WA distribution. The local wind enhances vertical mixing and changes the gravitational circulation in the downstream portion of the estuary whereas it enhances transport in the freshwater portion of the estuary. Consequently, the local wind has a significant impact on WA distribution. In contrast, the non-local wind does not change the gravitational circulation significantly by imposing setup (setdown) of water level at the open boundary, resulting in a lesser impact on WA distribution.  相似文献   

4.
Observations of two small estuaries in Cape Cod, U.S.A. indicate large variations in salinity structure that are forced by variations in along-estuary wind stress. During onshore winds, the estuarine circulation is reduced, and the along-estuary salinity gradient increases as freshwater accumulates. During offshore winds, the surface outflow is enhanced, freshwater is flushed out of the estuary, and the along-estuary salinity gradient becomes weak. Constrictions block the wind-induced flushing, resulting in strong salinity fronts across the constrictions. The residence time of one of the estuaries varies by more than a factor of three in response to variations in wind-induced flushing. The other estuary has little variation of flushing associated with winds, due to a constriction at the mouth that inhibits the wind-induced exchange. The strong influence of winds on the flushing of these estuaries is due in part to their shallow depths, which accentuates the influence of wind stress relative to the effects of the horizontal density gradient. In addition, the residence times of the estuaries are comparable to the time scale of wind forcing, allowing large changes in water properties during wind events.  相似文献   

5.
珠江口的黏性泥沙输运对区域海洋工程和河口海洋环境有着重要的影响。本文利用SELFE模型,针对珠江河口海域建立了一个采用非结构三角形网格的三维斜压水动力模型,可耦合模拟海流、潮流及风海流水动力环境,并在此基础上开发了包括底床模块的黏性泥沙输运模型。模拟结果与实测值验证较好,再现了丰水期珠江河口的泥沙输运特征以及最大浑浊带的变化和分布特点。研究表明,丰水期珠江口悬沙质量浓度西侧大于东侧,泥沙主要来自河口上游。河口浅滩上会形成最大浑浊带,最大质量浓度可达0.5 g/L。珠江口最大浑浊带的形成主要受潮动力、重力环流及泥沙再悬浮和沉积过程影响,其中泥沙再悬浮和沉积过程对中滩的最大浑浊带影响显著,而重力环流作用对西滩的最大浑浊带影响显著。  相似文献   

6.
随着全球气候变暖加剧, 台风强度和强台风数量不断增加, 加剧了磨刀门水道咸潮灾害的变化形势。本文采用SCHISM(semi-implicit cross-scale hydroscience integrated system model)模型建立磨刀门水道三维水流盐度数值模型, 分析台风路径对磨刀门水道盐水入侵的影响。选取以“纳沙”为代表的西径型台风和以“天兔”为代表的东径型台风, 发现二者对盐度输运和层化过程的动力响应具有差异性。东径型台风导致外海减水, 平流通量向海增大; 而西径型台风引起外海增水, 逆转了原本向口外输出盐度的平流通量, 会引起严重的盐水入侵。台风不仅引起外海的增减水效应, 还带来强劲的局地风作用, 对水道流速和盐度分布产生重要影响。在西径型台风下, 顺河口向上游的风会减弱盐淡水分层, 并加强平流项的向海输出; 而在东径型台风下, 一定强度顺河口向下游的风加强盐淡水分层, 但当风速过强时, 则会削弱盐淡水分层。  相似文献   

7.
Weather in the North Gulf of Alaska is characterized by a high frequency of deep synoptic-scale low-pressure systems, especially during the cold season. The strong pressure gradients of these storms interact with the extremely rugged terrain of the coastal mountains to produce a variety of channeled flows. These surface wind regimes are not well documented in the scientific community, due to the paucity of observations. Modeling of these phenomena in regions of complex terrain is of great interest to those working with hydrodynamic, wave, and pollutant transport models in coastal and shelf areas. Such models, when coupled with ocean and coastal-ecology counterparts, give a broad view of the role surface winds play in shaping local coastal marine ecosystem in this region. This paper presents a climatology of simulated low-level wind jets over the domain of Cook Inlet and Shelikof Strait along Alaska's south-central coast. Daily simulations using the RAMS model were conducted in a 36-h forecast mode for the cold-season period 10/1/03 to 3/31/04. Systematic analysis of the resulting simulated low-level wind field makes it possible to characterize these jets and gap flows in spatial and temporal detail. The comparison between the RAMS winds and the Synthetic Aperture Radar (SAR)-derived winds when available verifies the existence of these wind jets and the capability of the model to simulate these cases. Clearly, the results of a study in this region depend on the fidelity of the model at these scales (O[5 km]). The SAR comparisons attempt to help establish this. From the 6 months of simulations over Cook Inlet and Shelikof Strait, the low-level wind jets are classified into 10 different regimes by location and orientation. These regimes are categorized into four more general groups: cross-channel westerly, easterly, and up and down Inlet flows. The nature of a particular regime is largely a function of pressure gradient orientation and local topography. Jets in the same group have a similar occurrence distribution with time. Some form of jet occurred in the study region almost daily each month of the period, with December 2003 having the highest frequency of wind jets.  相似文献   

8.
本文利用高分辨率数值模型,以2001年秋季为例,详细分析了影响坦帕湾水交换的三种因素:潮汐、河流和风。论文共设置了三组实验,驱动力分别为潮汐,潮汐和河流,潮汐、河流和风。模拟结果显示:只有潮汐作用时,由于坦帕湾潮汐较弱,潮程较短,坦帕湾与其临近海域的水交换主要发生在湾口附近;当潮汐和河流共同作用时,由于河流和湾口海水盐度的不同形成了水平密度梯度,在其产生的水平密度梯度力的作用下,坦帕湾形成了表层流向湾外、底层流向湾内的重力环流,从而加强了坦帕湾跟其临近海域的水交换;由湾内指向湾外方向(2001年秋季平均)的风应力加强了流向湾外的表层流,同时水位梯度力发生了反转,变成了由湾口指向湾顶,这加强了流向湾内的底层流,表层流和底层流的加强最终促进了坦帕湾跟其临近海域的水交换;在航道处,水深较深瑞利数较大,该处的重力环流较强,这使得相对于两侧的浅水区,航道处的水交换能力较强。此外,文章还分析了坦帕湾水交换的空间差异,在Old Tampa Bay的西侧和北侧,滞留时间最长,水交换能力最弱。为减少海洋生态灾害发生,今后应重点加强对该地区的生态环境保护。  相似文献   

9.
Tidal measurements and a depth-averaged 2D model are used to examine wave progression and circulation in a long, shallow, micro-tidal lagoon in Sri Lanka. Ranges and phase lags for different tidal constituents are used to calibrate the model. A single drag coefficient, Cd = 0.0032, gives almost perfect agreement with data. Current measurements are used for validation of the model. The lagoon tide consists of a combination of progressive and standing waves, where progressive waves dominate in the outer part and standing waves in the inner. A Lagrangian based particle-tracking method is developed to study tidally and wind induced residence times. If tides were the only factor affecting the residual circulation, the residence time inside the narrowest section would be approximately 100 days. Steady winds (of typical monsoon average) decrease the residence times to 60–90 days. Estuarine forcing due to net freshwater supply is not modelled (due to lack of reliable runoff data), but independent, long-term salinity observations and calculations based on volume and salt conservation during periods of negligible freshwater supply (the lagoon is seasonally hypersaline) indicate residence times ranging from 40 to 80 days. Model derived residence times based on tides alone represent a minimum exchange. Even weak forcing, through winds, excess evaporation or freshwater supply efficiently reduces residence times.  相似文献   

10.
A quasi-linear model for determining the aerodynamic drag coefficient of the sea surface and the growth rate of surface waves under a hurricane wind is proposed. The model explains the reduction (stabilization) in the drag coefficient during hurricane winds. This model is based on the solution of the Reynolds equations in curvilinear coordinates with the use of the approximation of the eddy viscosity, which takes into account the presence of the viscous sublayer. The profile of the mean wind velocity is found with consideration for nonlinear wave stresses (wave momentum flux), whereas wave disturbances induced in air by waves on the water surface are determined in the context of linear equations. The model is verified by comparing the calculation results with experimental data for a wide range of wind velocities. The growth rate and drag coefficient for hurricane winds are calculated both with and without consideration for the shortwave portion of the windwave spectrum. On the basis of calculations with the quasi-linear model, a simple parametrization is proposed for the drag coefficient and the growth rate of surface waves during hurricane winds. This model is convenient for use in models of forecasting winds and waves.  相似文献   

11.
通过建立水动力学模型、物质输运模型和年龄模型,对渤海辽东湾潮汐驱动下的水动力状况和污染物输移扩散过程进行了数值模拟研究。结果表明,辽东湾海域入海径流对辽东湾整体流场和水交换过程影响不大,其主要影响集中在河口附近海域。在潮汐的驱动下,辽东湾内形成了复杂的环流结构,辽东湾南北海域分别存在顺时针、逆时针的环流,而辽东湾湾口又存在逆时针环流,使得水交换能力较弱,对辽东湾向外海的物质输运产生不利影响,湾顶附近海域的物质主要通过扩散过程与外海进行交换。年龄模型的计算结果表明,辽东湾河流入海污染物在河口附近停留时间较长,向远区的输运需要较长时间。入海污染物的影响具有局地性,对局部海域水质尤其是辽东湾湾顶的水质会产生不利影响。  相似文献   

12.
Using surface wave parameters and a high-resolution surface wind field derived from Synthetic Aperture Radar (SAR) image mode data, we have investigated the spatial modification of SAR spectra. We found a surface wind front, formed by sheltering effect of the Kii Mountains, separating high and low wind-speed regions in a sea area of an European Remote-Sensing Satellite (ERS) SAR image off the Kii Peninsula. A swell system propagating westward dominates in the whole sea area covered by the SAR image. The wavelength retrieved from the SAR spectra in the sheltered (non-sheltered) region is longer (shorter). Since the distributions of surface wave parameters and surface wind speed are so well correlated, it can be considered that the SAR spectra are modified differently by the sheltered/non-sheltered surface winds. In order to examine the phenomena observed on the SAR image we have estimated the wind-wave SAR spectrum using the SAR surface winds, a wind-wave spectrum model and a SAR wave imaging model. We assume that the SAR spectrum related to the swell is homogeneous in the area imaged by SAR, and that the SAR spectrum of the wind-wave components causes the observed SAR spectra modification. Differences between the observed SAR spectra and the estimated SAR spectra in the sheltered and non-sheltered regions agree well with each other. In the present case, it can be concluded that the observed SAR spectra can be regarded as a linear combination of the wind-wave SAR spectra and the swell SAR spectra.  相似文献   

13.
应用非结构网格有限体积海洋模型对平潭竹屿湾水交换能力和溢油扩散开展了数值模拟.水交换能力计算表明,竹屿湾大部分水域水体半交换时间小于1.0 d,平均滞留时间约3.0 d左右,水体冲洗时间为15.0 d,水交换能力较强. 48 h溢油扩散计算结果表明,油粒子扫海范围及运动路径与油粒子的释放时刻及风的作用紧密相关.静风条件...  相似文献   

14.
Surface winds from the UK Meteorological Office mesoscale (12 km grid) atmospheric model have been used to define the wind at a location in Liverpool Bay during 1997–2001. Winds from the SW (centred on 240°) with a speed of about 10 m/s (20 knots) were the most frequent, although weaker winds from the SE were also common. The wind spectra were red in character and showed no evidence for a peak at the synoptic (2–5 day) time scale; however, a zero-up-crossing analysis suggested a dominant periodicity at 3.1 days, and at this time scale the winds were spatially coherent over a distance of 300 km. A wind direction transition matrix was derived to quantify the probability with which the wind changed between two specified directions. This information was then used with an estimate of the mean duration of a wind event to compute a stochastic wind time series that contained a similar energy level, periodicity, and direction variability to the archived wind data. The archived and stochastic winds were then used in 1000 oil spill contingency simulations during which estimates of the mean and minimum times taken for oil to reach the coastline, and the percentage of the oil impacting selected sites were computed. The stochastic winds provided more realistic results, when compared against those derived using the wind archive, than those obtained using a wind rose representation of the winds. The derivation and use of a stochastic wind time series has application to a range of modelling studies.  相似文献   

15.
COARE算法估算海气界面热通量的个例对比分析   总被引:1,自引:1,他引:1  
本文先对NCEP分析风、QSCAT/NCEP混合风、MM5中尺度模式分析风场进行了比对分析,发现具有高分辨率的QSCAT/NCEP混合风资料给出的高风速数值较好,但给出的高风速开始时间相对较早;NCEP分析风资料给出的高风速数值明显偏小;MM5分析风场较为可信,只不过模拟的高风速数值还是相对偏小.使用COARE算法(版本3.0)计算了四种资料情况下的渤、黄海海域一次冷空气大风过程的海表面湍流热通量,并与MM5诊断分析结果进行了对比分析.结果发现相同资料情况下,MM5结果跟COARE算法所算海气热通量(包括感热和潜热)在区域分布和时间变化规律上均较为一致,中、低风速情况下,结果比较接近;但是高风速情况下两者差异显著.  相似文献   

16.
In order to validate wind vectors derived from the NASA scatterometer (NSCAT), statistical distributions of wind speeds and directions retrieved by the NSCAT-2 geophysical model function have been investigated by comparison with wind data retrieved by the other model functions such as SASS-2 and NSCAT-1 and those derived from the wind analyses of the European Centre for Medium Range Weather Forecasts (ECMWF). The histogram of the NSCAT-2 wind speeds has a similar shape to those of the ECMWF and NSCAT-1 winds, but is slightly shifted toward higher wind speed to adjust negative bias which has been found in the NSCAT-1 winds by previous buoy comparison studies. Variations of the standard deviation of the NSCAT-2 wind speeds with incidence angle are greater than those of the ECMWF and NSCAT-1 winds. The frequency distribution of wind directions relative to spacecraft flight direction has been calculated to assess the self-consistency of the wind directions. It was found that the NSCAT-2 wind vectors exhibit systematic directional preference relative to antenna beams. This artificial directivity is considered to be caused by imperfections in the antenna beam balancing and the geophysical model function. The skill of the ambiguity removal procedure is discussed as a function of wind speed and incidence angle, and is found to be improved compared to the NSCAT-1 winds, especially at high incidence angles. It is concluded that systematic errors in wind directions might be increased by modifications from NSCAT-1 to NSCAT-2, though the wind speed bias is removed and the ambiguity removal skill is improved.  相似文献   

17.
Water transport at subtidal frequencies in the Marsdiep inlet   总被引:1,自引:0,他引:1  
Long-term time series of subtidal water transport in the 4-km wide Marsdiep tidal inlet in the western Dutch Wadden Sea have been analysed. Velocity data were obtained between 1998 and the end of 2002 with an acoustic Doppler current profiler that was mounted under the hull of the ferry ‘Schulpengat’. Velocities were integrated over the cross-section and low-pass filtered to yield subtidal water transport. A simple analytical model of the connected Marsdiep and Vlie tidal basins was extended to include wind stress and water-level and density gradients and applied to the time series of subtidal water transport. In accordance with the observations, the model calculates a mean throughflow from the Vlie to the Marsdiep basin. The mean water transport through the Marsdiep inlet consists of an export due to tidal stresses and freshwater discharge and an import due to southwesterly winds. In contrast, the variability in the subtidal water transport is mainly governed by wind stress. In particular, southwesterly winds that blow along the main axis of the Marsdiep basin force a throughflow from the Marsdiep to the Vlie basin, whereas northwesterly winds that blow along the main axis of the Vlie basin force a smaller mean water transport in the opposite direction. The contribution of remote sea-level change to the water transport, or coastal sea-level pumping, has been found to be much smaller than the contribution of local wind stress.  相似文献   

18.
A model for the Zambezi River plume, the largest on the Indian Ocean coast of Africa, is presented and the results of experiments with different discharges and wind forcings are analysed. Although the river plays an important role in the southern African economy through power generation on large dams, artisanal fisheries, and frequent flooding events that impact greatly on local populations, the plume has not been well studied. Observations during the period 2004–2007, when the winds were mainly easterly or south-easterly, indicated that the plume waters can extend both downstream (equatorwards) and upstream (polewards) of the Zambezi Delta with a recirculating bulge near the river mouth. The model is constructed using the Regional Ocean Modeling System (ROMS), with a 40-km long, 3-km wide river discharging into a rectangular coastal ocean with a linearly sloping bottom. When the model is forced only by a constant river discharge of 1 000?m3 s?1 (typical of observed discharge amounts in summer), the Kelvin and Froude numbers for the resulting plume imply a ‘large-scale’ buoyant discharge with a coastal current that is close to being in geostrophic balance with the across-shore pressure gradient and a recirculating ageostrophic bulge near the mouth. The distributions of the bulge and plume waters are found to be relatively insensitive to the discharge amount. Under constant wind forcing, the plume distribution changes dramatically. Northerly and easterly winds produce the largest changes with the latter able to deflect the plume up to 180° due to Ekman drift. When sea breeze-like winds are imposed, accumulation of water in the bulge occurs with substantial spreading upstream. Stronger sea breezes lead to less downstream spreading of the plume than gentle winds. When the winds are mainly across-shore, Ekman drift dominates, but the dynamics become almost geostrophic when the winds are roughly aligned to the coast. These experiments suggest that the Zambezi River plume is sensitive to the winds on diurnal to synoptic time-scales.  相似文献   

19.
French meteorological data provide some information on wind direction since 1890. Since 1951, wind speed and direction have been digitised every three hours in many stations. The Brest tide gauge has recorded hourly sea levels since 1860, thus enabling hourly surges to be calculated and studied. This set of data has been organised into a data base and analysed in order to recognize evolution and trends. Strong winds are increasing in frequency in the western part of Brittany and decreasing in Normandy and Pays de Loire. Surges associated with these winds do present a slight decreasing trend. A more precise analysis allows to distinguish between southerly winds, which are slightly decreasing, and strong winds from other directions, which display a more or less important increase in frequency. The analysis shows trends that may be linked to the global circulation pattern, and that result in a new spatial distribution of winds on western France.  相似文献   

20.
The production and distribution of biological material in wind-driven coastal upwelling systems are of global importance, yet they remain poorly understood. Production is frequently presumed to be proportional to upwelling rate, yet high winds can lead to advective losses from continental shelves, where many species at higher trophic levels reside. An idealized mixed-layer conveyor (MLC) model of biological production from constant upwelling winds demonstrated previously that the amount of new production available to shelf species increased with upwelling at low winds, but declined at high winds [Botsford, L.W., Lawrence, C.A., Dever, E.P., Hastings, A., Largier, J., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259]. Here we analyze the response of this model to time-varying winds for parameter values and observed winds from the Wind Events and Shelf Transport (WEST) study region. We compare this response to the conventional view that the results of upwelling are proportional to upwelled volume. Most new production per volume upwelled available to shelf species occurs following rapid increases in shelf transit time due to decreases in wind (i.e. relaxations). However, on synoptic, event time-scales shelf production is positively correlated with upwelling rate. This is primarily due to the effect of synchronous periods of low values in these time series, paradoxically due to wind relaxations. On inter-annual time-scales, computing model production from wind forcing from 20 previous years shows that these synchronous periods of low values have little effect on correlations between upwelling and production. Comparison of model production from 20 years of wind data over a range of shelf widths shows that upwelling rate will predict biological production well only in locations where cross-shelf transit times are greater than the time required for phytoplankton or zooplankton production. For stronger mean winds (narrower shelves), annual production falls below the peak of constant wind prediction [Botsford et al., 2003. Wind strength and biological productivity in upwelling systems: an idealized study. Fisheries Oceanography 12, 245–259], then as winds increase further (shelves become narrower) production does not decline as steeply as the constant wind prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号