首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
伴随南海夏季风爆发的大尺度大气环流演变   总被引:39,自引:11,他引:39  
李崇银  屈昕 《大气科学》2000,24(1):1-14
主要基于美国NCEP和NCAR的再分析资料(1980~1996年),针对南海夏季风爆发日期进行合成分析,研究了伴随南海夏季风爆发的大尺度大气环流演变。其结果清楚地表明伴随南海夏季风爆发,南亚和东南亚地区的对流层低层风场、对流层高层位势高度场以及大气湿度场和垂直运动场都有极显著的变化。南亚和东南亚850 hPa上涡旋对的发展和活动以及500 hPa副高从南海地区的东撤对南海季风爆发起着重要作用。伴随南海夏季风的爆发,在孟加拉湾到南中国海一带整层湿度和500 hPa垂直上升运动都出现了极明显的增加。对流层高层和对流层低层环流演变的特征也清楚表明,南海夏季风爆发既是全球环流冬夏演变的一个部分,又有显著的区域性特征。本文还指出南海夏季风在北部比中部和南部早建立的结论依据不足,进而补充给出了亚洲季风爆发日期示意图。  相似文献   

2.
利用1979--2008年NCEP/NCAR逐日再分析资料和向外长波辐射资料讨论了4-5月南亚高压在中南半岛上空建立的年际变化特征及其与亚洲南部夏季风的关系。发现南亚高压建立偏早年其建立过程时间长,中南半岛高空反气旋环流强,建立开始前位于菲律宾群岛以东洋面上空的反气旋环流中心位置较为偏西;偏晚年南亚高压建立过程时间短,中南半岛高空反气旋环流弱,建立开始前西太平洋上空无闭合的反气旋性环流中心。南亚高压建立的早晚与中南半岛地区对流建立发展关系密切,当中南半岛地区对流建立发展较早时,南亚高压建立较早;反之,对流建立发展偏晚时,南亚高压建立偏晚。南亚高压建立早晚年,亚洲南部夏季风的爆发存在明显差异。南亚高压建立偏早年,孟加拉湾东部一中南半岛夏季风和南海夏季风爆发早;建立偏晚年,孟加拉湾东部一中南半岛夏季风和南海夏季风爆发晚,因此南亚高压在中南半岛上空建立的早晚对后期亚洲南部夏季风的爆发具有较好的指示意义。  相似文献   

3.
海陆分布和地形对1998年夏季风爆发的热力影响   总被引:8,自引:9,他引:8  
应用1980-1995年5天平均的CMAP降水资料、美国NMC850hPa风、卫星反演的向外长波辐射(OLR)和上部对流层水汽亮温(BT)等资料分析比较了南海夏季风爆发前后的基本特征。结果发现:BT能够反映南海夏季风的爆发及其与周围地区降水的关系,但局地降水信息的反映不够具体;OLR能够比较好的反映热带海洋上的降水,但陆地上的低值OLR可能受到地形的影响,仅仅850hPa风场不能完全确定夏季风的爆发。南海季风转换区域定义在南海的中北部比较合适,这是因为南海夏季风爆发前就存在着长年位于南海南部的带海洋对流性雨带;南海夏季风爆发后西南季风气流和季风雨带从印度洋经孟加拉湾和南海伸向西北太平洋,开始了南亚和东亚夏季风的爆发过程。  相似文献   

4.
1998年南海夏季风的爆发与大气季节内振荡的活动   总被引:42,自引:1,他引:41  
利用NCEP再分析及TBB资料,系统地研究了1998年南海夏季风爆发与大气季节内振荡活动的关系,结果表明,1998年南海夏季风爆发与南海及其临近地区30~60天低频振荡的发展有着极为密切的关系。南海及临近地区30~60天低频纬向风及低频动能的时间-经(纬)度剖面明显地反映出该地区的大气季节内振荡的加强是由于其临近地区(菲律宾以东)30~60天低频气旋发展及其向西扩展的结果,与孟加拉湾地区低频气旋的活动关系不大;同时,我们也看到了夏季风爆发前后南海地区为850hPa低频动能的大值区,而200hPa上为一弱区,反映了1998年南海夏季风爆发期间该地区大气季节内振荡有上弱下强的垂直分布特征。进一步分析表明,南海及其临近地区大气季节内振荡的活动主要为局地振荡型,夏季风爆发后才有明显的向北传播,成为南海夏季风爆发影响东亚大气环流和天气的重要途径之一。另外,1980和1986年南海地区30~60天低频动能的发展特征与1998年的类似,说明了南海及其临近地区大气季节内振荡的局地振荡特征并不是1998年所特有的,它对南海夏季风爆发有普遍的重要作用。  相似文献   

5.
南海夏季风爆发的一般特征是南亚高压移至中南半岛北部;西太平洋副热带高压连续向东撤出南海地区,移到120°E以东的热带洋面上;高(低)空东北(西南)气流占据南海大部分地区,相应的105°E附近的越赤道气流建立,南海季风槽形成并同时伴有对流降水的发展和温、湿等要素的突变。国家气候中心的监测表明,2007年南海夏季风于5月第5候爆发。该年季风爆发后,虽然源自热带地区的低空西南气流迅速占据南海上空,高空盛行东北气流,且南亚高压西移至中南半岛上空,但对流、高度场以及降水场的突变特征均很不明显,表现为季风爆发后南海上空的对流依然偏弱,副高没有马上撤离南海,同时华南地区的降水量也没有迅速增强。因此,2007年南海夏季风爆发前后大气环流的变化特征具有非典型性。  相似文献   

6.
为了分析南海夏季风活动不同阶段的大气环流特征,引入南海区域(105~120°E,5~20°N)平均高(200 hPa)低(850 hPa)层风场和向外长波辐射(OLR)作为南海夏季风指数。分析结果表明这些指数的组合可以较好地反映南海夏季风季节内以下时间尺度的活动情况。当南海地区低层平均为西南风、高层为东北风且OLR异常(OLRa)小于零时,南海夏季风处于活跃期,此时副高远离南海,南海区域对流强盛,有明显的季风槽;当南海地区低层为西南风,高层为东北风,但是OLRa大于零时,南海夏季风处于不活跃阶段,此时副高远离南海,虽然南海地区对流不活跃,但是季风环流依然存在且向北扩展,使得华南-江南对流活跃;当南海地区风场为其他情况时,此时不论对流强弱,南海夏季风处于中断期,南海或者受副高控制,或者受热带气旋影响,季风环流在南海地区中断。利用定义的南海夏季风活动指标对2011年和2012年南海夏季风活动进行分析,结果指出这两年南海夏季风活跃期较长,季节内对流北传事件一般发生在南海夏季风活跃期或活跃期向非活跃期的转换期,而中断期即使有强对流发生,也不会向北传播。分析了这两年中断和不活跃情况下的大气环流分布,进一步验证了定义的南海夏季风活动指标的实用性。  相似文献   

7.
使用NCEP/NCAR再分析资料对2019年高度场、OLR场和风场进行了环流分析,计算假相当位温、西南风和垂直风切变等物理量,并且使用Lanczos滤波器滤波后进行分位相讨论了ISO与2019年南海夏季风爆发的关系。结果表明,2019年南海夏季风爆发的日期为5月6日,其爆发偏早。在5月6日后具体特征表现为:200 hPa高空急流范围扩大,强度增强;副热带高压不断东撤,南海地区不再盛行西南风;850 hPa上南海地区盛行西南风且对流大面积爆发;假相当位温随高度变化的特征显示出对流增强的趋势。为了探讨2019年南海夏季风爆发与ISO的关系,进一步研究发现2019年存在10~25 d大气季节内振荡。一方面,ISO有利于2019年爆发时间偏早,另一方面,南海夏季风爆发后从孟加拉湾—印度洋东部低频对流多次随时间向东北传播,经历发展—最强—减弱—抑制—最弱—恢复的6个阶段,有利于南海地区偏西风增强以及对流活动的爆发维持,使得其爆发强度增强。  相似文献   

8.
余荣  江志红  马红云 《大气科学》2016,40(3):504-514
本文利用NCAR开发的CAM5.1(Community Atmosphere Model Version 5.1)模式,针对我国东部大规模城市下垫面发展对南海夏季风爆发的影响进行了数值模拟研究。结果表明我国东部大规模城市群发展可能使得南海夏季风提前1候爆发;机理分析表明:在南海夏季风爆发之前,中国东部城市群发展引起的陆面增温,使得南海及其附近地区南北温差提前逆转、中国东部区域海平面气压降低,导致中南半岛到南海地区西南气流加强,中南半岛到南海地区降水增加,而凝结潜热垂直变化强迫出的异常环流,促进了南亚高压的加强及提前北跳,相伴随的高层抽吸作用有助于季风对流的建立和西太平洋副高的减弱东撤,从而形成了有利于南海夏季风爆发的高低层环流条件,导致南海夏季风提前爆发。另外,观测结果表明1993年之后南海夏季风爆发的日期相对上一个年代明显提前约2候,城市化快速发展阶段与南海夏季风爆发的年代际变化存在时间段的吻合,表明城市下垫面发展可能是南海夏季风提前爆发的原因之一。  相似文献   

9.
南海夏季风爆发的数值预报模拟实验   总被引:5,自引:0,他引:5  
1998年5月21日00时(UTC),对流层上部200hPa的南亚反气旋中心位于(16oN,94oE)附近,850hPa南海的中南部仍为副热带反气旋控制;到21日12时,200hPa的南亚反气旋中心迅速移到(21oN,94oE)附近,同时850hPa的南海副热带反气旋减弱东撤,南海的中南部由东南风转变为西南风,南海夏季风爆发。本文利用美国国家大气研究中心和宾西法尼亚州大学联合研制的中尺度模式(MM5V2)模拟预报这一过程,同时通过敏感性实验研究了区域边界条件和水平分辨率对季风预报模拟实验的影响。  相似文献   

10.
朱敏  张铭 《气象科学》2004,24(3):261-268
本文利用1983~1992年的NCEP资料.对南海夏季风爆发做经验正交函数分解,分析了主要模态的时空变换特征。结果表明:太阳辐射北移,是南海夏季风爆发的最重要的因素。南海夏季风爆发前后,在典型季风区850hPa上东西风有一次重大调整。南半球中高纬西风带槽脊振幅的增强和北半球副热带系统经向环流的加大是南海夏季风爆发的重要原因。西太平洋副高的迅速减弱东撤,导致南海夏季风的爆发。  相似文献   

11.
关于南海夏季风建立的大尺度特征及其机制的讨论   总被引:25,自引:3,他引:25  
使用1998年南海季风试验期间高质量资料和NCEP/NCAR40年再分析资料分析了南海季风建立前后的大尺度环流特征和要素的突变及爆发过程。发现南亚高压迅速地从菲律宾以东移到中南半岛北部,印缅槽加强,赤道印度洋西风加强并向东向北迅速扩展和传播,以及相伴随的中低纬相互作用和西太平洋副高连续东撤是南海夏季风建立的大尺度特征,与此同时,亚洲低纬地区的南北温差和纬向风切变也发生相应的突变。数值实验结果指出,印度半岛地形的陆面加热作用在其东侧激发的气旋性环流对于印缅槽的加强有重要作用,并进而有利于南海夏季风先于印度夏季风爆发。  相似文献   

12.
中南半岛地区热力特征对南海季风爆发的可能影响及机理   总被引:10,自引:1,他引:10  
利用1998年5月1日-8月31日南海季风试验(SCSMX)产1980年1月-1995年12月NCEP/NCAR候平均再分析资料,分析1998年和多年平均情况下南海夏季风爆发期间中南半岛地区热力特征,揭示该地区热状况的异常与南海夏季风爆发之间的可能联系,从而讨论引起南海夏季风爆发的可能机制。结果发现,南海季风爆发前中南半岛附近地区存在较强的持续地面感知加热并具有显的低频振荡特征,低层大气在中南半岛地区出现较强的暖中心,由此导致局地强的水平温度梯度和位势高度梯度,有利于加强该地区的西南风。南海季风爆发前中南半岛地区低层出现较强的辐合风,高层出现较强的辐散风,这种低层强的辐合,高层强的辐射散配置有利于垂直运动的发展,降水的加强,进而触发南海季风的爆发。对多年平均资料的分析也证实了1998年南海季风爆发过程中所具有的特征,并进一步发现南海季风爆发前中南半岛地区850hPa温度是逐渐增加的,且增温幅度大于南海地区上空,由此加强了中南半岛与南海之间的温差。另外,比纬圈温度偏差和位势高度偏差的分析中发现,南海季风爆发期间南海和中南半岛地区的副高东撤与中南半岛地区的增温和孟加拉湾低槽的向东扩展有关。  相似文献   

13.
采用NCEP/NCAR再分析资料、FY2E-TBB及台站降水资料,对2011年南海夏季风爆发前后的环流特征进行分析。结果表明:2011年强对流活动由孟加拉湾扩展到南海地区,同时伴随着南亚高压移至中南半岛北部,西太平洋副热带高压向东撤出南海地区,南海夏季风于5月第4候(第28候)爆发;季风爆发后,印度-孟加拉湾季风槽形成,南海地区低空开始盛行西南气流,并伴有对流降水的发展和温、湿等要素的突变。随着季风活动的推进,我国雨带北抬,长江中下游一带进入梅雨期,出现降水大值区。通过分析发现长江中下游梅雨与南海夏季风均受副热带高压影响,且两者的强度为显著的负相关关系,梅雨开始时间与南海夏季风爆发时间呈显著的正相关关系。2011年南海夏季风偏弱,爆发时间偏早,长江中下游梅雨强度偏强,入梅时间异常偏早。  相似文献   

14.
Using the CCM3/NCAR, a series of numerical experiments are designed to explore the effect of ocean-land interlaced distributions of Africa-Arabian Sea-India Peninsula-Bay of Bengal (BOB)-Indo-China Peninsula-South China Sea on the formation of the Asian summer monsoon circulation (ASMC). The results show that the thermal difference between African or Indian Subcontinent and nearby areas including the Indian Ocean, Arabian Sea, and part of BOB is the primary mechanism that maintains the Indian monsoon circulation. In the experiment getting rid of these two continents, the Indian monsoon system (IMS) members, i.e., the Somali cross-equatorial jet (40°E) and the southwesterly monsoon over the Arabian Sea and BOB, almost disappear. Moreover, the Hadley circulation weakens dominantly. It also proves that Africa has greater effect than Indian Subcontinent on the IMS. However, the existence of Indo-China Peninsula and Australia strengthens the East Asian monsoon system (EAMS). The thermal contrast between Indo-China Peninsula and SCS, Australia and western Pacific Ocean plays an important role in the formation of the tropical monsoon to the south of the EAMS. When the Indo-China Peninsula is masked in the experiment, the cross-equatorial flow (105°E and 125°E) vanishes, so does the southwesterly monsoon usually found over East Asia, and EAMS is enfeebled significantly. In addition, the impacts of these thermal contrasts on the distribution of the summer precipitation and surface temperature are investigated.  相似文献   

15.
Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.  相似文献   

16.
亚洲季风季节进程的若干认识   总被引:4,自引:0,他引:4  
简要归纳了不同时期随着观测资料的更新对亚洲季风季节进程的若干认识。南海季风试验前,研究认识了东亚季风系统与南亚季风系统的区别。南海季风试验后,对季风进程有了更多的认识,江南副热带雨季开始于4月初,中印半岛热带雨季开始于4月底,南海热带雨季突然建立于5月中旬,都具有半年际的干湿转换。南海中部季风爆发后,亚洲季风在南亚、青藏高原东侧和东亚-太平洋地区全面爆发并由南向北推进。利用近年来高分辨率资料并考虑热带地区半岛陆海地形与热力的影响,认识到亚洲存在5个夏季季风槽与降水相联系的系统,它们分别是西南亚(阿拉伯海)夏季热带季风、南亚(孟加拉湾)夏季热带季风、东南亚(南海)夏季热带季风、西北太平洋夏季热带季风和东亚夏季副热带季风。  相似文献   

17.
中南半岛对流对南海夏季风建立过程的影响   总被引:14,自引:1,他引:13  
温敏  何金海  肖子牛 《大气科学》2004,28(6):864-875
利用RegCM2模式进行数值试验,得到中南半岛对流对北半球副高带断裂、进而对孟加拉湾对流建立具有重要影响,而孟加拉湾对流建立后激发的Rossby波列又是南海夏季风建立的主要因子之一.进一步分析中南半岛对流、副高带断裂及南海夏季风建立的年际变化,得到中南半岛对流的强弱(活跃的早晚)与副高带在孟加拉湾北部断裂及南海夏季风爆发的早晚有密切关系.它们还与海温异常及纬圈环流的变化相联系:当赤道中东太平洋海温偏暖(冷)时,Walker环流偏弱(强),中南半岛对流偏弱(强),副高带断裂偏晚(早),南海夏季风建立偏迟(早).  相似文献   

18.
By using the 40-year NCEP (1958-1997) grid point reanalysis meteorological data, we analyzed the inter-decadal variation on the climatic characteristics of the onset of South China Sea summer monsoon. The results are as follows. (1) There was great difference on the onset date of the SCS summer monsoon between the first two decades and the last two decades. It was late on the 6th pentad of May for the first two decades and was on the 4th and 5th pentad of May for the next two decades. (2) Except for the third decade (1978-1987), the establishment of the monsoon rainfall was one to two pentads earlier than the onset of the summer monsoon in all other three decades. (3) The onset of the SCS monsoon is the result of the abrupt development and eastward advancement of the southwesterly monsoon over the Bay of Bengal. The four-decade analysis shows that there were abrupt development of the southwesterly monsoon over the Bay of Bengal between the 3rd and 4th pentad of May, but there was great difference between its eastward movement and its onset intensity. These may have important effect to the earlier or later onset of the SCS summer monsoon. (4) During the onset of the SCS summer monsoon, there were great difference in the upper and lower circulation feature between the first two and the next two decades. At the lower troposphere of the first two decades, the Indian-Burma trough was stronger and the center of the subtropical high was located more eastward. At the upper troposphere, the northward movement of the center of subtropical high was large and located more northward after it landed on the Indo-China Peninsula. After comparison, we can see that the circulation feature of the last two decades was favorable to the establishment and development of the SCS summer monsoon.  相似文献   

19.
Summary Interannual variations of the summer monsoon onset over the South China Sea (SCS) have been studied using data from over seventeen years (1979–1995) of NMC global analysis and of Outgoing Longwave Radiation (OLR) observed with NOAA polar-orbitting satellites. It was found that the summer monsoon onset in the SCS occurs abruptly with a sudden change of zonal wind direction from easterly to westerly and an exploding development of deep convection in the whole SCS region in the middle of May. Based on the criteria defined in this paper for the SCS summer monsoon onset, the average onset date over the SCS from 1979 to 1995 is around the fourth pentad of May. The airflow and general circulation over the SCS changes dramatically after the onset. The ridge of the subtropical high in the western Pacific in the lower troposphere weakens and retreats eastward from the SCS region with an establishment of westerly winds over the whole region. During the SCS monsoon onset, the most direct impact in the vicinity of the SCS are the equatorial westerlies in the Bay of Bengal through their eastward extension and northward movement. An indirect influence on the SCS onset is also caused by the enhancement of the Somali cross-equatorial flow and the vanishing Arabian High over the sea; the latter may be a signal for the SCS onset. There are quite significant interannual variations in the SCS onset. In the years of a delayed onset, the most profound feature is that the easterly winds stay longer in the SCS than on average. Deep convection activities are suppressed. The direct cause is the abnormal existence of the western Pacific subtropical high over the SCS region. Moreover, compared to the average, the equatorial westerlies in the Bay of Bengal are also weaker in the years of a delayed onset. No significant changes for the cross-equatorial flow at 105 °E are observed for these years. It has also been found that the interannual variations of the SCS onset are closely related with the ENSO events. In the years of a delay, the Walker circulation is weaker, and the sea surface temperature (SST) anomalies in the western Pacific are negative. Received April 14, 1997 Revised July 11, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号