首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two grades of metamorphism, both subfacies of the greenschist facies of regional metamorphism, were mapped on the Araya Peninsula: 1. the quartzalbite-epidote-almandine subfacies, consisting mainly of a sequence of garnet and kyanite quartz-mica schists, interlayered with quartzites; and 2. the quartzalbite-muscovite-chlorite subfacies, which consists of chloritic phyllites, quartzmica schists and phyllites, metaconglomerates, calcareous quartz-mica schists, limestones and marbles, and calcareous epidote schists of volcanic origin. The two subfacies are separated by faults. The probable age of these rocks ranges from Triassic(?)-Jurassic to Lower and Middle Cretaceous. Serpentinites intrude rocks of the lower metamorphic grade, and are interpreted as tectonically emplaced. The foliation of these rocks is highly folded by mesoscopic folds, whose axes trend east-northeast and which are overturned to the south-southeast. Lineations parallel to the fold axes and thrusting to the south-southeast are common. These structures reflect a macroscopic structure of antiforms and synforms, all affected by a dominant north-northwest to south-southeast tectonic transport. A system of high-angle or vertical longitudinal faults crosses the peninsula from west-southwest to east-northeast. Evidence of recent strike-slip movement was found, although vertical movement has also been important along these faults. Two tectonic styles exist in the metamorphic rocks. The older one is characterized by compression and thrusting in a south-southeast direction. The younger one is represented by longitudinal faults oriented in an east-northeast direction, with vertical and strike-slip movement. They probably reflect the eastward movement of the Caribbean region with respect to South America.  相似文献   

2.
Geothermometry and geobarometry of 10 garnet–oligoclase zone schists in the Franz Josef–Fox Glacier area, Southern Alps, New Zealand, give temperatures ranging from 415 to 625°C and pressures from 5.2 to 9.2 kbar, indicating a T–P array of about 50°C/kbar and inferred peak temperature conditions over a c. 15-km-thick section at depths between c. 20 and 34 km. The present-day distribution of the schist samples implies that only about one-third of the original crustal section is now exposed.
The garnet–oligoclase zone schists represent the deeper part of a metamorphosed and deformed accretionary complex that was associated with late Palaeozoic–early Mesozoic subduction along the Gondwana continental margin. Partial uplift ( c. 0.2 m/Ma) and erosion of the complex during Jurassic–Cretaceous times (Rangitata uplift) was synchronous with D2 deformation and recrystallization, as recorded by the P–T array. Cenozoic (Kaikoura) uplift and exhumation of the schist since c. 30 Ma to form the Southern Alps was associated with oblique-slip movement on the Alpine Fault. The present-day position and steep eastward dip of isograds and D2 structures suggest considerable clockwise rotation during uplift associated with ductile attenuation and tectonic thinning by over two-thirds of the original schist sequence, largely due to simple shear along schistosity planes. As the schist generally shows only incipient greenschist facies retrograde recrystallization, an apparently complete (although contracted) prograde mineral sequence has been preserved by rapid uplift (>5 km/Ma) of hot rock and the effects of limited shear heating near the Alpine Fault.  相似文献   

3.
Earlier geological work in the Istanbul zone, western Pontide tectonic belt, has revealed the presence of extensive basement outcrops exposed underneath Palaeozoic and Mesozoic to Tertiary cover sequences. The basement of suspected Neoproterozoic age plays an important role in understanding the crustal accretion process in NW Turkey. We report the first results of a detailed Pb-Pb and U-Pb zircon study complemented by Nd-Sr whole rock and mineral data from basement rocks exposed in the Karadere valley, Safranbolu area. Five samples were selected for this study, comprising three metagranitoids and two metasediments. Zircon geochronology indicates that the metagranitoids were formed during Late Proterozoic pan-African magmatic events between 590 and 560 Ma. The rocks are of tonalitic and granitic composition and have low Nb/Y ratios and Ti contents, consistent with those of arc rocks. A continental arc setting is supported by their Sr and Nd isotope data that indicate a contribution of a mantle source as well as crustal assimilation during magma genesis. The metasediments can clearly be distinguished from the metagranitoids by their higher 87Sr/86Sr ratios and lower )Nd-values at 580 Ma, which supports the suggestion that the arc was underlain by mature continental crust. Zircons from the metasediments yield a range of Pb-Pb ages between 1,860 and 710 Ma. Thirty per cent of them fall between 890 and 710 Ma, possibly suggesting a derivation from Gondwana (Afro-Arabian) regions. A Sm-Nd garnet-whole rock analysis obtained on a metagranite gives an age of 559NJ Ma, which either reflects pre-metamorphic magmatic growth of garnet in a felsic melt or a syntectonic high-temperature metamorphic event. Uplift and cooling of the basement is further constrained by Rb-Sr biotite ages of 548-545 Ma. These lower Cambrian mineral ages demonstrate that the Istanbul zone was not thermally reactivated during the Hercynian, Cimmerian or Alpine orogeny, in contrast to its neighbouring tectonic zones, confirming its role as a suspect terrane in the modern western Pontide tectonic belt.  相似文献   

4.
The studied graphite-bearing rocks are located at Wadi Sikait in the southern part of the Eastern Desert of Egypt to the west of Marsa Alam on the Red Sea coast. They are intruded by granitic rocks and they have low radioactivity level. Mica-graphite schists are considered as a matrix of ophiolitic mélange. Graphite occurs in mica-graphite schists as disseminated grains and in talc carbonates rocks as bands or veins. Petrographically, the mica-graphite schists are mainly composed of quartz, plagioclase, muscovite, biotite, and graphite. Geochemical characteristics show that trace elements analysis reflects higher content in Cr and Ni in ash-free graphite than mica-graphite schists. Spectrometrically, the graphite-bearing rocks at Wadi Sikait are showing eU values greater than eTh values, indicating that the graphite-bearing rocks gain U from the country rocks. The U/eU ratio range from 2.7 to 11 manifesting enrichment of chemical uranium (U) may be related to recent uranium transported from the mineralized country rocks. There is a role of graphite and carbonaceous matter in the genesis of U deposits.  相似文献   

5.
In situ eclogitic schist lenses occur in the coherent low-gradeepidote-zone Ward Creek metabasite unit of the Central Franciscanbelt. They contain almandine garnet, clinopyroxene, and rutile.They have slightly higher Mn content (0–5–1–0wt.%) than the coexisting Type III metabasites (0–12–0–25wt%) which contain epidote + glaucophane + actinolite + chlorite+ omphacite + quartz + sphene ? aragonite? lawsonite ? pumpellyite+ albite. The in situ eclogitic schists (130–140 Ma) canbe distinguished from older tectonic eclogites (150–160Ma) in Ward Creek as follows: (1) they are medium grained, whereasType IV tectonic eclogites are coarse grained; (2) they haveunaltered spessartine-rich idioblastic (0–4–10 mm)garnets, whereas Type IV tectonic eclogites have larger xenoblasticto hypidiomorphic spessartine-poor garnets which were corrodedand chloritized along the rim during retrograde metamorphism;(3) clinopyroxenes are chloromelanite in in situ eclogitic schistsbut omphacite in Type IV tectonic eclogites; (4) barroisiticamphiboles occur both as inclusions in garnets and as matrixminerals in Type IV tectonic eclogites but not in in situ eclogiticschists; (5) albite is present in in situ eclogitic schistsbut not in Type IV tectonic eclogites; and (6) the estimatedP-T condition of in situ eclogitic schists is 290 ?C < T<350 ?C, P = 8–9 kb, whereas that of Ward Creek Type IVtectonic eclogites is 500?C< r<540?C, P< 10–11–5kb. Medium-grained eclogites occur as individual blocks in WardCreek; they are different from Type IV tectonic eclogites butare very similar to in situ eclogitic schists. They have unalteredidioblastic garnet with high almandine and spessartine content(Alm47Sp23Gr20Py10), and they have chloromel-anitic clinopyroxeneand quartz but no barroisite. Paragonite is also stable in theseeclogites. The blocks formed at 380 ?C< r<400?C, and 9–5kb<P< 14 kb. They are presumably in situ eclogites formedat the highest-temperature part of the Ward Creek metabasiteunit and may be younger than Type IV tectonic eclogites. Such low-temperature occurrences of eclogitic assemblages aredue to the compositional effect on reactions between blueschistand eclogite that are insensitive to pressure and shift towardslower temperatures as bulk-rock MnO content and XFe/(Fe+Mg)increase. The Mn/(Mn + Fe) ratio of bulk rock is an importantfactor in controlling the P-T positions of these reactions attemperatures below 450 ?C, whereas the Fe/(Fe + Mg) ratio ofbulk-rock becomes important at temperatures higher than 450?C.  相似文献   

6.
Abstract Albite porphyroblasts are widely distributed in pelitic and semi-pelitic schists of the Fleur de Lys Supergroup, western Newfoundland. Textures and mineral assemblages indicate that albite grew during nearly isothermal decompression from P-T conditions of about 500° C, 9 kbar, to conditions of 550° C, 6.5 kbar. Three compositional varieties of albite-bearing schists, here termed PMAQ (paragonite-muscovite-albite-quartz), MMAQ (microcline-muscovite-albite-quartz), and PMMQ (paragonite-muscovite-margarite-quartz), can be distinguished on the basis of pre-porphyroblast mineral assemblages. Analysis of these assemblages in terms of the composition of the coexisting fluid [log a (Na+/H+) versus log a (K+/H+)] suggests that, as pressure and temperature changed, the stability field of albite expanded at the expense of coexisting matrix phyllosilicates. This promoted growth of albite on pre-existing or newly formed nuclei. Late oligoclase in PMAQ and PMMQ samples is associated with replacement of matrix garnet by plagioclase + mica ° Chlorite, particularly in strongly sheared samples.  相似文献   

7.
The Cristalândia do Piauí Block, located in the northwestern margin of the São Francisco Craton, represents the basement of the Rio Preto Fold Belt. It is composed of Archean orthogneisses of ca. 3.2 Ga reworked at 2.81 and 2.68 Ga with juvenile to moderately juvenile εHf values between −1.51 and −8.07, and high-K syenogranites dated at 2.65 Ga with crustal εHf values between −10.37 and −19.54, both with model ages (TDMc) varying from 3.57 to 4.33 Ga, indicating cryptic Paleo- to Eoarchean and even Hadean sources. Metamafic-ultramafic rocks, iron formations, metacherts, and graphite schists occur in association with the Archean orthogneiss. The whole set is intruded by Paleoproterozoic (ca. 2.2 Ga) metagranitoids with compositions varying from granodioritic with sanukitoid-type signatures to monzogranitic, and alkali-feldspar granitic with crustal signatures. They are related to the Rhyacian-Orosirian orogeny, responsible for the complex deformation patterns printed in the Archean basement. Orosirian metasedimentary rocks are represented by garnet-biotite paragneiss with maximum depositional age of ca. 1.95 Ga. Intrusive mafic dikes in the complex show ages of ca. 2.07 Ga and isotopic features of mantle-derived magmas. Considering the presented data, the Cristalândia do Piauí Block represents a metacratonic domain corresponding to part of the Guanambi-Correntina Paleoplate, wich had been involved in crustal accretion and reworking from the Archean to the Paleoproterozoic. Many of the elements of the evolutionary stages wich are present in the São Francisco-Congo Paleocontinent can be recognized, suggesting an evolution of this crustal segment amounts to the Eoarchean era and disclosing the existence of cryptic Paleoarchean or even Hadean nuclei, reworked in at least three metamorphic events during the Rhyacian-Orosirian orogeny.  相似文献   

8.
A series of medium grade metamorphic rocks of the western sector of the Sierras Pampeanas Terrane in central western Argentina are represented by amphibolites, gneisses and schists derived from sedimentary as well as from igneous rocks. The metavolcanics consist of amphibolites, quartz-K-feldspar-muscovite schists, and hornblende-biotite and biotite-epidote-plagioclase schists. Based on petrographic and geochemical data they are interpreted as originating as basaltic tholeiites, rhyolites and mesosilicic volcanics. The distribution and geochemical behavior are similar to present day western Pacific lavas, mainly those developed on island arcs or heavily attenuated continental crust. Based on these characteristics, an accretionary tectonic model involving a series of island-arc collisions is proposed for the Proterozoic. The complex Proterozoic tectonic history of the western Sierras Pampeanas has been partially obliterated by the emplacement of the Early Paleozoic magmatic arc rocks.  相似文献   

9.
Abstract Petrological data from intercalated pelitic schists and greenstones are used to construct a pressure–temperature path followed by the Upper Schieferhülle (USH) series during progressive metamorphism and uplift in the south-west Tauern Window, Italy. Pseudomorphs of Al–epidote + Fe-epidote + albite + oligoclase + chlorite after lawsonite and data on amphibole crystal chemistry indicate early metamorphism in the lawsonite-albite-chlorite subfacies of the blueschist facies at P ± 7–8 kbar. Geothermometry and geobarometry yield conditions of final equilibration of the matrix assemblage of 475±25°C, 5–6 kbar; calculations with plagioclase and phengite inclusions in garnet indicate early garnet growth at pressures of ∼ 7.5 kbar. Garnet zoning patterns are complex and reversals in zoning can be correlated between samples. Thermodynamic modelling of these zoning profiles implies garnet growth in response to four distinct phases of tectonic activity. Fluid inclusion data from coexisting immiscible H2O–CO2–NaCl fluids constrain the uplift path to have passed through temperatures of 380 + 30°C at 1.3 + 0.2 kbar.
There is no evidence for metamorphism of USH at pressures greater than ∼ 7.5 kbar in this area of the Tauern Window. This is in contrast to pressures of ± 10 kbar recorded in the Lower Schieferhülle only 2–3 km across strike. A history of differential uplift and thinning of the intervening section during metamorphism is necessary to reconcile the P–T data obtained from these adjacent tectonic units.  相似文献   

10.
K-Ar and 40Ar/39Ar geochronological studies were performed on selected minerals from the Mina III gold deposit, Crixás greenstone belt, state of Goiás, central Brazil. They include amphibole and biotite from amphibole schists; biotite from quartz-chlorite-carbonate-muscovite schists; chloritoid, muscovite, and paragonite from muscovite schists; and biotite from biotite-marbles. Analyses yielded ages between 750 and 500 Ma, indicating that the Brasiliano orogenic event affected rocks of the Archean greenstone belt. It is proposed that the gold mineralization, closely related to a post-metamorphic peak hydrothermal alteration and spatially associated with muscovite schists, is 505 ± 10 Ma, whereas older ages may indicate an excess of argon.  相似文献   

11.
大别山东段超高压变质带中变质花岗岩富硅、贫钙、贫铝,属偏碱性花岗岩,围岩为含榴辉岩包体的超高压副片麻岩。变质花岗岩稀土元素总量多在(100-200)×10^-6,具有较大的负铕异常,其原岩应为壳源型花岗岩。元素地球化学特征表明变质花岗岩原岩与古造山作用有关。变质花岗岩中存在大量由岩浆型内核和变生型边缘构成的变质增生锆石。结合锆石U-Pb年龄资料认为,变质花岗岩应由古老花岗岩变质形成,而不是超高压变质作用之后部分地壳岩石重熔的产物。岩石中有富锰和贫锰两种石榴子石,通过富锰石榴子石-黑云母、贫锰石榴子石-多硅白云母等矿物对的温压计算可知变质花岗岩在400-500℃、0.6-0.8GPa条件下经历过变质作用。但几种间接证据反映出变质花岗岩可能经历过超高压变质作用。  相似文献   

12.
Paleozoic banded-iron-formation (BIF) deposits occur within the Nahuelbuta-Queule Complex (south central Chile) which hosts the following stratigraphic units: Cabo Tirúa (green schists, mica schists, and metacherts), Lleu-Lleu (iron-bearing metacherts, mica schists, and serpentinites), and Colcura (metagraywackes and metapelites). The lithological, structural, and geochemical characteristics of the Lleu-Lleu and Cabo Tirúa units indicate that they were part of a tectonic mélange accreted to the South American paleocontinent during the Paleozoic. BIF ores are restricted to the Lleu-Lleu metacherts and are characterized by oxide-silicate-sulfide BIF facies. The iron-bearing metacherts present mineralogical and geochemical characteristics close to the volcanogenic BIF types and are thought to have been formed by submarine volcanic exhalative activity.  相似文献   

13.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   


14.
The Malino Metamorphic Complex (MMC) is located at the western end of the north arm of Sulawesi. It consists of mica schists and gneisses (derived from proximal turbidite and granitoid protoliths), with intercalations of greenschist, amphibolite, marble, and quartzite, forming an E-W elongated dome-like structure bounded on all sides by faults. The age of the MMC is constrained between Devonian and Early Carboniferous. This Paleozoic age, the presence of Archean and Proterozoic inherited zircons, and the isotopic signature of the mica schists and gneisses indicate that the terrane was derived from the New Guinea-Australian margin of Gondwana. Similarities with basement rocks in the Bird’s Head suggests a common origin. Greenschists forming a discontinuous selvage (metamorphic carapace) around the complex were derived from adjacent autochthonous Paleogene formations. The rocks of the MMC show a Barrovian-type progression from greenschist through epidote-amphibolite to amphibolite facies. P–T estimations suggest a depth of burial of up to 27–30 km. K/Ar and 40Ar/39Ar cooling ages of 23–11 Ma, and a 7 Ma age for unconformably overlying volcanic rocks, indicate that the complex was exhumed during the Miocene. Two tectonic scenarios are considered: 1. the continental fragment docked with Sulawesi during the Mesozoic and was exhumed as a metamorphic core complex during the Miocene; 2. it was subducted beneath the north arm during the late Oligocene and then rapidly returned back to the surface.  相似文献   

15.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   

16.
Abstract The Paikon Series is considered to be a volcanic arc sequence with a mainly neritic sedimentary sequence and bimodal tholeiitic volcanism of early Mesozoic age. The metamorphic assemblages are syn- to post-kinematic with respect to a pre-Tithonian tectonic phase and range from the lawsonite-chlorite-albite facies through transitional Na-amphibole-greenschist facies to the chlorite sub-zone of the greenschist facies. The metamorphic imprint of the Paikon Series corresponds to a temperature range from less than 330° C to ± 450° C under a total pressure from 3 kbar to 6–7 kbar. The overprinting of these facies on an earlier blueschist assemblage, related either to a subduction zone or to a tectonic overpressure caused by thrusting, is suspected.  相似文献   

17.
Garnets from recrystallized, staurolite- and kyanite-bearing mica schists from the central Saualpe basement, representing the host rocks of the type-locality eclogites, give concordant Sm–Nd garnet–whole-rock isochron ages between 88.5±1.7 and 90.9±0.7 Ma. The millimetre-sized, mostly inclusion-free grains show fairly homogeneous element profiles with pyrope contents of 25–27%. Narrow rims with an increase in Fe and Mn and a decrease in Mg document minor local re-equilibration during cooling. According to phengite geothermobarometry, peak metamorphic conditions at 90 Ma were close to 20  kbar and 680  °C and similar to those recorded by the eclogites. The garnet rims record about 575  °C/7  kbar for the final stages of metamorphism. A phengitic garnet–mica schist, sampled at the immediate contact with the Gertrusk eclogite, gave a garnet–whole-rock Sm–Nd age of 94.0±2.7 Ma.
Garnet porphyroclasts separated from a pegmatite–mylonite of the Koralpe plattengneiss near Stainz are unzoned and show spessartine contents of 15%. Composition and Sm–Nd ages of close to 260 Ma point to a magmatic origin for these garnets.
The garnet data from the Saualpe document an intense Alpine metamorphism for this part of the Austroalpine basement. The mica schists recrystallized during decompression and rapid exhumation, at the final stages of and immediately following a high- P event. The Koralpe data show that high Alpine temperatures did not reopen the Sm–Nd isotope system, implying a closure temperature in excess of c . 600  °C for this isotopic system in garnet.  相似文献   

18.
Four aluminosilicate-bearing, amphibolite facies pelitic schists sampled from the root of the long-lived eastern Gondwana continental magmatic arc now exposed in southwest Fiordland, New Zealand, record remarkably different P–T–t histories. The four samples were collected from within 20 km of each other within the Fanny Bay Group and Deep Cove Gneiss near Dusky Sound. Integrated petrography, mineral chemistry, mineral equilibria modelling and in situ electron microprobe chemical dating of monazite shows that the sample of the Fanny Bay Group south of the Dusky Fault records a Carboniferous history with peak conditions of 4–4.5 kbar at 570–590 °C, while one sample of the Deep Cove Gneiss from Long Island records a Cretaceous history with apparent peak conditions of 7.5 kbar at 650 °C. Two other samples of the Deep Cove Gneiss from Resolution Island record mixed Carboniferous and Cretaceous histories with apparent peak conditions of 7 kbar at 650 °C and 3–7 kbar at 640–720 °C. The metapelitic schists on Resolution Island were intruded by arc magmas including the voluminous high- P Western Fiordland Orthogneiss, yet they lack mineralogical evidence of the Cretaceous high- P (>12 kbar) event. Analysis of water isopleths in a model system shows that the amount of water accommodated in the rock mineral assemblage increases with pressure. With the exhaustion of all free water, and without the addition of external water, these rocks persisted metastably within the deep arc during the high- P event. The emplacement of large volumes of diorite (i.e. the Western Fiordland Orthogneiss) into the root of the Early Cretaceous continental magmatic arc did not lead to regional granulite facies metamorphism of the country rock schists, as large volumes of amphibolite facies rock metamorphosed under medium- P conditions persisted metastably in the deep arc crust.  相似文献   

19.
Tectonic inclusions within the New Idria serpentine body containjadeite in two distinct assemblages: (1) Lenslike inclusionscontaining a monomineralic green jadeite core surrounded bya calc-silicate rim. (2) Jadeite veins cross-cutting albite-crossiteschist inclusions. In these veins jadeite coexists with lowalbite; green jadeite (Jd 75 Ac+Di+He 25) coexists with lowalbite within the host schist. Albite schists are related to the pre-metamorphic keratophyresand it can be shown that desilication of such rocks producesa bulk composition similar to that of jadeite. Metamor-phismof keratophyric tectonic inclusions within serpentine producedjadeite-albite schists along margins of the inclusions. Jadeite-albiteveins formed from mobilized liquids rich in the jadeite moleculeand deficient in water. Geological evidence such as would indicateextreme pressures or temperatures during jadeite formation islacking; rather, a low silica and dry system allowed its formationat reduced temperatures and pressures.  相似文献   

20.
A thick sequence of mafic-ultramafic rocks, occurs along a major shear zone (Phulad lineament), running across the length of Aravalli Mountain Range for about 300 kms. It has been suggested, that this sequence may represent a fragment of ophiolite or a rift related metavolcanic suite made up of basalts and fractionated ultramafics. The geological and tectonic significance of the complex is assessed using field relationships, petrography and geochemistry. Structurally, the lowest part of the complex comprises a discontinuous band of plastically deformed harzburgite (mantle component) followed by layered cumulus gabbroic rocks (crustal component). A complex of non-cumulus rocks comprising hornblende schists, gabbros, sheeted dykes and pillowed basalts structurally overlies layered gabbros. Huge bodies of diorite intrude volcanics.

Geochemical classification suggests that all non-cumulus mafic rocks are sub-alkaline basalts except one variety of dykes which shows mildly alkaline character. The sub-alkaline rocks are tholeiite to calc-alkaline with boninite affinity. Tectono-magmatic variation diagrams and MORB normalised patterns suggest a fore arc tectonic regime for the eruption of these rocks.

The mafic rocks of Phulad Ophiolite Suite are zoned across the strike in terms of their distribution from west to east. The hornblende schists and basalts are exposed at the westernmost margin followed by gabbros and dykes. The alkaline dyke occurs at the easternmost part. The rocks of Phulad suite are juxtaposed with shallow water sediments in the east followed by platformal sediments and then continental slope sediments in the further east indicating gradual thickening of the crust from west to east and an eastward subduction. The geochemical interpretation presented in this study, together with discussion of lithological association is used to decipher the tectonic evolution of the Mesoproterozoics of NW Indian shield.  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号