首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
The Taikeu ore cluster comprises four tantalum-bearing ore deposits: Taikeu, Ust-Mramorny, Longotyugan, and Neudachny. Their ores are related to microcline-albite and less frequent quartz-albite-mica (phengite) metasomatic rocks replacing granites. The major ore minerals belong to the fergusonite and pyrochlore groups (mainly plumbopyrochlore). The compositional evolution of these minerals is considered in detail. High-Yb fergusonite containing up to 22–27 wt % Yb2O3 was established in the ore cluster for the first time. Its formula is ({Yb0.30Er0.15Dy0.05Lu0.04Tm0.04…}0.61Y0.39)[Nb0.99Ta0.01]O3.96. The density of this mineral determined by microvolumetric method is 6.47 ± 0.06 g/cm3. Fergusonite evolves from high-Yb to low-Yb varieties, with relatively small variations in Er and Dy. It is suggested that this fractionation trend is caused by high solubility of Yb2+ complexes (primarily, fluoride complexes) in aqueous fluid during albitization. The chemical composition of the pyrochlore-group minerals evolves as follows: Na+Ca → U+Th → Pb. Plumbopyrochlore was formed at the late metasomatic stage of tantalum-niobium mineralization. The characteristic features of this stage are a high oxidation potential, on the one hand, and a low activity of sulfide sulfur, on the other hand.  相似文献   

5.
俯冲带是壳-幔物质循环的重要场所,硬玉岩可以记录这一循环过程。文中总结了俄罗斯极地乌拉尔硬玉岩的研究进展。硬玉岩呈脉状或透镜状产在蛇纹石化的方辉橄榄岩中,主要由硬玉和绿辉石组成。根据结构和颜色,硬玉可识别出两个世代。硬玉韵律环带发育,含有H2O和CH4流体包裹体,显示从流体中结晶的特征。硬玉岩中的锆石为热液锆石,锆石稀土元素中LaN/YbN=0.001~0.01,LuN/GdN=10~83,Ce/Ce*=2.8~72,显示正异常,δEu=0.53~1.02,类似于岩浆锆石。锆石的176Hf/177Hf=0.282 708~0.283 017,εHf(t)=+6~+17,类似于N-MORB的Hf同位素组成,锆石δ18O组成为5.03‰~6.04‰,平均δ18O为(5.45±0.11)‰,类似于岩浆热液和地幔的氧同位素组成。这可能反映了锆石是被俯冲带流体从途经火成岩中捕获的或者形成锆石的流体与寄主岩(方辉橄榄岩)达到了平衡。硬玉岩稀土元素配分模式近平坦或轻稀土元素略显富集,LaN/YbN比值为0.82~2.42,δEu为1.2~1.6,显示正异常,这与寄主岩稀土元素配分模式相似。富集Sr、Ba、Zr、Hf,Nb为负异常,与岛弧岩浆特征类似。(87Sr/86Sr)t为0.703 400~0.703 519(t=368 Ma),变化较小,与古海水差别明显;εNd(t)值为+0.77~+5.61,变化较大,与寄主岩(方辉橄榄岩)的Nd同位素组成类似,但不同于海水及沉积物的Nd同位素组成,表明硬玉岩的物质来源与寄主岩有明显继承关系,海水与沉积物的贡献不是主要的。矿物学和岩石学证据支持极地乌拉尔的硬玉岩主要是俯冲带流体与橄榄岩相互作用后并在其中结晶的产物。  相似文献   

6.
The Parnok deposit is made up of stratiform lodes of iron (magnetite) and manganese (oxide-carbonate, carbonate, and carbonate-silicate) ores localized among terrigenous-carbonate sediments (black shales) on the western slope of the Polar Urals. The lithological study showed that ore-bearing sediments were accumulated in a calm hydrodynamic setting within a relatively closed seafloor area (trap depressions). Periodic development of anaerobic conditions in the near-bottom seawater was favorable for the accumulation of dispersed organic matter in the terrigenous-carbonate sediments. Carbon required to form calcium carbonates in the ore-bearing sediments was derived from carbon dioxide dissolved in seawater. In the organic-rich sediments, carbonates were formed with the participation of carbon dioxide released by the destruction of organic matter. However, δ13C values (from 0.5 to ?4.4‰ PDB) suggest a relatively low fraction of the isotopically light biogenic carbon in the host calcite. The most probable sources of Fe and Mn were hydrothermal seepages at the seafloor. The Eh-pH conditions during stagnation were favorable for the precipitation of Fe and accumulation of Mn in a dissolved state. Transition from the stagnation regime to the concentration of oxygen in near-bottom waters was accompanied by oxidation of the dissolved Mn and its precipitation. Thus, fluctuations in Eh-pH parameters of water led to the differentiation of Fe and Mn. Initially, these elements were likely precipitated as oxides and hydroxides. During the subsequent lithification, Fe and Mn were reduced to form magnetite and rhodochrosite. The texture and structure of rhodochrosite aggregates indicate that manganese carbonates already began to form at the diagenetic stage and were recrystallized during the subsequent lithogenetic stages. Isotope data (δ13C from ?8.9 to ?17.1‰ PDB) definitely indicate that the oxidized organic matter of sediment served as the main source of carbon dioxide required to form manganese carbonates. Carbonates from host rocks and manganese ores have principally different carbon isotopic compositions. Unlike carbonates of host rocks, manganese carbonates were formed with an active participation of biogeochemical processes. Further processes of metagenesis (T ≈ 250–300°C, P ≈ 2 kbar) resulted in the transformation of textures, structures, and mineral composition of all rocks of the deposit. In particular, increase in temperature and pressure provided the formation of numerous silicates in manganese ores.  相似文献   

7.
Intense viscous-ductile deformations with multiorder flow folds and thin banding have been established in lherzolite and harzburgite of the Syumkeu massif 1.0–1.5 km below the boundary with crustal complexes. Intense shear deformation of mantle restites is traced along the entire boundary zone. The mineral composition of lherzolite and harzburgite in this zone occupies a transitional position between peridotite restites and olivine websterite from the lower part of the banded dunite-wehrlite-pyroxenite-gabbro complex. This implies that the mantle rocks from the crust-mantle transition zone were substantially transformed under transpressional intense shear stress settings along with a high-temperature ductile flow of mantle restites interacting with the supplied melt at a depth of more than 10 km. This type of transition zones differs from those known elsewhere in the Urals and supplements our knowledge on modes of mantle restite juxtaposition with crustal plutonic rocks.  相似文献   

8.
Geological and structural conditions of localization, hydrothermal metasomatic alteration, and mineralization of the Petropavlovskoe gold deposit (Novogodnenskoe ore field) situated in the northern part of the Lesser Ural volcanic–plutonic belt, which is a constituent of the Middle Paleozoic island-arc system of the Polar Urals, are discussed. The porphyritic diorite bodies pertaining to the late phase of the intrusive Sob Complex play an ore-controlling role. The large-volume orebodies are related to the upper parts of these intrusions. Two types of stringer–disseminated ores have been revealed: (1) predominant gold-sulfide and (2) superimposed low-sulfide–gold–quartz ore markedly enriched in Au. Taken together, they make up complicated flattened isometric orebodies transitory to linear stockworks. The gold potential of the deposit is controlled by pyrite–(chlorite)–albite metasomatic rock of the main productive stage, which mainly develops in a volcanic–sedimentary sequence especially close to the contacts with porphyritic diorite. The relationships between intrusive and subvolcanic bodies and dating of individual zircon crystals corroborate a multistage evolution of the ore field, which predetermines its complex hydrothermal history. Magmatic activity of mature island-arc plagiogranite of the Sob Complex and monzonite of the Kongor Complex initiated development of skarn and beresite alterations accompanied by crystallization of hydrothermal sulfides. In the Early Devonian, due to emplacement of the Sob Complex at a depth of approximately 2 km, skarn magnetite ore with subordinate sulfides was formed. At the onset of the Middle Devonian, the large-volume gold porphyry Au–Ag–Te–W ± Mo,Cu stockworks related to quartz diorite porphyry—the final phase of the Sob Complex— were formed. In the Late Devonian, a part of sulfide mineralization was redistributed with the formation of linear low-sulfide quartz vein zones. Isotopic geochemical study has shown that the ore is deposited from reduced, substantially magmatic fluid, which is characterized by close to mantle values δ34S = 0 ± 1‰, δ13C =–6 to–7‰, and δ18O = +5‰ as the temperature decreases from 420–300°C (gold–sulfide ore) to 250–130°C (gold–(sulfide)–quartz ore) and pressure decreases from 0.8 to 0.3 kbar. According to the data of microanalysis (EPMA and LA-ICP-MS), the main trace elements in pyrite of gold orebodies are represented by Co (up to 2.52 wt %), As (up to 0.70 wt %), and Ni (up to 0.38 wt %); Te, Se, Ag, Au, Bi, Sb, and Sn also occur. Pyrite of the early assemblages is characterized by high Co, Te, Au, and Bi contents, whereas the late pyrite is distinguished by elevated concentrations of As (up to 0.7 wt %), Ni (up to 0.38 wt %), Se (223 ppm), Ag (up to 111 ppm), and Sn (4.4 ppm). The minimal Au content in pyrite of the late quartz–carbonate assemblage is up to 1.7 ppm and geometric average is 0.3 ppm. The significant correlation between Au and As (furthermore, negative–0.6) in pyrite from ore of the Petropavlovskoe deposit is recorded only for the gold–sulfide assemblage, whereas it is not established for other assemblages. Pyrite with higher As concentration (up to 0.7 wt %) is distinguished only for the Au–Te mineral assemblage. Taking into account structural–morphological and mineralogical–geochemical features, the ore–magmatic system of the Petropavlovskoe deposit is referred to as gold porphyry style. Among the main criteria of such typification are the spatial association of orebodies with bodies of subvolcanic porphyry-like intrusive phases at the roof of large multiphase pluton; the stockwork-like morphology of gold orebodies; 3D character of ore–alteration zoning and distribution of ore components; geochemical association of gold with Ag, W, Mo, Cu, As, Te, and Bi; and predominant finely dispersed submicroscopic gold in ore.  相似文献   

9.
10.
11.
12.
13.
V. R. Shmelev 《Petrology》2011,19(6):618-640
Geological, mineralogical, and geochemical data on ultrabasites in the Polar Ural Ophiolite Zone in the Main Ural Fault zone indicate that the origin of the ultrabasites was controlled by the depletion process during the partial melting of mantle material, fluid-magmatic transformations, and subsequent metamorphism in various geodynamic environments. In a spreading environment above a subduction zone, the lherzolites and harzburgites of the older complex were produced by partial (10–25%) melting. The fluid-magmatic transformations were associated with the massive refertilization and enrichment in LREE, MREE, and incompatible trace elements. Along with this, the ultrabasites were affected by depyroxenization (dunitization) with the generation of a dunite-harzburgite complex in domains and zones of brittle-plastic deformations first in a spreading and then in an island-arc environment. The subsequent displacement of the ultrabasites to a crustal level was associated with their metamorphism without principal changes in their geochemistry.  相似文献   

14.
Inkina  N. S. 《Doklady Earth Sciences》2019,489(1):1269-1272
Doklady Earth Sciences - New data on the composition and structure of the Sezym Formation of the Lower Permian on the western slope of the Polar Urals are presented. This formation rests...  相似文献   

15.
The Parnok ferromanganese deposit is confined to the black shales of the western slope of the Polar Urals. The deposit area is made up of weakly metamorphosed terrigenous-carbonate rocks formed in a marine basin at a passive continental margin. Ore-bearing sequence is composed of coaliferous clayey-siliceous-calcareous shales comprising beds and lenses of pelitomorphic limestones, and iron and manganese ores. The iron ores practically completely consist of micrograined massive magnetite. The manganese ores are represented by lenticular-bedded rocks consisting of hausmannite, rhodochrosite, and diverse manganese silicates. With respect to relations between indicator elements (Fe, Mn, Al, Ti), the shales are ascribed to pelagic sediments with normal concentrations of Fe and Mn, the limestones correspond to metalliferous sediments, ferruginous sediments are ore-bearing sediments, while manganese rocks occupy an intermediate position. It was found that the concentrations of trace elements typical of submarine hydrothermal solutions (As, Ge, Ni, Pb, Sb, Zn, etc.) in both the ore types are in excess of those in lithogenic component. At the same time, the indicator elements of terrigenous material (Al, Ti, Hf, Nb, Th, Zr, and others) in the ores are several times lower than those in the host shales (background sediments). REE distribution patterns in iron ores show the positive Eu anomaly, while those in manganese ores, the positive Ce anomaly. In general, the chemical composition of the ores indicates their formation in the hydrothermal discharge zone. The peculiar feature of the studied object is the manifestation of hydrothermal vents in sedimentary basin without evident signs of volcanic activity. Hydrothermal solutions were formed in terrigenous-carbonate sequence mainly at the expense of buried sedimentation waters. The hydrothermal system was likely activated by rejuvenation of tectonic and magmatic processes at the basement of sedimentary sequences. Solutions leached iron, manganese, and other elements from sedimentary rocks and transported them to the seafloor. Their discharge occurred in relatively closed marine basin under intermittent anaerobic conditions. Eh-pH variations led to the differentiation of Fe and Mn and accumulation of chemically contrasting ore-bearing sediments.  相似文献   

16.
The Enganepe ophiolite, Polar Urals was formed at 670 Ma and records a diverse geochemical association of tholeiite, arc-tholeiite, adakite, and OIB-like lithologies. This constrains the tectonic setting of the protolith of the ophiolite to an oceanic island-arc, with ridge-trench interaction most readily explaining the diverse compositions. The initiation of intra-ocean subduction and the development of the Enganepe island arc off the eastern margin of Baltica probably pre-dated the formation of the Enganepe ophiolite, i.e. prior to 670 Ma. The timing of island-arc magmatism is similar in age to that recorded off Avalon in the Cadomian arc. We propose that the active margin of Baltica in the Vendian is an extension of the Cadomian arc. This requires the northeast margin of Baltica (present-day coordinates) to have been in a southerly position in the Vendian, in agreement with proposed tectonic reconstructions. Consequently, the post-Rodinia continental amalgamation, Pannotia, had active ocean-continent convergence along its entire southerly (west Avalonia and Amazonian cratons) margin at the time of its break-up.  相似文献   

17.
18.
The Kharcheruz block of the Syumkeu ultramafic massif is a southern fragment of the Khadata ophiolitic belt, which closes the ophiolites of the Polar Urals in the north. The block, striking in the latitudinal direction, is sheetlike in shape and primarily composed of dunite with nearly latitudinal zones of chromite mineralization. The dunites are subject to ductile deformation various in intensity, and this variability is displayed in their heterogeneous structure and texture. The following microstructural types are distinguished by the variety and intensity of their deformation: protogranular → mesogranular → porphyroclastic → porphyrolath → mosaic. The petrostructural patterns of olivines pertaining to the above types reflect conditions of ductile deformation. Protogranular dunite is formed as a product of pyroxene decomposition in mantle harzburgite accompanied by annealing recrystallization at a temperature above 1000°C. Mesogranular dunite is formed as a product of high-temperature plastic flow by means of translation sliding in olivine and diffuse creep at a temperature dropping from 1000 to 650°C and at a low rate (<10–6 s–1). Cr-spinel segregates into linear zones of disseminated chromite mineralization within zones of bedding-plane plastic flow. Porphyroclastic and mosaic dunites are formed under conditions of intense deformation at a temperature of 500–750°C and at a significant rate (>10–6 s–1). Dunite is deformed by means of syntectonic recrystallization and subordinate translation gliding. Linear zones of disseminated mineralization undergo destruction thereby, with the formation of lenticular chromitite bodies from which ductile olivine is squeezed out with the formation of densely impregnated and massive ores.  相似文献   

19.
20.
Based on new data on the lithology, mineralogy, chemistry, and isotopic composition of manganese carbonate ores and rocks at the deposits and occurrences in the Novaya Zemlya Archipelago, the Pai-Khoi, and the Urals, as well as using data from the literature, the main Phanerozoic basins of manganese deposition have been established in the geological history of Laurasia, Pangea, and Siberian paleocontinents. The formation conditions of manganese ore gradually changed from hydrothermal-sedimentary in the Middle Paleozoic to sedimentary-diagenetic in Mesozoic and Cenozoic. The ore was also formed under catagenetic conditions. Carbon of oxidized organic matter plays a substantial role in the formation of manganese carbonates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号