首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The interacting binary white dwarf (AM CVn) systems HM Cnc and V407 have orbital periods of 5.4 and 9.5 min, respectively. The two systems are characterized by an 'on/off' behaviour in the X-ray light curve, and optical light curves that are nearly sinusoidal and which lead the X-ray light curves in phase by about 0.2 in both systems. Of the models that have been proposed to explain the observations, the one that seems to require the least fine-tuning is the direct impact model of Marsh & Steeghs. In this model, the white dwarf primary is large enough relative to the semimajor axis that the accretion stream impacts the surface of the primary white dwarf directly without forming an accretion disc. Marsh & Steeghs proposed that in this situation there could be a flow setup around the equator with a decreasing surface temperature, the further one measured from the impact point. In this study, we estimate the light curves that might result from such a temperature distribution, and find them to be reasonable approximations to the observations. One unexpected result is that two distinct X-ray spots must exist to match the shape of the X-ray light curves.  相似文献   

2.
An analysis of X-ray and optical light curves of the magnetic cataclysmic variable (MCV) BY Cam is presented. This system is one of three MCVs in which the spin period of the white dwarf and the binary orbital period differ by ∼1 per cent. As such these 'BY Cam' stars are important objects with which to probe the field structure of the magnetic white dwarf and ultimately the nature of synchronization of AM Her binaries. We confirm asynchronous rotation of the magnetic white dwarf with respect to the binary. We find evidence that the accretion stream accretes directly on to the white dwarf as in AM Her systems, but further, the stream impacts on to different magnetic poles over the course of the beat period. We present evidence that the optical and hard X-ray light curves modulate in phase, but together they are out of phase with the soft X-ray light curve. We confirm the spin down of the white dwarf which is expected to lead to the synchronization of the spin and orbital periods of BY Cam.  相似文献   

3.
We present a new mapping algorithm, the Accretion Stream Mapping (ASM), which uses the full phase-coverage of a light curve to derive spatially resolved intensity distributions along the accretion stream in magnetic cataclysmic variables of AM Herculis type (polars). The surface of the accretion stream is approximated as a 12-sided (duodecadon-shaped) tube. After successfully testing this method on artificial data we applied it to emission-line light curves of H β , H γ and He  ii λ 4686 of the bright eclipsing polar HU Aqr. We find hydrogen and helium line emission bright in the threading region of the stream where the stream couples on to magnetic field lines. It is particularly interesting that the stream is bright on the irradiated side facing the white dwarf, which highlights the interplay of collisional and radiative excitation/ionization.  相似文献   

4.
We present a phase-resolved ROSAT HRI X-ray light curve of the dwarf nova OY Car in quiescence. The X-ray flux is eclipsed at the same time as the optical eclipse of the primary, and the region of X-ray emission is comparable in size to the white dwarf. We use subsequent optical observations to update the orbital ephemeris of the system.  相似文献   

5.
We present the XMM–Newton X-ray eclipse light curve of the dwarf nova OY Car. The eclipse ingress and egress are well resolved for the first time in any dwarf nova placing strong constraints on the size and the location of the X-ray emitting region. We find good fits to a simple linear eclipse model, giving ingress/egress durations of  30 ± 3 s (Δφorb= 0.0054 ± 0.0005)  . Remarkably, this is shorter than the ingress/egress duration of the sharp eclipse in the optical, as measured by Wood et al. (1989) and ascribed to the white dwarf  (43 ± 2 s)  . We also find that the X-ray eclipse is narrower than the optical eclipse by  14 ± 2 s  , which is precisely the difference required to align the second and third contact points of the X-ray and optical eclipses. We discuss these results and conclude that X-ray emission in OY Car arises most likely from the polar regions of the white dwarf.
Our data were originally reported by Ramsay et al. (2001b) , but they did not make a quantitative measurement of eclipse parameters. We have also corrected important timing anomalies present in the data available at that time.  相似文献   

6.
We present an analysis of X-ray and ultraviolet (UV) data of the dwarf nova VW Hyi that were obtained with XMM–Newton during the quiescent state. The X-ray spectrum indicates the presence of an optically thin plasma in the boundary layer that cools as it settles on to the white dwarf. The plasma has a continuous temperature distribution that is well described by a power law or a cooling flow model with a maximum temperature of 6–8 keV. We estimate from the X-ray spectrum a boundary layer luminosity of  8 × 1030 erg s-1  , which is only 20 per cent of the disc luminosity. The rate of accretion on to the white dwarf is  5 × 10−12 M yr−1  , about half of the rate in the disc. From the high-resolution X-ray spectra, we estimate that the X-ray emitting part of the boundary layer is rotating with a velocity of 540 km s−1, which is close to the rotation velocity of the white dwarf but is significantly smaller than the Keplerian velocity. We detect a 60-s quasi-periodic oscillation of the X-ray flux, which is likely to be due to the rotation of the boundary layer. The X-ray and the UV flux show strong variability on a time-scale of ∼1500 s. We find that the variability in the two bands is correlated and that the X-ray fluctuations are delayed by ∼100 s. The correlation indicates that the variable UV flux is emitted near the transition region between the disc and the boundary layer and that accretion rate fluctuations in this region are propagated to the X-ray emitting part of the boundary layer within ∼100 s. An orbital modulation of the X-ray flux suggests that the inner accretion disc is tilted with respect to the orbital plane. The elemental abundances in the boundary layer are close to their solar values.  相似文献   

7.
Modelling the polarized cyclotron emission from magnetic cataclysmic variables has been a pivotal technique for determining the structure of the accretion zones on the white dwarf. To date, model solutions have been obtained from trial fits to the intensity and polarization data, which have been constructed from emission regions (for example arcs and spots) put in by hand. These models were all inferred indirectly from arguments based on the polarization and X-ray light curves.   We present a more analytical and objective technique using optimization by a genetic algorithm, Tikhonov regularization and Powell's method that robustly models the details of polarized emission.   To demonstrate the success of this technique, we show the results of several simulations in which we calculated the intensity and polarization curves from arbitrarily shaped emission regions on the surface of a sphere and then applied our code to these curves to recover the original test data. We also show how adding artificial noise affects the outcome of the optimization technique.  相似文献   

8.
Comparison of five X-ray observations of the intermediate polar FO Aqr reveals that the morphology of the X-ray light curve changes considerably with time. In particular, power spectra of the 1988 Ginga   and 1993 ASCA   data reveal strong sideband and orbital variations, whereas the 1990 Ginga   observation does not. This suggests that the amount of stream-fed accretion varies with epoch, and the system was accreting predominantly from a disc in 1990.   In contrast to other intermediate polars, the X-ray spin-pulse profiles show significant variations between observations, ranging from relatively sinusoidal to sawtooth-shaped at medium energies. During the 1988 and 1990 observations a notch is visible at spin phase zero, due to the presence of an interpulse at phase 0.85, which is absent during the other observations. At lower energies a narrow pulse of emission is seen at spin phase 0.2.   We interpret the pulse profile from the 1990 Ginga   observation using a model for accretion from a disc on to a dipolar magnetic field, the axis of which is offset from the white dwarf centre by ∼ 0.15 white dwarf radii. In order to account for the later occurrence of the hardness-ratio maximum in 1988 and 1993, we suggest that the accretion-rate profile changes so that accretion is favoured along the field lines which trail the magnetic pole. This also accounts for the disappearance of the interpulse and notch in 1993.  相似文献   

9.
We have detected coherent oscillations, at multiple frequencies, in the line and continuum emission of the eclipsing dwarf nova V2051 Ophiuchi using the 10-m Keck II telescope. Our own novel data acquisition system allowed us to obtain very fast spectroscopy using a continuous readout of the CCD on the LRIS spectrograph. This is the first time that dwarf nova oscillations have been detected and resolved in the emission lines. The accretion disc is highly asymmetric with a stronger contribution from the blueshifted side of the disc during our observations. The disc extends from close to the white dwarf out to the outer regions of the primary Roche lobe.
Continuum oscillations at 56.12 s and its first harmonic at 28.06 s are most likely to originate on the surface of a spinning white dwarf with the fundamental period corresponding to the spin period. Balmer and helium emission lines oscillate with a period of 29.77 s at a mean amplitude of 1.9 per cent. The line kinematics and the eclipse constraints indicate an origin in the accretion disc at a radius of 12±2 R wd. The amplitude of the emission-line oscillation modulates (0–4 per cent) at a period of 488 s, corresponding to the Kepler period at R =12 R wd. This modulation is caused by the beating between the white dwarf spin and the orbital motion in the disc.
The observed emission-line oscillations cannot be explained by a truncated disc as in the intermediate polars. The observations suggest a non-axisymmetric bulge in the disc, orbiting at 12 R wd, is required. The close correspondence between the location of the oscillations and the circularization radius of the system suggests that stream overflow effects may be of relevance.  相似文献   

10.
We present spectroscopic and high-speed photometric data of the eclipsing polar V895 Cen. We find that the eclipsed component is consistent with it being the accretion regions on the white dwarf. This is in contrast to Stobie et al. who concluded that the eclipsed component was not the white dwarf. Further, we find no evidence for an accretion disc in our data. From our Doppler tomography results, we find that the white dwarf has   M ≳0.7 M  . Our indirect imaging of the accretion stream suggests that the stream is brightest close to the white dwarf. When we observed V895 Cen in its highest accretion state, emission was concentrated along field lines leading to the upper pole. There is no evidence for enhanced emission at the magnetic coupling region.  相似文献   

11.
We investigate the hydrodynamics of accretion channelled by a dipolar magnetic field (funnel flows). We consider situations in which the electrons and ions in the flow cannot maintain thermal equilibrium [two-temperature (2T) effects] due to strong radiative loss, and determine the effects on the keV X-ray properties of the systems. We apply this model to investigate the accretion shocks of white dwarfs in magnetic cataclysmic variables (mCVs). We have found that the incorporation of 2T effects could harden the keV X-rays. Also, the dipolar model yields harder X-ray spectra than the standard planar model if white dwarf is sufficiently massive  (≳1 M)  . When fitting observed keV X-ray spectra of mCVs, the inclusion of 2T hydrodynamics and a dipolar accretion geometry lowers estimates for white dwarf masses when compared with masses inferred from models excluding these effects. We find mass reductions ≲9 per cent in the most massive cases.  相似文献   

12.
We show that the light curves of soft X-ray transients (SXTs) follow naturally from the disc instability picture, adapted to take account of irradiation by the central X-ray source during the outburst. Irradiation prevents the disc from returning to the cool state until central accretion is greatly reduced. This happens only after most of the disc mass has been accreted by the central object, on a viscous time-scale, accounting naturally for the exponential decay of the outburst on a far longer time-scale (τ20–40 d) than seen in dwarf novae, without any need to manipulate the viscosity parameter α. The accretion of most of the disc mass in outburst explains the much longer recurrence time of SXTs compared with dwarf novae. This picture also suggests an explanation of the secondary maximum seen in SXT light curves about 50–75 d after the start of each outburst, since central irradiation triggers the thermal instability of the outer disc, adding to the central accretion rate one viscous time later. The X-ray outburst decay constant τ should on average increase with orbital period, but saturate at a roughly constant value ∼40 d for orbital periods longer than about a day. The bolometric light curve should show a linear rather than an exponential decay at late times (a few times τ). Outbursts of long-period systems should be entirely in the linear decay regime, as is observed in GRO J1744−28. UV and optical light curves should resemble the X-rays but have decay time-scales up to 2–4 times longer.  相似文献   

13.
We apply our technique for indirect imaging of the accretion stream to the polar HU Aquarii, using eclipse profiles observed when the system was in a high accretion state. The accretion stream is relatively luminous, contributing as much as the accretion region on the white dwarf, or more, to the overall system brightness. We model the eclipse profiles using a model stream consisting of a ballistic trajectory from the L1 point followed by a magnetically channelled trajectory that follows a dipole field line out of the orbital plane. We perform model fits using two geometries: a stream that accretes on to both footpoints of the field line, and a stream that accretes only on to the footpoint of the field line above the orbital plane. The stream images indicate that the distribution of emission along the stream is not a simple function of the radial distance from the white dwarf. The stream is redirected by the magnetic field of the white dwarf at a distance 1.0–1.3×1010 cm from the white dwarf; this implies a mass transfer rate in the range 8–76×1016 g s−1. The absorption dips in the light curve indicate that the magnetically entrained part of the stream moves from 42° to 48° from the line of centres over the three nights of observation. This is in close agreement with the results of the one-footpoint models, suggesting that this is the more appropriate geometry for these data. The stream images show that, in almost all sections of the stream, the flux peaks in B and is successively fainter in U , V and R .  相似文献   

14.
The fluctuating-accretion model of Lyubarskii and its extension by Kotov, Churazov & Gilfanov seek to explain the spectral-timing properties of the X-ray variability of accreting black holes in terms of inward-propagating mass accretion fluctuations produced at a broad range of radii. The fluctuations modulate the X-ray emitting region as they move inwards and can produce temporal-frequency-dependent lags between energy bands, and energy-dependent power spectral densities (PSDs) as a result of the different emissivity profiles, which may be expected at different X-ray energies. Here, we use a simple numerical implementation to investigate in detail the X-ray spectral-timing properties of the model and their relation to several physically interesting parameters, namely the emissivity profile in different energy bands, the geometrical thickness and viscosity parameter of the accretion flow, the strength of damping on the fluctuations and the temporal coherence (measured by the 'quality factor', Q ) of the fluctuations introduced at each radius. We find that a geometrically thick flow with large viscosity parameter is favoured, and we confirm that the predicted lags are quite robust to changes in the emissivity profile and physical parameters of the accretion flow, which may help to explain the similarity of the lag spectra in the low/hard and high/soft states of Cyg X-1. We also demonstrate the model regime where the light curves in different energy bands are highly spectrally coherent. We compare model predictions directly to X-ray data from the narrow line Seyfert 1 galaxy NGC 4051 and the black hole X-ray binary (BHXRB) Cyg X-1 in its high/soft state, and we show that this general scheme can reproduce simultaneously the time lags and energy-dependence of the PSD.  相似文献   

15.
We use a two-temperature hydrodynamical formulation to determine the temperature and density structures of the post-shock accretion flows in magnetic cataclysmic variables (mCVs) and calculate the corresponding X-ray spectra. The effects of two-temperature flows are significant for systems with a massive white dwarf and a strong white-dwarf magnetic field. Our calculations show that two-temperature flows predict harder keV spectra than one-temperature flows for the same white-dwarf mass and magnetic field. This result is insensitive to whether the electrons and ions have equal temperature at the shock, but depends on the electron–ion exchange rate, relative to the rate of radiative loss along the flow. White-dwarf masses obtained by fitting the X-ray spectra of mCVs using hydrodynamic models including the two-temperature effects will be lower than those obtained using single-temperature models. The bias is more severe for systems with a massive white dwarf.  相似文献   

16.
We present optical spectroscopy and optical and infrared photometry of the neutron star soft X-ray transient Aql X–1 during its X-ray outburst of 1997 August. By modelling the X-ray, optical and IR light curves, we find a 3-d delay between the IR and X-ray rise times, analogous to the UV–optical delay seen in dwarf novae outbursts and black hole X-ray transients. We interpret this delay as the signature of an 'outside-in' outburst, in which a thermal instability in the outer disc propagates inward. This outburst is the first of this type definitively identified in a neutron star X-ray transient.  相似文献   

17.
The Stokes imaging technique of Potter, Hakala & Cropper is applied to the polarized emission from the AM Her system ST LMi. For the first time, the cyclotron emission region on the surface of the white dwarf is mapped in terms of optical depth/density in an analytical and objective manner. The region is found to consist of a less dense region leading a higher density region in orbital phase. It is demonstrated that the emission region needs to have a multi-temperature structure in order to explain the spectral slope and the general morphology of the cyclotron humps observed in the IR during the bright phase in ST LMi.
Furthermore, it is shown that a secondary emission region, fed by the same magnetic field lines that feed the main emission region, could be responsible for the positive circular polarization in the IR, the position angle variation and the excess flux during the faint phase of the white light observations which cannot be accounted for with a single emission region.  相似文献   

18.
We have detected the optical counterpart of the proposed double degenerate polar RX J1914+24. The I -band light curve is modulated on the 9.5-min period seen in X-rays. There is no evidence for any other periods. No significant modulation is seen in J . The infrared colours of RX J1914+24 are not consistent with a main-sequence dwarf secondary star. Our ASCA spectrum of RX J1914+24 is typical of a heavily absorbed polar and our ASCA light curve also shows only the 9.5-min period. We find that the folded I band and X-ray light curves are out of phase. We attribute the I -band flux to the irradiated face of the donor star. The long-term X-ray light curve shows a variation in the observed flux of up to an order of magnitude. These observations strengthen the view that RX J1914+24 is indeed the first double degenerate polar to be detected. In this light, we discuss the synchronizing mechanisms in such a close binary and other system parameters.  相似文献   

19.
We have re-analysed the ASCA X-ray spectrum of the bright symbiotic star CH Cyg, which exhibits apparently distinct hard and soft X-ray components. Our analysis demonstrates that the soft X-ray emission can be interpreted as scattering of the hard X-ray component in a photoionized medium surrounding the white dwarf. This is in contrast to previous analyses in which the soft X-ray emission was fitted separately and assumed to arise independently of the hard X-ray component. We note the striking similarity between the X-ray spectra of CH Cyg and Seyfert 2 galaxies, which are also believed to exhibit scattering in a photoionized medium.  相似文献   

20.
We re-analyse the ASCA Ginga X-ray data from BY Cam, a slightly asynchronous magnetic accreting white dwarf. The spectra are strongly affected by complex absorption, which we model as a continuous (power-law) distribution of covering fraction and column of neutral material. This absorption causes a smooth hardening of the spectrum below ∼ 3 keV, and is probably produced by material in the pre-shock column which overlies the X-ray emission region. The ASCA data show that the intrinsic emission from the shock is not consistent with a single-temperature plasma. Significant iron L emission coexisting with iron K shell lines from H- and He-like iron clearly shows that there is a wide range of temperatures present, as expected from a cooling shock structure. The Ginga data provide the best constraints on the maximum temperature emission in the shocked plasma, with kT max = 21+18−4 keV. Cyclotron cooling should also be important; it suppresses the highest temperature bremsstrahlung components, so the X-ray data provide only a lower limit on the mass of the white dwarf of M  ≥ 0.5 M⊙. Reflection of the multitemperature bremsstrahlung emission from the white dwarf surface is also significantly detected.   We stress the importance of modelling all these effects in order to gain a physically self-consistent picture of the X-ray spectra from polars in general and BY Cam in particular.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号