首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Particle trapping in stratified estuaries: Application to observations   总被引:1,自引:0,他引:1  
Estuarine turbidity maxima (ETM) retain suspended particulate matter (SPM) through advection, settling, aggregation, and nonlinearities in bed processes, but the relative importance of these processes varies strongly between systems. Observations from two strongly advective systems (the Columbia and Fraser Rivers) are used to investigate seasonal cycles of SPM retention and the effects of very high flows. Results for the Fraser and Columbia plus literature values for 13 other estuaries illustrate the applicability of scaling parameters and the response of ETM phenomena to a range of river flow (U r ) levels and tidal forcing. The most efficient trapping (represented by Trapping EfficiencyE, the ratio of maximum ETM concentration to the source SPM concentration) occurs for low ratios of river flow to tidal current amplitude (UT), represented by low values of the Supply number Sr.E in the Columbia is found to be maximal in a null zone where advection or tidal asymmetry (represented by Advection numberA) is weak(A ∼ 0). The ratio of aggregation to disaggregation (the Floc number Θ) is maximal on neap tides, while the ratio of erosion to deposition (the Erosion number P) is maximal on spring tides. The ratio of settling velocity to vertical mixing (Rouse numberP) is relatively constant in the Columbia ETM(P ∼ 0.7), because particle settling velocity and turbulence levels adjust together. Assuming that this result applies broadly, scaling variables and data are combined to express ETM properties in terms of the friction velocity (U*),U r , andU T , allowing a considerable simplification of the parameters used to describe ETM.  相似文献   

2.
3.
Using both the photosynthetically active chlorophylla (chla) content of the organic carbon fraction of suspended particulate matter (chla/POC) and the percentage of photosynthetically, active chla in fluorometrically measured chla plus pheophytina (% chla), we determined that under specified hydrodynamic conditions, neap-spring tidal differentiation in particle dynamics could be observed in the Columbia River estuary. During summer time neap tides, when river discharge was moderate, bottom chla/POC remained relatively unchanged from riverine chla/POC over the full 0–30 psu salinity range, suggesting a benign trapping environment. During summertime spring tides, bottom chla/POC decreased at mid range salinities indicating resuspension of chla-poor POC during flood-ebb transitions. Bottom % chla during neap tides tended to average higher than that during spring tides, suggesting that neap particles were more recently hydrodynamically trapped than those on the spring tides. Such differentiation supported the possibility of operation of a particle conveyor belt process, a process in which low-amplitude neap tides favor selective particle trapping in estuarine turbidity maxima (ETM)., while high-amplitude spring tides favor particle resuspension from the ETM. Untrapped river-derived particles at the surface would continue through the estuary to the coastal ocean on the neap tide; during spring tide some particles eroded from the ETM would combine with unsettled riverine particles in transit toward the ocean. Because in tensified biogeochemical activity is associated with ETM, these neap-spring differences may be critical to maintenance and renewal of populations and processes in the estuary. Very high river discharge (15, 000 m3 s−1) tended to overwhelm neap-spring differences, and significant oceanic input during very low river discharge (5,000 m3 s−1) tended to do the same in the estuarine channel most exposed to ocean input. During heavy springtime phytoplankton blooms, development of a thick bottom fluff layer rich in chla also appeared to negate neapspring differentiation because spring tides apparently acted to resuspend the same rich bottom material that was laid down during neap tides. When photosynthetic assimilation numbers [μgC (μgchl,a)−1h−1] were measured across, the full salinity range, no neap-spring differences and no river discharge effects occurred, indicating that within our suite of measurements the compositional distinction of suspended particulate material was mainly a function of chla/POC, and to a lesser extent % chla. Even though these measurements suggest the existence of a conveyor belt process, proof of actual operation of this phenomenon requires scalar flux measurements of chla properties in and out of the ETM on both neap and spring tides.  相似文献   

4.
Bertioga Channel is a partially mixed (type 2) tidal estuary on the coastal plain of São Paulo, Brazil. Hourly current and salinity measurements during neap and spring tides in July 1991 yielded information about the physical structure of the system. Peak along-channel velocities varied from 40 cm s?1 to 60 cm s?1 during flood tides and from 70 cm s?1 to 100 cm s?1 during ebb tides. Net vertical velocity profiles indicate that the net current reverses directions at a depth of 2.5–3.0 m in the halocline. Due to appreciable fortnightly tidal modulation, the estuary alternates from being highly stratified (type 2b) during neap tides, with advection and diffusion contributing equally to the net upstream salt flux, to being moderately stratified (type 2a) during spring tides, when 90% of the net upstream salt transport is the result of effective tidal diffusion. Decomposition of the salt flux indicates that the relative contribution to the upstream salt transport by gravitational circulation shear is greater than the oscillatory tidal flux by a factor of 2.6 during neap tides. The oscillatory tidal flux is generated by the correlation of the tidal components of the u-velocity and salinity and is responsible for approximately the same amount of upstream salt transport, during neap and spring tides. However, during spring tides, this oscillatory term is greater than the other salt flux terms by a factor of 1.4. The total salt transport, through a unit width of the section perpendicular to the flow, was within 2% of the sum of the seven major decomposed, advective and dispersive terms. On the assumption that the Bertioga Channel is laterally homogeneous, the results also indicate that the estuary is not in steady state with respect to salt flux.  相似文献   

5.
The Delaware Estuary has a history of high anthropogenic nutrient loadings but has been classified as a high-nutrient, low-growth system due to persistent light limitation caused by turbidity. While the biogeochemical implications of light limitation in turbid estuaries have been well-studied, there has been minimal effort focused on the connectivity between hydrodynamics, sediment dynamics, and light limitation. Our understanding of sediment dynamics in the Delaware Estuary has advanced significantly in the last decade, and this study describes the impact of spatiotemporal variability of the estuarine turbidity maximum (ETM) on light-limited productivity. This analysis uses data from eight along-estuary cruises from March, June, September, and December 2010 and 2011 to evaluate the impact of the turbidity maximum on production. Whereas the movement of the ETM is controlled primarily by river discharge, the structure of the ETM is modulated by stratification, which varies with both river discharge and spring-neap conditions. We observe that the ETM’s location and structure control spatial patterns of light availability. To evaluate the relative contributions of river discharge and spring-neap variability to the location of phytoplankton blooms, we develop an idealized two-dimensional Regional Ocean Modeling System (ROMS) numerical model. We conclude that high river flows and neap tides can drive stratification that is strong enough to prevent sediment from being resuspended into the surface layer, thus providing light conditions favorable for primary production. This study sheds light on the role of stratification in controlling sediment resuspension and promoting production, highlighting the potential limitations of biogeochemical models that neglect sediment processes.  相似文献   

6.
An ephemeral estuarine turbidity maximum (ETM) occurs at high water in the macrotidal Taf estuary (SW Wales, United Kingdom). A new mechanism of ETM formation, due to resuspension and advection of material by flood tidal currents, is observed that differs from classical mechanisms of gravitational circulation and tidal pumping. The flood tide advances across intertidal sand flats in the main body of the estuary, progressively entraining material from the rippled sands. Resuspension creates, a turbid front that has suspended sediment concentrations (SSC) of about 4,000 mg I−1 by the time it reaches its landward limit which is also the landward limit of salt penetration. This turbid body constitutes the ETM. Deposition occurs at high slack water but the ETM retains SSC values up to 800 mg I−1, 1–2 orders of magnitude greater than ambient SSC values in the river and estuarine waters on either side. The ETM retreats down the estuary during the ebb; some material is deposited thinly across emergent intertidal flats and some is flushed out of the estuary. A new ETM is generated by the next flood tide. Both location and SSC of the ETM scale on Q/R3 where Q is tidal range and R is river discharge. The greatest expression of the ETM occurs when a spring tide coincides with low river discharge. It does not form during high river discharge conditions and is poorly developed on neap tides. Particles in the ETM have effective densities (120–160 kg m−3) that are 3–4 times less than those in the main part of the estuary at high water. High chlorophyll concentrations in the ETM suggest that flocs probably originate from biological production in the estuary, including production on the intertidal sand flats.  相似文献   

7.
Tidal currents and the spatial variability of tidally-induced shear stress were studied during a tidal cycle on four intertidal mudflats from the fluvial to the marine part of the Seine estuary. Measurements were carried out during low water discharge (<400 m3 s−1) in neap and spring tide conditions. Turbulent kinetic energy, covariance, and logarithmic profile methods were used and compared for the determination of shear stress. The cTKE coefficient value of 0.19 cited in the literature was confirmed. Shear stress values were shown to decrease above mudflats from the mouth to the fluvial part of the estuary due to dissipation of the tidal energy, from 1 to 0.2 N m−2 for spring tides and 0.8 to 0.05 N m−2 for neap tides. Flood currents dominate tidally-induced shear stress in the marine and lower fluvial estuary during neap and spring tides and in the upper fluvial part during spring tides. Ebb currents control tidally-induced shear stress in the upper fluvial part of the estuary during neap tides. These results revealed a linear relationship between friction velocities and current velocities. Bed roughness length values were calculated from the empirical relationship given by Mitchener and Torfs (1996) for each site; these values are in agreement with the modes of the sediment particle-size distribution. The influence of tidal currents on the mudflat dynamics of the Seine estuary was examined by comparing the tidally-induced bed shear stress and the critical erosion shear stress estimated from bed sediment properties. Bed sediment resuspension induced by tidal currents was shown to occur only in the lower part of the estuary.  相似文献   

8.
On different time scales of suspended matter dynamics in the Weser estuary   总被引:1,自引:0,他引:1  
Long-term observations in the Weser estuary (Germany) between 1983 and 1997 provide insight into the response of the estuarine turbidity maximum (ETM) under a wide range of conditions. In this estuary the turbidity zone is closely tied to the mixing zone, and the positions of the ETM and the mixing zone vary with runoff. The intratidal suspended particulate matter (SPM) concentrations vary due to deposition during slack water periods, subsequent resubsequent and depletion of temporarily-formed and spatially-limited deposits during the following ebb or flood, and subsequent transport by tidal currents. The corresponding time history of SPM concentrations is remarkably constant over the years. Spring tide SPM concentrations can be twice the neap tide concentrations or even larger. A hysteresis in SPM levels between the falling and rising spring-neap cycle is attributed to enhanced resuspension by the stronger spring tidal currents. There is evidence that the ETM is pushed up-estuary during times of higher mean water levels due to storms. During river floods the ETM is flushed towards the outer estuary. If river floods and their decreasing parts occur during times of relatively high mean water levels, the ETM seems to be maintained in the outer estuary. If river floods and their decreasing parts occur during times of relatively low mean water levels, the ETM seems to loose inventory and may need up to half a year of non-event conditions to gain its former magnitude. During this time seasonal effects may be involved. Analyses of storm events and river floods have revealed that the conditions in the seaward boundary region play an equally important role for the SPM dynamics as those arising from the river.  相似文献   

9.
We examined microbial processes and the distribution of particulate materials in the estuarine turbidity maximum (ETM, salinity 2–10 PSS) of northern San Francisco Bay on three cruises during the late spring of 1994 (low flow: April 19, April 28, May 17) and two cruises during the early summer of 1995 (high flow; June 13, July 18). Under low flow conditions, chlorophyll concentrations decreased by a factor of 2–4, bacterial abundance decreased by 20%, and L-leucine incorporation rate decreased by a factor of about 2 over a salinity range of 0–2 PSS, then remained relatively constant at higher salinities. Over this same salinity range under high flow conditions, chlorophyll concentration was c. twofold lower, bacterial abundance was c. threefold higher, and L-leucine incorporation rate was in the same range as during low flow. Under high flow conditions, chlorophyll concentration increased by 20%., bacterial abundance decreased by a factor of 2, and L-leucine incorporation rate decreased by half (June 13) or remained unchanged (July 19) with increasing salinity. Under low flow conditions the concentration of suspended particulate material (SPM), particulate organic carbon (POC), and particulate organic nitrogen (PON) increased 3–10 fold with salinity, to a maximum at intermediate salinities (c. 6 PSS). As a result, the contribution of phytoplankton to POC decreased from a maximum of 32% in fresh water to c. 6% in the ETM. The contribution of bacterial biomass similarly decreased from 5% in fresh water to 0.8% in the ETM. The C:N ratio of particulate material increased from <10 in fresh water to >12 in the ETM. High variability in abundance estimates confounded analysis of patterns in bacterial biomass partitioning between particle-associated and free-living fractions along the salinity gradient. However, the partitioning of L-leucine incorporation shifted dramatically from being predominantly by free-living cells in fresh water to being predominantly by particleassociated populations in the ETM. The metabolic fate of thymidine taken up differed, between particle-associated and free-living bacteria, suggesting some metabolic divergence of these assemblages.  相似文献   

10.
The morphology and migration rate of tidal bedforms are important because of their use in interpretation of modern and ancient sediment transport regimes. Tidal flow, megaripple morphology and migration were studied in the mesotidal Mawddach Estuary, North Wales, to examine the veracity of published flow-bedform relationships, quantify spatial variations in migration and assess consequences for palaeoflow reconstruction. Two transects were surveyed along a megarippled intertidal shoal (mean grain size 280 μm) for a period of 22 semi-diurnal tidal cycles. A vertical array of current meters recorded tidal current profiles at the centre of one of the transects. Flood tidal currents dominate at Fegla Fach shoal, with peak velocities over 1 m s?1 at spring tides, and 0.5 m s ?1 at neaps, and bed sediment transport was also flood-dominated. Over the lunar cycle, the morphology of the megaripples on the survey lines was divisible into three phases: 1 the neap mode-consisting of near-moribund two-dimensional (2-D) flood-orientated megaripples of wavelength c. 6 m and height c. 0.2 m; 2 a transitional mode-where, on rising tidal ranges, scour pits formed and developed into 3-D megaripples which underwent net migration with the flood tide; 3 the spring mode-consisting of 3-D megaripples of wavelength c. 4 m and height c. 0.2 m. Despite complete re-orientation by the ebb tide, these were recognizable from one low water survey to the next, and net migration was c. 1 m per tide with the flood tide. We infer the presence of the equilibrium ‘spring tidal form’ occurring as flood-orientated megaripples during the flood tide. The data support previously reported separation of 2-D and 3-D megaripples at a depth to grain size ratio of 8000, and at a depth-mean velocity of the dominant tide (Umaxdom) of 0.75-0.8 m s?1. A migration threshold exists at Umaxdom of c. 0.53-0.57 m s?1. Measures of migration which might be used on preserved sections have been applied to the data. These measures systematically overestimated bedform migration at most stages of the lunar cycle (by <25% at spring tides and <140% in the post-spring transition period), but were accurate when the megaripples had developed into their 'spring tidal form’. There is significant variation of migration rates within the survey populations. We conclude that whilst the occurrence of megaripple cross-sets may be used as a palaeoflow indicator, and sedimentary structures associated with 2-D to 3-D transitions may also be indicative of palaeoflows, there are likely to be significant uncertainties involved in using tidal bundles as an indication of sediment transport rates.  相似文献   

11.
A field investigation of temporal and spatial changes in wind and wave characteristics, runup and beach water table elevation was conducted on the foreshore of an estuarine beach in Delaware Bay during neap (April 9, 1995) and spring (April 16, 1995) tides under low wave-energy conditions. The beach has a relatively steep, sandy foreshore and semi-diurnal tides with a mean range of 1.6 m and a mean spring range of 1.9 m. Data from a pressure transducer placed on the low tide terrace reveal a rate of rise and fall of the water level on April 16 of 0.09 mm s−1 resulting in a steeper tidal curve than the neap tide on April 9. Data from three pressure transducers placed in wells in the intertidal foreshore reveal that the landward slope of the water table during the rising neap tide was lower than the slope during spring tide, and there was a slower rate of fall of the beach water table relative to the fall of the tide. Wave heights were lower on April 9 (significant height from 17.1 min records <0.16 m). The water table elevation was 0.08 m higher than the water in the bay at the time of high water, when maximum runup elevation was 0.29 m above high water and maximum runup width was 2.0 m. The elevation of the water table was 0.13 m higher than the maximum elevation of water level in the bay 74 min after high water, when wave height was 0.12 m and wave period was 2.7 s. The use of mean bay water level at high tide will underpredict the elevation of the water table in the beach, and demarcation of biological sampling stations across the intertidal profile based on mean tide conditions will not accurately reflect the water content of the sandy beach matrix.  相似文献   

12.
High-resolution current velocity and suspended sediment concentration (SSC) data were collected by using an Acoustic Doppler Current Profiler (ADCP) at two anchor stations and a cross-section in the South Channel of the Changjiang River mouth during meso and neap tides on Nov. 16, 2003. In addition, tidal cycle (13-hour) observation at two stations was carried out with traditional methods during the spring tide. Results indicated that resuspension occurred not only at the flood and ebb maximum, but also in the early phase of ebb in the meso and neap tide. When tidal current transited from high to ebb phase, current speed accelerated. Subsequently, fine-grained sediment with low critical threshold was resuspended and increased concentration. The river mouth area remained in siltation in the meso and neap tidal phase during the observation season, with calculated resuspension flux in the order of magnitude of 10−4–10−7 kg·m−2/s. Suspended sediment transport in the South Channel was dominated by freshwater discharge, but the Storks drift, vertical circulation and vertical shear effect due to tidal oscillation also played an important role in resuspension and associated sediment transport. In contrast, resuspension sediment flux in the spring tide was larger than that in meso and neap tide, especially at the ebb maximum and flood maximum. The present study revealed that intensive resuspension corresponded well with the larger current velocity during winter. In addition, the ‘tidal pumping’ effect and tidal gravity circulation were also vital for forming the turbidity maximum in the Changjiang River estuary.  相似文献   

13.
An iterative least-squares optimization technique is utilized in conjunction with a one-dimensional representation of the mass transport equation to generate theoretical210Pb concentration/depth profiles beneath the water-sediment interface that are best-fit approximations to directly measured210Pb concentration/depth profiles at various locations within the Great Lakes system. The outputs of such an optimization analysis are the diffusion coefficientsD M (molecular) andD B (bioturbation) associated with the transport of210Pb radionuclides in lake bed sediments. For all stations studied, the estimated values ofD B are consistently larger than the estimated values ofD M , emphasizing the importance of accounting for the effects of bioturbation in the modelling of contaminant transport through lake bed sediments.  相似文献   

14.
在南极格罗夫山普通球粒陨石的风化等级划分中出现了和Wlotzka(1993)标准矛盾的现象。部分普通球粒陨石的金属和陨硫铁氧化不足20%,然而硅酸盐却发生了蚀变。如果考虑金属的氧化量,这种风化程度应为W1,如果考虑硅酸盐的蚀变,这种风化程度应为W5。对于存在如此大的差异本文给出了折衷的解决办法——对金属和硅酸盐同时进行风化等级划分。金属的风化等级划分为W_m0-W_m4五个,硅酸盐风化等级划分为W_s0-W_s3四个。依据新方案,GRV 021588、021636、021772和021957等4块无法用Wlotzka(1993)标准来确定风化等级的陨石的风化等级均为W_m1-W_s1。而陨石GRV 023312的风化等级为W_m3-W_s0,其相当于Wlotzka(1993)标准中的W3。  相似文献   

15.
Systematic studies on the suspended particulate matter (SPM) measured on a seasonal cycle in the Mandovi Estuary, Goa indicate that the average concentrations of SPM at the regular station are ∼20mg/l, 5mg/l, 19mg/l and 5mg/l for June–September, October–January, February–April and May, respectively. SPM exhibits low-to-moderate correlation with rainfall indicating that SPM is also influenced by other processes. Transect stations reveal that the SPM at sea-end stations of the estuary are at least two orders of magnitude greater than those at the river-end during the monsoon. Estuarine turbidity maximum (ETM) of nearly similar magnitude occurs at the same location in two periods, interrupted by a period with very low SPM concentrations. The ETM occurring in June–September is associated with low salinities; its formation is attributed to the interactions between strong southwesterly winds (5.1–5.6ms−1) and wind-induced waves and tidal currents and, dominant easterly river flow at the mouth of the estuary. The ETM occurring in February–April is associated with high salinity and is conspicuous. The strong NW and SW winds (3.2–3.7ms−1) and wind-driven waves and currents seem to have acted effectively at the mouth of the estuary in developing turbidity maximum. The impact of sea breeze appears nearly same as that of trade winds and cannot be underestimated in sediment resuspension and deposition  相似文献   

16.
Methods for calculating constant terminal-settling velocities (vs)of spheres are examined for their validity and limitations of usefulness. A different approach is given which accurately predicts vs for spheres over a wide range of hydraulic conditions based on past experimental work. The theory behind this approach is given along with the listing of a fortran program which directs the calculations of vs.The practical limits of the author's method are stated, and tables of vs may be generated from the program for common mineral densities over a range of sizes useful to sedimentologists.  相似文献   

17.
Data are presented on dissolved oxygen (DO) concentrations and their relationship to salinity, suspended particulate matter (SPM), concentrations, and the turbidity maximum in the Humber-Ouse Estuary, United Kingdom, during summer 1995. Measurements in the upper Humber during March 1995 showed DO in the range 82% to 87% of saturation. Suspended particulate matter concentrations were <5000 mg l?1 and salinity was in the range 0.5 to 12. In contrast, a pronounced DO sag occurred in the upper reaches of the Ouse during medium and spring tide, summer conditions. The DO minimum was essentially an anoxic level and was associated with the location of the turbidity maximum, at salinities between about 0.4 and 1.5. SPM concentrations at 1 m beneath the surface reached 25,000 mg l?1 in the turbidity maximum, between about 20 km and 40 km from the tidal limit. Suspended particulate matter concentrations were much lower at neap tides, although dense suspensions of SPM (>60,000 mg l?1) occurred within 1 m of the bed in the turbidity maximum region. A spring-neap record showed a dramatic and tidally controlled decrease in DO at very low salinities as the tides progressed from neaps to springs. An anchor station located down-channel of the turbidity maximum showed that about 95% of the variance in DO, which varied from 28% at low-water slack to 67% at high-water slack, could be explained in terms of salinity variation. At the up-channel margins of the turbidity maximum, DO increased from zero (anoxia) near high water to 60% near low water slack, in contrast to the behavior down-channel of the turbidity maximum. About 82% of the variance in DO could be explained in terms of salinity variations alone. Only 43% of the DO variance could be explained in terms of SPM alone. Up-channel of the turbidity maximum, SPM concentrations were relatively low (<3000 mg l?1) and DO levels varied from 48% of saturation near high water to 83% near low water slack. About 76% of the variance in DO could be explained in terms of salinity variations alone. Within the turbidity maximum region, DO varied from <2% saturation on the early flood and late ebb and maximized around 7% at high water slack. About 63% of the variance in DO could be explained in terms of salinity variation alone. This increased to 70% when suspended particulate matter was taken into account. Only 29% of the DO variance could be explained in terms of suspended particulate matter alone. Because bacteria were likely to have been the cause of the observed reduction in DO, the numbers of bacteria, both free-living and attached to particles, were measured in the turbidity maximum region. Numbers of free-living bacteria were low and most of the bacteria were attached to sediment particles. There was a linear correlation between total bacterial number and suspended particulate matter concentration, suggesting that the strong DO demand was exerted locally as a result of bacterial activity associated with increased suspended particulate matter concentrations. An order of magnitude analysis of DO consumption within the Ouse’s turbidity maximum, based on the premise that DO depletion was directly related to suspended particulate matter concentrations and that DO addition was due to reaeration, indicates that complete deoxygenation could have occurred with an oxygen depletion rate of ~0.01 mg DO h?1/g suspended particulate matter during the residence time of waters within the turbidity maximum (~7 d). This rate was sufficiently fast that anoxic to aerobic conditions were able to develop a spring-neap periodicity within the turbidity maximum, but too slow to generate substantial intratidal fluctuations in DO. This is in accordance with the observations, which show that relatively little of the intratidal variance in DO could be explained in terms of suspended particulate matter fluctuations, whereas most of the variance could be explained in terms of salinity, which behaved as a surrogate measure for the proximity of the turbidity maximum.  相似文献   

18.
The sampling distribution of the Wstatistic of disjunction has been estimated by Monte Carlo simulation for the case where the underlying distribution is a random rectangular (Poisson) variable that is divided into two groups at an arbitrary position. A transformation to sinh –1 log e Wgave a variable that was acceptably normal, and from this a simple approximation for the distribution is given, together with a diagram of confidence limits of Wfor this case.  相似文献   

19.
A series of cruises was carried out in the estuarine turbidity maximum (ETM) region of Chesapeake Bay in 1996 to examine physical and biological variability and dynamics. A large flood event in late January shifted the salinity structure of the upper Bay towards that of a salt wedge, but most of the massive sediment load delivered by the Susquehanna River appeared to bypass the ETM zone. In contrast, suspended sediments delivered during a flood event in late October were trapped very efficiently in the ETM. The difference in sediment trapping appeared to be due to increases in particle settling speed from January to October, suggesting that the fate of sediments delivered during large events may depend on the season in which they occur. The ETM roughly tracked the limit of salt (defined as the intersection of the 1 psu isohaline with the bottom) throughout the year, but it was often separated significantly from the limit of salt with the direction of separation unrelated to the phase of the tide. This was due to a lag of ETM sediment resuspension and transport behind rapid meteorologically induced or river flow induced motion of the salt limit. Examination of detailed time series of salt, suspended sediment, and velocity collected near the limit of salt, combined with other indications, led to the conclusion that the convergence of the estuarine circulation at the limit of salt is not the primary mechanism of particle trapping in the Chesapeake Bay ETM. This convergence and its associated salinity structure contribute to strong tidal asymmetries in sediment resuspension and transport that collect and maintain a resuspendable pool of rapidly settling particles near the salt limit. Without tidal resuspension and transport, the ETM would either not exist or be greatly weakened. In spite of this repeated resuspension, sedimentation is the ultimate fate of most terrigenous material delivered to the Chesapeake Bay ETM. Sedimentation rates in the ETM channel are at least an order of magnitude greater than on the adjacent shoals, probably due to focusing mechanisms that are poorly understood.  相似文献   

20.
Data are presented from several experiments in the freshwater-saltwater interface (FSI) region of the Tamar Estuary. Longitudinal surveys of salinity and suspended particulate matter (SPM) at high water showed that the location of the FSI could be predicted in terms of a power-law regression with freshwater runoff. Longitudinal transects also were surveyed over periods of several hours. The FSI was observed to advect into the region on the flood with strong vertical mixing. After high water, stratification became intense as fresher water ebbed in the surface layers. The near-bed water in the stratified region began to ebb between 2 h and 3 h before low water. A model of the vertical structure of longitudinal currents showed that the enhanced stratification on the ebb, coupled with the longitudinal density gradient, partly produced this long period of slack, near-bed currents following high water. A strong turbidity maximum (TM) occurred during spring tides and was located slightly up-estuary of the FSI at high water. Longitudinal transects during a period of low freshwater runoff and large neap tide showed that at the start of the flood the TM was associated with the FSI region. As the FSI advected up-estuary on the flood there was considerable resuspension of sediment at the FSI. Some of this SPM moved with the FSI and reached the limit of saline intrusion, where it formed a slowly-eroding TM as particles settled during the long, high-water slack period. As the near-bed currents increased on the ebb and the FSI moved down-estuary, strong vertical mixing and resuspension of recently deposited sediment occurred in the unstratified water behind the FSI and the associated TM advected down-estuary. Additional effects were present with stronger tides and increased runoff.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号