首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Theoretical investigation has been made to study the envelope excitations of ion-acoustic solitons (IAS) in plasma composed of electrons, positrons, ions and dust particles. A nonlinear Schrödinger equation which describes the modulational instability of the IAS is derived by using the multiple scale method. The dispersive and nonlinear coefficients are obtained which depend upon the temperature of the ions, concentration of the positrons, electrons and dust particles. The modulationally stable and unstable regions are studied numerically for a wide range of parameters. It is found that these parameters play significant role in the formation of bright and dark envelope solitons in this plasma system.  相似文献   

2.
Existence and characteristics of ion-acoustic (IA) wave modulation are studied in a plasma with two-temperature electron satisfying kappa distribution. Based on the multiple time scales perturbation, a nonlinear Schrödinger equation (NLS) is derived. Similar to the case of double Maxwellian electrons, both polarities of envelope soliton can exist over restricted ranges of the fractional hot electron density ratio and two-temperature superthermal electrons. The transition from stable dark solitons to unstable bright ones shifts to the smaller wavelength regions in the presence of cool and hot superthermal electrons. It is shown that the small values of the hot electron populations leads to shrinking the modulation instability region. It is also found the instability growth rate reduces due to the presence of hot electrons. The result of present investigation contributes to the physics of wave modulation in Saturn’s magnetosphere where two-temperature electrons with kappa distribution exist.  相似文献   

3.
A theoretical model is presented to investigate the existence, formation, and possible realization of nonlinear envelope ion acoustic solitary waves which accompany collisionless electron-positron-ion plasmas with high-energy electrons and positrons (represented by kappa distribution). By employing the reductive perturbation method, the hydrodynamic model and the Poisson equation are reduced to nonlinear Schr?dinger equation. The effects of the superthermal parameters, as well as ion-to-electron temperature ratio on the propagation and stability of the envelope solitary waves are examined. The superthermal parameters (ion-to-electron temperature ratio) give rise to instability (stability) of the solitary excitations, since the instability window is strongly modified. Finally, the present results should elucidate the excitation of the nonlinear ion-acoustic solitary wave packets in superthermal electron-positron-ion plasmas, particularly in interstellar medium.  相似文献   

4.
The Ulysses Unified Radio and Plasma Wave Experiment (URAP) has observed Langmuir, ion-acoustic and associated solar type III radio emissions in the interplanetary medium. Bursts of 50–300 Hz (in the spacecraft frame) electric field signals, corresponding to long-wavelength ion-acoustic waves are often observed coincident in time with the most intense Langmuir wave spikes, providing evidence for the electrostatic decay instability. Langmuir waves often occur as envelope solitons, suggesting that strong turbulence processes, such as modulational instability and soliton formation, often coexist with weak turbulence processes, such as electrostatic decay, in a few type III burst source regions.  相似文献   

5.
Arbitrary amplitude ion-acoustic solitary waves propagating in a magnetized plasma composed of positive ions, superthermal electrons and positrons are investigated. For this purpose, the ions are represented by the hydrodynamical fluid equations while the non-Maxwellian electrons and positrons densities are assumed to follow kappa (κ) distribution. The basic equations are reduced to a pseudoenergy-balance equation. Existence conditions for large amplitude solitary waves are presented. The analytical and numerical analysis of the latter show that the ion-acoustic solitary wave can propagate only in the subsonic region in our plasma system and it is significantly influenced by the plasma parameters. The present analysis could be helpful for understanding the nonlinear ion-acoustic solitary waves propagating in interstellar medium and pulsar wind, which contain an excess of superthermal particles.  相似文献   

6.
The propagation of dust ion acoustic waves is studied in plasmas composed of superthermal distributed electrons and stationary dust particles. The nonlinear Schrödinger equation is derived using the reductive perturbation technique and the modulational instability of dust ion acoustic waves is analyzed. Parametric investigations indicate that the presence of superthermal distributed electrons significantly modify the modulational instability and its growth rate. The effect of particle relative density on the wave characters is also investigated.  相似文献   

7.
Two envelope soliton events below the H + gyrofrequency with localized density depletion were discovered in low auroral region (∼ 1760 km)by Freja satellite. These events were correlated in time with the observations of the ratio of oxygen ion density to hydrogen ion density sharp increase and the electrons energization. These envelope solitons have a characteristic frequency at ∼ 180–190 Hz, which are obviously different from the electron-ion lower hybrid wave frequency and the helium ion gyrofrequency in low auroral plasma, but it is close to the resonancefrequency of hydrogen ion-oxygen ion hybrid wave. A modulational instability model of an ion-ion hybrid wave has been discussed here. It is found that the envelope soliton below the H + gyrofrequency in low auroral region may be generated by this modulational instability on condition that the local oxygen ion density is larger than the local hydrogen ion density. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Propagation of cylindrical and spherical ion acoustic solitary waves in plasmas consisting of cold ions, superthermal electrons and thermal positrons are investigated. It is shown that cylindrical/spherical Korteweg-de-Vries equation governs the dynamics of ion-acoustic solitons. The effects of nonplanar geometry and also superthermal electrons on the characteristics of solitary wave structures are studied using numerical simulations. Obtained results are compared with the results of the other published papers and errors in the results of some papers are pointed.  相似文献   

9.
10.
The impact of superthermal particles on nonlinear drift solitary and shock like structures are presented in an inhomogeneous electron-ion plasma with κ-distributed electrons. It is shown that the amplitude of the drift solitons and shocks is modified significantly in the presence of superthermal particles. The condition for the existence of drift solitons is found modified in the presence of higher energy particles. Furthermore, Kadomtsev–Petviashvili (KP) equation is also derived for the present plasma model.  相似文献   

11.
The propagation of nonlinear electron-acoustic waves (EAWs) in an unmagnetized collisionless plasma system consisting of a cold electron fluid, superthermal hot electrons and stationary ions is investigated. A reductive perturbation method is employed to obtain a modified Korteweg–de Vries (mKdV) equation for the first-order potential. The small amplitude electron-acoustic solitary wave, e.g., soliton and double layer (DL) solutions are presented, and the effects of superthermal electrons on the nature of the solitons are also discussed. But the results shows that the weak stationary EA DLs cannot be supported by the present model.  相似文献   

12.
13.
Investigation of nonlinear wave modulation of electron-acoustic solitary wave packets in planar as well as nonplanar geometry is carried out for an unmagnetized two temperature plasma composed of cold and hot (featuring q-nonextensive distribution) electrons with stationary ions. It is shown that in such plasma, propagation of EA wave packets is governed by a modified NLSE which accounts for the geometrical effect and the nonextensivity of the hot electron species. It is found that the nature of the modulational instabilities would be significantly modified due to the geometrical effects, density ratio α of the hot-to-cold electrons species as well as their temperature ratio θ. Also, there exists a modulation instability period for the cylindrical and spherical envelope excitations, which does not exist in the one-dimensional case. Furthermore, spherical EA solitary wave packets are more structurally stable to perturbations than the cylindrical ones. The relevance of the current study to EA wave modulation in auroral zone plasma is highlighted.  相似文献   

14.
In this paper, the ion-acoustic solitons in a weakly relativistic electron-positron-ion plasma have been investigated. Relativistic ions, Maxwell-Boltzmann distributed positrons and nonthermal electrons are considered in collisionless warm plasma. Using a reductive perturbation theory, a Korteweg-de Vries (KdV) equation is derived, and the relativistic effect on the solitons is studied. It is found that the amplitude of solitary waves of the KdV equation diverges at the critical values of plasma parameters. Finally, in this situation, the solitons of a modified KdV (mKdV) equation with finite amplitude is derived.  相似文献   

15.
Properties of fully nonlinear electron-acoustic solitary waves in an unmagnetized and collisionless electron-positron-ion plasma containing cold dynamical electrons, superthermal electrons and positrons obeying Cairns’ distribution have been analyzed in the stationary background of massive positive ions. A linear dispersion relation has been derived, from which it is found that even in the absence of superthermal electrons, the superthermal positron component can provide the restoring force to the cold inertial electrons to excite electron-acoustic waves. Moreover, superthermal electron and positron populations seem to enhance the electron acoustic wave phase speed. For nonlinear analysis, Korteweg-de Vries equation is obtained using the reductive perturbation technique. It is found that in the presence of positron both hump and dip type solitons appear to excite. The present work may be employed to explore and to understand the formation of electron acoustic soliton structures in the space and laboratory plasmas with nonthermal electrons and positrons.  相似文献   

16.
Distributions of plasma with excess numbers of superthermal electrons are common in space environments and double layer (DL) is one of the very important electrostatic nonlinear wave structures ubiquitous in plasma systems. Based on the modified Zakharov equations, the DLs are studied in the strong turbulent plasmas with Kappa distributed electrons. It appears that in the strong turbulence regime, the presence of additional superthermal particles does not make qualitative changes on the DLs behavior, but modify the thicknesses of the DLs.  相似文献   

17.
Ion-acoustic (IA) solitons in a collisionless plasma consisting of positive and negative ions and superthermal electrons are studied by using the reductive perturbation method. The basic set of fluid equations is reduced to Korteweg-de Vries (K-dV) and modified Korteweg-de Vries (mK-dV) equations. It is found that both compressive and rarefactive solitons can be propagated in this system. Also it is shown that at critical concentration of positive ions mK-dV solitons coexist. The effects of spectral index kappa, positive to negative ion density ratio and mass ratio of positive to negative ions on IA solitons structure are also discussed.  相似文献   

18.
Amplitude modulation of quantum ion-acoustic waves (QIAWs) in a quantum electron-pair-ion plasma is studied. It is shown that the quantum coupling parameter H (being the ratio of the plasmonic energy density to the Fermi energy) is ultimate responsible for the modulational stability of QIAW packets, without which the wave becomes modulational unstable. New regimes for the modulational stability (MS) and instability (MI) are obtained in terms of H and the positive to negative ion density ratio β. The growth rate of MI is obtained, the maximum value of which increases with β and decreases with H. The results could be important for understanding the origin of modulated QIAW packets in the environments of dense astrophysical objects, laboratory negative ion plasmas as well as for the next generation laser solid density plasma experiments.  相似文献   

19.
从理论上得到一组在考虑非静态极限下描述空间飞行器远尾区内等离子体与场之间的非稳态非线性相互作用耦合方程,并对其进行数值解,通过来用数值模拟计算方法,表明由于高频包络场的调制不稳定性,会产生密度空腔和电磁孤波,这对探测隐身飞行器有很重要的意义.  相似文献   

20.
The propagation of nonlinear waves in plasmas consisting of cold electron fluid and superthermal hot electrons and stationary ions is studied. The Korteweg-de Vries (KdV) equation is derived using the reductive perturbation theory. It is found that only the rarefractive solitons can be created. Moreover, the linear dispersion relation and energy of solitary waves in the presence of hot superthermal electrons are derived. Our investigation is of wide relevance to astronomers and space scientists working on interstellar space plasmas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号