首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
In this study to identify the flow pattern and local scour mechanism around pile groups, the flow field was simulated using FLOW-3D software. A pair of pile on a flat-bed channel with side by side and tandem arrangements was investigated. To establish Navier–Stokes equations, the RNGk-ε turbulence model was used and the results were verified using experimental data. In case of FLOW-3D capability, it was found that the software was able to properly simulate the expected interaction between the pile groups. The results of flow field simulation showed that Reynolds number and the pile spacing are the most influential variables in forming vortices. The flow around tandem pile and the downward flow around wake vortices were more intense and complicate in comparison with side by side arrangements and single pile.  相似文献   

2.
Effect of variability in surface roughness on overland flow from different geometric surfaces is investigated using numerical solution of diffusion wave equation. Three geometric surfaces rectangular plane, converging and diverging plane at slopes 1 to 3% are used. Overland flow is generated by applying rainfall at constant intensity of 10 mm/h for period 30 min and 100 min. Three scenarios of spatial roughness conditions viz. roughness increasing in downstream direction, roughness decreasing in downstream direction and roughness distributed at random are considered. Effect of variability of roughness on overland flow in terms of depth, velocity of flow and discharge along the distance from upstream to downstream for different geometric surfaces are discussed in detail. Results from the study indicate that roughness distribution has significant effect on peak, time to peak and overall shape of the overland flow hydrograph. The peak occurs earlier for the scenario when roughness increases in downstream direction as compared to scenario when roughness is decreasing in downstream for all three geometric surfaces due to very low friction factor and more velocity at the top of the domain. The converging plane attains equilibrium state early as compared to rectangular and diverging plane. Different set of random values result in different time to peak and shape of hydrograph for rectangular and diverging plane. However, in case of converging plane, the shape of computed hydrographs remains almost similar for different sets of random roughness values indicating stronger influence of converging geometry than effect due to variation of roughness sequence on computed runoff hydrograph. Hierarchically, the influence of geometry on overland flow is stronger than the influence of slope and the influence of slope is stronger than the influence of roughness. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
The ice flow velocity is a basic feature of glaciers and ice sheets. Measuring ice flow velocities is very important for estimating the mass balance of ice sheets in the Arctic and Antarctic. Traditional methods for measuring ice flow velocity include the use of stakes, snow pits and on-site geodetic GPS and remote sensing measurement methods. Geodetic GPS measurements have high accuracy, but geodetic GPS monitoring points only sparsely cover the Antarctic ice sheets. Moreover, the resolution and accuracy of ice flow velocities based on remote sensing measurements are low. Although the accuracy of the location data recorded by the navigation-grade GPS receivers embedded in short-period seismographs is not as good as that of geodetic GPS,the ice flow velocity can be accurately measured by these navigation-grade GPS data collected over a sufficiently long period. In this paper, navigation-grade GPS location data obtained by passive seismic observations during the 36 th Chinese National Antarctic Research Expedition were used to accurately track the movement characteristics of the ice sheet in the Larsemann Hills of East Antarctica and the Taishan Station area. The results showed that the ice sheet in the two study areas is basically moving northwestward with an average ice flow velocity of approximately 1 m mon-1. The results in the Taishan Station area are basically consistent with the geodetic GPS results, indicating that it is feasible to use the embedded GPS location data from shortperiod seismographs to track the movement characteristics of ice sheets. The ice flow characteristics in the Larsemann Hills are more complex. The measured ice flow velocities in the Larsemann Hills with a resolution of 200 m help to understand its characteristics. In summary, the ice flow velocities derived from GPS location data are of great significance for studying ice sheet dynamics and glacier mass balance and for evaluating the systematic errors caused by ice sheet movements in seismic imaging.  相似文献   

4.
热源激发重力波特征以及波流作用的数值模拟研究   总被引:2,自引:1,他引:1       下载免费PDF全文
丁霞  张绍东  易帆 《地球物理学报》2011,54(7):1701-1710
本文在二维等温可压大气中引入了一个随时间和空间变化的热源扰动,分别以静止风和中纬1月份月平均向东的纬向风急流为背景,对不同背景下热源激发的重力波的传播详细过程及其特性进行了数值模拟研究.热源激发出来的重力波在初始阶段有很宽的频谱范围,随后由于重力波的传播效应,水平波长和垂直波长分布范围随时间都有所减小.顺风传播的重力波的小尺度和低频部分会容易被急流吸收,从而加强了对流层急流,而逆风传播的重力波更容易上传,会导致中间层区域向西的背景风增强.这体现了低层大气急流对中间层大气风场结构的影响.热源的尺度直接决定激发波的尺度;激发波的垂直尺度和时间尺度对热源的变化比其水平尺度更敏感.  相似文献   

5.
利用我们建立的三维分层线性理论计算模式和中尺度数值模式ARPS, 分别研究了三维分层流动过双山脉地形产生的三维线性和非线性山脉重力波和大气船舶的结构特征及其形成机制.线性理论计算结果表明三维三层流动过双山脉地形时,两个山脉各自强迫出一个发散模态的山脉背风波,在第二个山脉背风面,三维三层流动过双山脉地形可以强迫出两个发散模态的拦截背风波,大大加强了对大气环流的拖曳作用.非线性数值模拟结果表明,流动过山所产生的非线性山脉重力波和大气船舶完全不同于三维分层线性理论计算模式所产生的山脉重力波和大气船舶的结构和特征,由于分层流体之间的非线性相互作用,三维三层流动过双山脉地形时,可在第二个山脉背风面激发4个发散模态的拦截背风波. 三维三层流动过双山脉地形所强迫的山脉重力波和大气船舶,具有同三维三层流动过孤立山脉所产生的山脉重力波和大气船舶完全不同的结构和特征,三维流动过双山脉地形对两个山脉之间的距离表现出极大的敏感性.对于相距较远的两个山脉,流动过双山脉所强迫的山脉重力波表现为4个发散模态的拦截背风波,波动的能量相对于相距较近的两个山脉能传播到更高的高度.  相似文献   

6.
A large-scale fluid flow and solute transport model was developed for the crystalline bedrock at Olkiluoto Island, Finland, which is considered as potential deep geological repository for spent nuclear fuel. Site characterization showed that the main flow pathways in the low-permeability crystalline bedrock on the island are 13 subhorizontal fracture zones. Compared to other sites investigated in the context of deep disposal of spent nuclear fuel, most deep boreholes drilled at Olkiluoto are not packed-off but are instead left open. These open boreholes intersect the main fracture zones and create hydraulic connections between them, thus modifying groundwater flow. The combined impact of fracture zones and open boreholes on groundwater flow is simulated at the scale of the island. The modeling approach couples a geomodel that represents the fracture zones and boreholes with a numerical model that simulates fluid flow and solute transport. The geometry of the fracture zones that are intersected by boreholes is complex, and the 3D geomodel was therefore constructed with a tetrahedral mesh. The geomodel was imported into the numerical model to simulate a pumping test conducted on Olkiluoto Island. The pumping test simulation demonstrates that fracture-borehole intersections must be accurately discretized, because they strongly control groundwater flow. The tetrahedral mesh provides an accurate representation of these intersections. The calibrated flow model was then used for illustrative scenarios of radionuclide migration to show the impact of fracture zones on solute transport once the boreholes were backfilled. These mass transport simulations constitute base cases for future predictive analyses and sensitivity studies, since they represent key processes to take into consideration for repository performance assessment.  相似文献   

7.
过套管电阻率测井在寻找剩余油、油藏动态监测方面是一种重要的测井技术.文中依据大数据流技术原理,建立以Hadoop架构为核心、集成仪器响应模拟、仪器关键参数设计、影响因素分析校正、岩石物理参数获取与测井评价为一体的过套管电阻率测井系统.这将打破了测井方法、仪器制造、测井采集、岩石物理与测井解释之间的部门界限,实现了不同用户实时访问统一的数据库,实时解决仪器刻度、数据采集与校正,以及综合解释中的岩石物理参数的选择等问题.基于"众包算法"实现测井解释专家的知识共享.根据过套管电阻率测井各种模拟方法特点,建立对应全空间、半空间、三层模型、径向分层纵向分层所对应不同地层模型所对应的解析法、传输线方程法、边界元、模式匹配法、有限元法所的优化高效模块,在系统中快速实现仪器响应分析、影响因素校正及仪器刻度等功能.实例表明,基于这种模拟方法驱动的大数据流过套管电阻率测井技术,能从过套管电测井数据源头上保证数据质量,从而准确求取剩余油饱和度,实现过套管测井地层评价,进而为油藏监测提供可靠的保证,最终为油藏开发方案的决策提供可靠依据.  相似文献   

8.
An approach to the simulation of spatial random fields is proposed. The target random field is specified by its covariance function which need not be homogeneous or Gaussian. The technique provided is based on an approximate Karhunen–Loève expansion of spatial random fields which can be readily realized. Such an approximate representation is obtained from a correction to the Rayleigh–Ritz method based on the dual Riesz basis theory. The resulting numerical projection procedure improves Rayleigh–Ritz algorithm in the approximation of second-order random fields. Simulations are developed to illustrate the convergence and accuracy of the method presented.
J. C. Ruiz-MolinaEmail:
  相似文献   

9.
当水流通过泄洪建筑物下泄时,水体中所溶解的温室气体(二氧化碳(CO2)、甲烷(CH4)等)会因为所受压力的瞬间改变而导致溶解度降低,从而造成气液之间传质的发生及水中温室气体的排放.然而,目前对于泄流条件下水中温室气体排放的研究还较为缺乏.鉴于原型观测与模型试验的局限性,本文建立了大坝泄流条件下温室气体排放速率的数学模型...  相似文献   

10.
A two-phase (water and oil) flow model in a homogeneous porous media is studied, considering immiscible and incompressible displacement. This model is numerically solved using the Finite Volume Method (FVM) and we compare four numerical schemes for the approximation of fluxes on the faces of the discrete volumes. We describe briefly how to obtain the mathematical and computational models applying axiomatic formulations and generic programming. Two strategies of parallelization are implemented in order to reduce the execution time. We study distributed (cluster of CPUs) and shared (Graphics Processing Units) memory architectures. A performance comparison of these two architectures is done along with an analysis of the four numerical schemes, for a water-flooding five-spot pattern model.  相似文献   

11.
通过初始条件激励下多自由度体系动力响应数值模拟以及对不同模拟方法加速度序列模拟结果的比较分析,研究了PJ方法、BW方法和LL方法的性态,如收敛性、稳定性、精度以及相关问题.取得的主要研究结果是:积分步长Δt=0.1T2min可以作为保证BW方法数值精度和稳定性的充分条件;在该条件得到满足情况下,BW方法较之PJ和LL方法均有显著的综合优势,特别是相对精度方面的优势可以达到数量级水平.研究结果表明,显式方法可在大型有限元动力分析软件中逐渐起到更加重要的作用.  相似文献   

12.
本文从误差解析公式及数值模拟计算两种途径讨论了利用常用地方震相Pg,Sg,PmP,Pn,sPL测定震源深度的误差问题,结果表明,两种途径获取的误差值相当。对于上地壳的地震而言,当直达波走时误差处于0.1 s的量级时,若要将误差控制在3 km左右,则应选用震中距为30 km以内的台站;当走时误差处于0.2 s的量级时,若要控制同等误差,则应选用震中距为20 km以内的台站;如果地震位于下地壳,震中距可适当放宽,然而当震中距更大或走时误差更大时,震源深度的误差则近乎成倍增长。PmP,Pn,sPL对上地壳的震源深度测定误差要小于下地壳,同时对误差的控制较好,不会随震中距的增大而快速增大,震中距处于90 km范围以内且走时误差小于0.1 s时的深度误差基本均能控制在3.5 km以内。此外,本文还通过“棋盘格”的方式定量地分析了速度扰动对走时的影响,并以首都圈地区台网布局为基础,分析了加入首波对震源深度测定的改善效果。这两项数值对比结果均表明,在2%的速度扰动下,只要下地壳和莫霍面的速度参数不同时出现过大或过小现象,加入首波后对震源深度的测定误差则基本能控制在3 km以内,且一致性明显地高于单独使用直达波。   相似文献   

13.
A 2D depth-averaged model for hydrodynamic,sediment transport and river morphological adjustment is presented.The sediment transport submodel considers non-uniform sediment,bed surface armoring,impact of secondary flow on the direction of bed-load transport,and transverse slope of river bed.The bank erosion submodel incorporates a simple simulation method for updating bank geometry during either degradational or aggradational bed evolution.The model is applied to a 180°bend with a constant radius under unsteady flow conditions,and to Friedkin’s laboratory meander channels.The results are in acceptable agreement with measurements,confirming the two dimensional model’s potential in predicting the formation of river meandering and improving understanding of patterning processes.Future researches are needed to clarify some simplifications and limitations of the model.  相似文献   

14.
Shear wave velocities of soils, which provide shear moduli for earthquake response calculations, can be measured clearly and accurately using the down-hole method. Such a method has been used at a number of sites in California with good results to depths of 200 ft. Seismic waves from hammer blows, delivered to the ends of a heavy plank loaded by the front wheels of a vehicle, are received by a three-component geophone in a carefully prepared vertical hole and recorded at 1 mm/ms with a six-channel seismograph. A series of records are obtained at various measured depths in the hole, allowing calculation of interval velocities. Shear waves are easily identified by a clear 180 degrees phase difference between waves generated by blows on the opposite ends of the plank. Compressional waves are routinely logged by a vertical hammer blow at each recording depth. Shear velocities are reproducible to about 5 per cent in surveys of neighbouring holes. The reading uncertainty of ± 1 msec for the S arrival gives a resolution sufficient to detect a buried layer 5–10 ft thick with a velocity contrast of only 20 per cent.  相似文献   

15.
A significant body of current research is aimed at developing methods for numerical simulation of flow and transport in porous media that explicitly resolve complex pore and solid geometries, and at utilizing such models to study the relationships between fundamental pore-scale processes and macroscopic manifestations at larger (i.e., Darcy) scales. A number of different numerical methods for pore-scale simulation have been developed, and have been extensively tested and validated for simplified geometries. However, validation of pore-scale simulations of fluid velocity for complex, three-dimensional (3D) pore geometries that are representative of natural porous media is challenging due to our limited ability to measure pore-scale velocity in such systems. Recent advances in magnetic resonance imaging (MRI) offer the opportunity to measure not only the pore geometry, but also local fluid velocities under steady-state flow conditions in 3D and with high spatial resolution. In this paper, we present a 3D velocity field measured at sub-pore resolution (tens of micrometers) over a centimeter-scale 3D domain using MRI methods. We have utilized the measured pore geometry to perform 3D simulations of Navier–Stokes flow over the same domain using direct numerical simulation techniques. We present a comparison of the numerical simulation results with the measured velocity field. It is shown that the numerical results match the observed velocity patterns well overall except for a variance and small systematic scaling which can be attributed to the known experimental uncertainty in the MRI measurements. The comparisons presented here provide strong validation of the pore-scale simulation methods and new insights for interpretation of uncertainty in MRI measurements of pore-scale velocity. This study also provides a potential benchmark for future comparison of other pore-scale simulation methods. © 2012 Elsevier Science. All rights reserved.  相似文献   

16.
The Imperial College borehole test site consists of four boreholes with depths lying between 260 and 280 m. The boreholes intersect several cyclical sequences of sandstones, mudstones and limestones. The formations are highly laminated and ultrasonic measurements on preserved core have shown that the mudstones are intrinsically anisotropic. Little or no anisotropy is associated with the sandstones and limestones. A scheme is proposed to predict synthetic vertical and horizontal P- and S-wave logs. Combining (an)isotropic effective medium theories, the Gassmann equation and Backus averaging, the scheme extends previous sand-shale models to transversely isotropic rock formations. The model assumes that the anisotropy is due to layering and due to the preferred horizontal orientation of the clay minerals, pores and cracks within the mudstones. The pores and cracks within the sandstones and limestones are randomly orientated. After fitting the model to the ultrasonic data to obtain the unknown parameters, the model successfully predicts the sonic log and the direct arrival times from a cross-hole survey.  相似文献   

17.
Flow failure of sandy subsoil induced by seismic liquefaction is known to cause significant damage to structures. It is induced not only by the dynamic forces exerted by seismic acceleration but also by the static gravity force in consequence of the topography of the ground. The ground flow may sometimes continue after the end of the seismic loading and finally the ground is significantly deformed to cause a failure.This paper numerically predicts the magnitude of flow that could occur when soil liquefaction continues for a sufficiently long period. It is considered that liquefied soil behaves like a viscous liquid, and hence, ground flow is governed by the principle of minimum potential energy. In the calculation, liquefied sand is assumed to be a viscous liquid that deforms in undrained conditions with its volume remaining constant. To consider the non-linearity due to large displacement, the updated Lagrangian method is used to solve the equation of motion. The Newmark β method is employed to calculate the time history of the ground motion. Finally, a simulation using this calculation method shows that the proposed method gives reasonable results for the conditions indicated.  相似文献   

18.
Zhou  Changlu  Tada  Akihide  Yano  Shinichiro  Matsuyama  Akito 《Ocean Dynamics》2019,69(2):175-186
Ocean Dynamics - Residual mercury dynamic has been the research emphasis since mercury contamination was publicly recognized in Minamata Bay. Simulation of mercury distribution and transport...  相似文献   

19.
Flow velocity is a basic hydraulic property of surface flows and its precise calculation is necessary for process based hydrological models, such as soil erosion and rill development models, as well as for modelling sediment and solute transport by runoff. This study presents a technique based on infrared thermography to visualize very shallow flows and allow a quantitative measurement of overland flow and rill flow velocities. Laboratory experiments were conducted to compare the traditional dye tracer technique with this new thermal tracer technique by injecting a combined tracer (heated dye) into shallow flowing surface water. The leading edge tracer velocities estimated by means of infrared video and by the usual real imaging video were compared. The results show that thermal tracers can be used to estimate both overland and rill flow velocities, since measurements are similar to those resulting from using dye tracers. The main advantage of using thermography was the higher visibility of the leading edge of the injected tracer compared with the real image videos. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
数值模拟在地球动力学中的研究进展   总被引:5,自引:10,他引:5       下载免费PDF全文
本文主要针对有限单元法,对近10几年来数值模拟在地球动力学中的应用和发展作了回顾,分为构造应力场模拟;地幔热对流模拟;板块碰撞模拟;岩石圈流变学模拟;以及地震机制与预测模拟等部分.简单阐述了当前地球动力学数值模拟的发展趋势并论述了其面临的主要问题.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号