首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Most entrained estuarine sediment mass occurs as flocs. Parameterising flocculation has proven difficult as it is a dynamically active process dependent on a set of complex interactions between the sediment, fluid and the flow. However the natural variability in an estuary makes it difficult to study the factors that influence the behaviour of flocculation in a systematic manner. This paper presents preliminary results from a laboratory study that examined how floc properties of a natural estuarine mud from the Medway (UK), evolved in response to varying levels of suspended sediment concentration and induced turbulent shearing. The experiments utilised the LabSFLOC floc video camera system, in combination with an annular mini-flume to shear the suspended sediment slurries. The flows created in the mini-flume produced average shear stresses, at the floc sampling height, ranging from 0.01 N m−2 to a peak of 1.03 N m−2. Nominal suspended particulate matter concentrations of 100, 600 and 2000 mg l−1 were introduced into the flume. The experimental runs produced individual flocs ranging in size from microflocs of 22.2 μm to macroflocs 583.7 μm in diameter. Average settling velocities ranged from 0.01 to 26.1 mm s−1, whilst floc effective densities varied from 3.5 up to 2000 kg m−3. Low concentration and low shear stress were seen to produce an even distribution of floc mass between the macrofloc (>160 μm) and microfloc (<160 μm) fractions. As both concentration and stress rose, the proportion of macrofloc mass increased, until they represented over 80% of the suspended matter. A maximum average macrofloc settling velocity of 3.3 mm s−1 was attained at a shear stress of 0.45 N m−2. Peak turbulence conditions resulted in deflocculation, limiting the macrofloc fall velocity to only 1.1 mm s−1 and placing over 60% of the mass in the microfloc size range. A statistical analysis of the data suggests that the combined influence of both suspended concentration and turbulent shear controls the settling velocity of the fragile, low density macroflocs.  相似文献   

2.
Five erosion devices were compared using five intertidal estuarine sites covering a range of sediment stability from newly settled mud to very cohesive mud at the margins of a saltmarsh. The erosion devices use different methods of fluid shearing from horizontal currents/bed shear stresses to vertical water jets, and have different ‘footprint’ areas. The devices included: (1) the annular flumes (AFs—diameter 64 cm; footprint area 0.17 m2) of the Plymouth Marine Laboratory (PML); (2) PML's mini-annular flume (MAF—diameter 19 cm; area 0.026 m2); (3) the annular mini-flume (AMF—diameter 30.5 cm; area 0.032 m2) of the National Oceanography Centre Southampton (NOC); (4) NOC's Cohesive Strength Meter (CSM—diameter 3 cm; area 0.0007 m2); (5) NOC's EROMES (ER—diameter 10 cm; area 0.0079 m2). The quantification of threshold shear stress for bed erosion (τe) and sediment erosion rate was complemented by the measurement of physical, chemical and biological properties of the sediment (grain size, bulk density, water content, organic content, chlorophyll a, carbohydrates, macrofauna). The results demonstrated a significant correlation (r2=0.98) between the PML AF (laboratory measurement of undisturbed cored sediment) and PML MAF (in situ) for measurement of erosion thresholds for bed sediment. However, there were no significant correlations between AFs, the CSM and EROMES. There were no consistent correlations with physical or biological sediment properties due to the spatially unrelated sites and the marked differences in benthic assemblages. The sources of differences and the lack of correlations between erosion devices were due to several factors, including operational procedures (e.g., sediment resuspension during filling with water), definition of erosion threshold, the nature of the force applied to the bed, and method of calibration. In contrast to the CSM and EROMES, both types of AFs were able to record significant differences in the erodability of soft sediments from four sites. This indicates that the CSM and EROMES may not be very effective at measuring the differences in erosion thresholds of soft estuarine sediments.  相似文献   

3.
Semi-diurnal and fortnightly surveys were carried out to quantify the effects of wind- and navigation-induced high-energy events on bed sediments above intertidal mudflats. The mudflats are located in the upper fluvial part (Oissel mudflat) and at the mouth (Vasière Nord mudflat) of the macrotidal Seine estuary. Instantaneous flow velocities and mudflat bed elevation were measured at a high frequency and high resolution with an acoustic doppler velocimeter (ADV) and an ALTUS altimeter, respectively. Suspended particulate matter concentrations were estimated by calibrating the ADV acoustic backscattered intensity with bed sediments collected at the study sites. Turbulent bed shear stress values were estimated by the turbulent kinetic energy method, using velocity variances filtered from the wave contribution. Wave shear stress and maximum wave–current shear stress values were calculated with the wave–current interaction (WCI) model, which is based on the bed roughness length, wave orbital velocities and the wave period (TS). In the fluvial part of the estuary, boat passages occurred unevenly during the surveys and were characterized by long waves (TS>50 s) induced by the drawdown effect and by short boat-waves (TS<10 s). Boat waves generated large bottom shear stress values of 0.5 N m−2 for 2–5 min periods and, in burst of several seconds, larger bottom shear stress values up to 1 N m−2. At the mouth of the estuary, west south-west wind events generated short waves (TS<10 s) of HS values ranging from 0.1 to 0.3 m. In shallow-water environment (water depth <1.5 m), these waves produced bottom shear stress values between 1 and 2 N m−2. Wave–current shear stress values are one order of magnitude larger than the current-induced shear stress and indicate that navigation and wind are the dominant hydrodynamic forcing parameters above the two mudflats. Bed elevation and SPM concentration time series showed that these high energy events induced erosion processes of up to several centimetres. Critical erosion shear stress (τce) values were determined from the SPM concentration and bed elevation measurements. Rough τce values were found above 0.2 N m−2 for the Oissel mudflat and about 1 N m−2 for the Vasière Nord mudflat.  相似文献   

4.
Assessment of marine debris on the Belgian Continental Shelf   总被引:2,自引:0,他引:2  
A comprehensive assessment of marine litter in three environmental compartments of Belgian coastal waters was performed. Abundance, weight and composition of marine debris, including microplastics, was assessed by performing beach, sea surface and seafloor monitoring campaigns during two consecutive years. Plastic items were the dominant type of macrodebris recorded: over 95% of debris present in the three sampled marine compartments were plastic. In general, concentrations of macrodebris were quite high. Especially the number of beached debris reached very high levels: on average 6429 ± 6767 items per 100 m were recorded. Microplastic concentrations were determined to assess overall abundance in the different marine compartments of the Belgian Continental Shelf. In terms of weight, macrodebris still dominates the pollution of beaches, but in the water column and in the seafloor microplastics appear to be of higher importance: here, microplastic weight is approximately 100 times and 400 times higher, respectively, than macrodebris weight.  相似文献   

5.
We investigated the spatial distribution and composition of microbenthos in the seafloor sediments from 48 stations in the Yellow Sea using epifluorescence microscopy and quantitative protargol staining techniques. The bacterial abundance ranged from 2.4×108 to 1.9×109 cells cm−3 in the wet sediment, about three orders of magnitude higher than that of phototrophic (PNFs, from 6.4×105 to 8.8×106 cells cm−3) and heterotrophic nanoflagellates (HNFs, from 5.8×104 to 5.9×106 cells cm−3) and four orders of magnitude higher than that of cyanobacteria (from 2.3×104 to 2.3×106 cells cm−3) in the upper 5 cm of sediments. The abundance of diatoms varied greatly, from 3-1.1×105 cells cm−3 in the upper 8 cm of sediments, whereas those of heterotrophic microflagellates (HMFs, 1-182 cells cm−3) and ciliates (1-221 cells cm−3) were less varied and lower. The biomass partitioning indicates the primary importance of benthic bacteria (50.3 μg C cm−3 on average), followed by PNFs (40.7 μg C cm−3), HNFs (19.3 μg C cm−3), and finally by cyanobacteria (8.8 μg C cm−3). Benthic diatoms (0.8 μg C cm−3), ciliates (0.15 μg C cm−3), and HMFs (0.03 μg C cm−3) contribute relatively small fractions to the total biomass of the microbenthos. About 95% of diatoms, 77% of ciliates, and 56% of HMFs were distributed in the upper 2 cm of sediments, whereas no distinct vertical distributions were observed for bacteria, cyanobacteria, PNFs, and HNFs. The microbenthos are quantitatively important in the shallow seafloor, wherein their main components have an average abundance three orders of magnitude higher than the corresponding planktonic organisms in the same sea area. Our estimates indicate that pico-sized phytobenthos might contribute a large proportion to the primary production. Benthic ciliates and heterotrophic flagellates contribute about 90% to the estimated combined metabolic rate of micro- and meiobenthic consumers in the whole sea area, with nanoheterotrophs accounting for the majority. The data suggest the potential for the rapid primary and secondary production of microbenthos and detrital utilization in the shallow seafloor sediments of the Yellow Sea.  相似文献   

6.
A water-fluid mud coupling model is developed based on the unstructured grid finite volume coastal ocean model (FVCOM) to investigate the fluid mud motion. The hydrodynamics and sediment transport of the overlying water column are solved using the original three-dimensional ocean model. A horizontal two-dimensional fluid mud model is integrated into the FVCOM model to simulate the underlying fluid mud flow. The fluid mud interacts with the water column through the sediment flux, current, and shear stress. The friction factor between the fluid mud and the bed, which is traditionally determined empirically, is derived with the assumption that the vertical distribution of shear stress below the yield surface of fluid mud is identical to that of uniform laminar flow of Newtonian fluid in the open channel. The model is validated by experimental data and reasonable agreement is found. Compared with numerical cases with fixed friction factors, the results simulated with the derived friction factor exhibit the best agreement with the experiment, which demonstrates the necessity of the derivation of the friction factor.  相似文献   

7.
《国际泥沙研究》2020,35(4):315-327
The rheological behavior of natural slurries consisting of fine-grained, reconstituted debris-flow deposits on pyroclastic terrains having different solid concentrations (ranging from 30 to 42%) has been investigated using a rotational rheometer equipped with a vane rotor system. Experiments were done by increasing the applied shear stress step by step; then a decreasing stress ramp was applied following the same shear stress levels. The slurry mixtures exhibit a typical yield-stress fluid behavior with a static yield stress larger than the dynamic yield stress. In the range of the shear rate corresponding to the flow-like behavior the slurry mixtures behave as a dilatant fluid at lower grain concentrations and as a pseudoplastic fluid in correspondence with the higher grain content, showing a strong discrepancy from the Bingham idealization. The rheological behavior is better interpreted by a Herschel-Bulkley model, whose rheological parameters strongly depend on the granular concentration. Therefore, a generalized Herschel-Bulkley model accounting for the bulk sediment concentration effect is proposed.  相似文献   

8.
Cohesive sediments exhibit complex rheological behaviors that are non-Newtonian and time-dependent when subjected to external loading. This paper presents the results of an investigation on the theological properties of three types of dense cohesive sediments, collected from the mouth of the Yangtze River, the shoal of the ttangzhou Bay, and the Yangcheng Lake in China. A set of rheological parameters (including viscosity, yield stress, etc.) was studied based on experiments that were conducted with a RheolabQC rheometer. Measurements of the flow curves, shear stress-time responses, and yield stresses were made. The solid-liquid transition of the dense cohesive sediments occurred both in the shear rate ramp tests and the shear stress ramp tests. This transition was not direct, but it was mediated by a transitional deformation regime or stress plateau. Both the Herschel-Bulkley model and Carreau model were able to describe the theological behavior of dense cohesive sediments, and the empirical expressions for calculating the parameters in these models were obtained by a dimensional and regression analysis. The yield stresses determined by the shear stress ramp test and by the vane method were compared and discussed. The influence of the water content on the rheological properties of dense cohesive sediments was considered.  相似文献   

9.
Nakagawa  Yasuyuki  Nadaoka  Kazuo  Yagi  Hiroshi  Ariji  Ryuichi  Yoneyama  Haruo  Shirai  Kazuhiro 《Ocean Dynamics》2012,62(10):1535-1544

Tokyo Bay is one of the estuaries in Japan with a high population of almost 26 million people in the basin area. One of the major concerns for the environment in this water area is the decreasing ecosystem functions including the deterioration of water and sediment qualities caused by various anthropogenic activities. Since the bottom sediments around almost the entire area of the inner bay consist of fine materials with a high organic content, which cause the deterioration of water quality through processes such as hypoxia, an understanding of the fine sediment dynamics in the Bay is crucial for an environmental assessment of the water area. This paper proposes a model for the key processes of fine sediment dynamics, which reflects field data about muddy bed structures and their dynamics obtained during the monitoring campaign in 2007. One of the specific features of the sediment in the Bay at present is the persistent existence of fluid mud layers (water content over 300 %) with a thickness of around a few decimeters, which might be caused by deposition of abundant organic particles due to eutrophication. The present study shows that diffusion flux model delivers quite reliable results for estimating erosion flux from the top of fluid mud layers after calibrating the model parameter against the time series data of vertical flux measured by an acoustic Doppler velocimeter system. This study also derives analytical solutions, based on the Bingham fluid concept, of advection flux in the fluid mud layer on which external shear stress force is applied.

  相似文献   

10.
Lateral deformation of liquefiable soil is a cause of much damage during earthquakes, reportedly more than other forms of liquefaction-induced ground failures. Researchers have presented studies in which the liquefied soil is considered as viscous fluid. In this manner, the liquefied soil behaves as non-Newtonian fluid, whose viscosity decreases as the shear strain rate increases. The current study incorporates computational fluid dynamics to propose a simplified dynamic analysis for the liquefaction-induced lateral deformation of earth slopes. The numerical procedure involves a quasi-linear elastic model for small to moderate strains and a Bingham fluid model for large strain states during liquefaction. An iterative procedure is considered to estimate the strain-compatible shear stiffness of soil. The post-liquefaction residual strength of soil is considered as the initial Bingham viscosity. Performance of the numerical procedure is examined by using the results of centrifuge model and shaking table tests together with some field observations of lateral ground deformation. The results demonstrate that the proposed procedure predicts the time history of lateral ground deformation with a reasonable degree of precision.  相似文献   

11.
Tokyo Bay is one of the estuaries in Japan with a high population of almost 26 million people in the basin area. One of the major concerns for the environment in this water area is the decreasing ecosystem functions including the deterioration of water and sediment qualities caused by various anthropogenic activities. Since the bottom sediments around almost the entire area of the inner bay consist of fine materials with a high organic content, which cause the deterioration of water quality through processes such as hypoxia, an understanding of the fine sediment dynamics in the Bay is crucial for an environmental assessment of the water area. This paper proposes a model for the key processes of fine sediment dynamics, which reflects field data about muddy bed structures and their dynamics obtained during the monitoring campaign in 2007. One of the specific features of the sediment in the Bay at present is the persistent existence of fluid mud layers (water content over 300?%) with a thickness of around a few decimeters, which might be caused by deposition of abundant organic particles due to eutrophication. The present study shows that diffusion flux model delivers quite reliable results for estimating erosion flux from the top of fluid mud layers after calibrating the model parameter against the time series data of vertical flux measured by an acoustic Doppler velocimeter system. This study also derives analytical solutions, based on the Bingham fluid concept, of advection flux in the fluid mud layer on which external shear stress force is applied.  相似文献   

12.
Concentrations of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) were determined in nearshore marine surficial sediments from three locations in Trinidad. Sediments were sampled at Sea Lots on the west coast, in south Port-of-Spain Harbor, south of Sea Lots at Caroni Lagoon National Park, and on Trinidad’s east coast at Manzanilla. Total PCB concentrations in Sea Lots sediments ranged from 62 to 601 ng/g (dry weight {dw}), which was higher than at Caroni and Manzanilla, 13 and 8 ng/g dw, respectively. Total OCP concentrations at Sea Lots were ranged from 44.5 to 145 ng/g dw, compared with 13.1 and 23.8 n/g (dw), for Caroni and Manzanilla respectively. The concentrations of PCBs and of some OCPs in sediments from Sea Lots were above the Canadian interim sediment quality guidelines. To date, this data is the first report on the levels of PCBs and other organochlorine compounds from Trinidad and Tobago.  相似文献   

13.
Comparison of eolian transport during five high-velocity wind events over a 29 day period on a narrow estuarine beach in Delaware Bay, New Jersey, USA, reveals the temporal variability of transport, due to changes in direction of wind approach. Mean wind speed measured 6 m above the dune crest for the five events ranged from 8·5 to 15·9 ms?1. Mean wind direction was oblique to the shoreline (63° from shore-normal) during one event but was within 14° of shore-normal during the other events. Eolian transport is greatest during low tide and rising tide, when the beach source area is widest and when drying of surface sediments occurs. The quantity of sediment caught in a vertical trap for the five events varied from a total of 0·07 to 113·73 kgm?1. Differences in temperature, relative humidity and moisture and salt content of surficial sediments were slight. Mean grain sizes ranged from 0·33 to 0·58 mm, causing slight differences in threshold shear velocity, but shear velocities exceeded the threshold required for transport during all events. Beach width, measured normal to the shoreline, varied from 15·5 to 18·0 m; beach slope differed by 0·5°. The oblique wind during one event created a source width nearly double the width during other days. Beach slope, measured in the direction of the wind, was less than half as steep as the slope measured normal to the shoreline. The amount of sand trapped during the oblique wind was over 20 times greater than any other event, even those with higher shear velocities. The ability of the beach surface to supply grains to the air stream is limited on narrow beaches, but increased source width, due to oblique wind approach, can partially overcome limitations of surface conditions on the beach.  相似文献   

14.
Bacterial pathogens in coastal sediments may pose a health risk to users of beaches. Although recent work shows that beach sands harbor both indicator bacteria and potential pathogens, it is neither known how deep within beach sands the organisms may persist nor if they may be exposed during natural physical processes. In this study, sand cores of approximately 100 cm depth were collected at three sites across the beach face in Kitty Hawk, North Carolina, before, during, and after large waves from an offshore hurricane. The presence of DNA from the fecal indicator bacterium Enterococci was detected in subsamples at different depths within the cores by PCR amplification. Erosion and accretion of beach sand at the three sites were also determined for each sampling day. The results indicate that ocean beach sands with persisting enterococci signals could be exposed and redistributed when wind, waves, and currents cause beach erosion or accretion.  相似文献   

15.
The objective of this paper is to investigate the rheological behavior of kaolinite and Hendijan mud, located at the northwest part of the Persian Gulf, and the dissipative role of this muddy bed on surface water waves. A series of laboratory rheological tests was conducted to investigate the rheological response of mud to rotary and cyclic shear rates. While a viscoplastic Bingham model can successfully be applied for continuous controlled shear-stress tests, the rheology of fluid mud displays complex viscoelastic behavior in time-periodic motion. The comparisons of the behavior of natural Hendijan mud with commercial kaolinite show rheological similarities. A large number of laboratory wave-flume experiments were carried out with a focus on the dissipative role of the fluid mud. Assuming four rheological models of viscous, Kelvin-Voigt viscoelastic, Bingham viscoplastic, and viscoelastic-plastic for fluid mud layer, a numerical multi-layered model was applied to analyze the effects of different parameters of surface wave and muddy bed on wave attenuation. The predicted results based on different rheological models generally agree with the obtained wave-flume data implying that the adopted rheological model does not play an important role in the accuracy of prediction.  相似文献   

16.
Local areas of fine-grained organic-rich sediments in Eckernforde and Kieler Forde Bays may experience disturbances which cause fluidization of the substrate and create a dense suspension (fluid mud) which exists temporarily as a component of the benthic boundary layer before becoming incorporated into the permanent bottom. Laboratory studies indicate this material behaves rheologically as a non-Newtonian substance, and both shear thinning (pseudoplastic) and shear thickening (dilatant) flow behavior can occur (ofien within the same sample) under low to intermediate shear stresses (2 - 40 Pa) and shear rates (0.46 - 122.49 s^-1). Detailed granulometric analyses (1/4 phi intervals) of the fraction 〈63 μm show differences in the silt/clay ratio (clay 〈2 μm) between the two environments. Little change in the silt/clay ratio is seen in the Kieler Forde sediments (from 0.74 to 0.95); however, at Eckernforde, the ratio changed from 0.73 to 2.19. Fine silt particles are lacking or were removed from the 4 to 16 μm fraction of the Eckernforde but not from the Kieler Forde sediments. Both shear thickening and shear thinning flow was observed in the Eckernforde sediments. Shear thickening flow behavior was not observed in the Kieler Forde sediments. Samples of organic-rich (10 to 20%) interface sediments from both areas were analyzed rheologically prior to, and atier removal of organic matter by H2O2 treatment. Reduction in ‘apparent' viscosity occurred through the entire range of shear rates and stresses, shear thickening behavior was reduced or became nonexistent, and yield stress decreased significantly compared to the natural samples. The differences in yield stress and flow behavior of dense suspensions result primarily from differences in grain size distributions but the role of organic matter on those properties is very significant and adds to the effects of the grain size distribution of the sediment.  相似文献   

17.
We investigated the physical properties of beaches contaminated with plastic fragments. We compared sediment cores from Hawai‘i Island’s Kamilo Beach, notable for plastic accumulation, to cores from a nearby beach. Compared to the nearby beach, Kamilo sediments contained more plastics (up to 30.2% by weight), were coarser-grained, and were more permeable (t-test, p < 0.0001). 85% of the fragments were polyethylene, and 95% were concentrated in the top 15 cm of the cores. We constructed artificial cores of standardized grain size and varying plastic-to-sediment ratios. Adding plastic significantly increased the permeability (ANOVA, p = 0.002), which was partially attributed to the fragments increasing the mean grain size. Sediments with plastic warmed more slowly (16% maximum decrease in thermal diffusivity), and reached lower maximum temperatures (21% maximum increase in heat capacity). These changes have a variety of potential effects on beach organisms, including those with temperature-dependent sex-determination such as sea turtle eggs.  相似文献   

18.
In this paper, a three-dimensional isopycnal approach is presented to simulate the dynamics of fluid mud covering the formation, development, transport, and disappearance of fluid mud. The basic assumption is the assignment of the fluid’s density as the indicating parameter for the rheological behavior. Considering stable stratification, as is usually the case for fluid mud, layers of constant density discretize the vertical domain. The non-Newtonian dynamics of fluid mud is simulated by solving the Cauchy equations for general continuum dynamics. Instead of using a turbulent viscosity approach, the viscosity is allowed to vary according to the rheological behavior of mud suspensions. This apparent viscosity can be determined for different rheological formulations in dependence of the volume solid fraction and the shear rate. An existing three-dimensional isopycnal hydrodynamic model was extended for vertical mass transport processes and was applied on a schematic system with hindered settling. For including the rheological behavior of fluid mud, the Worrall–Tuliani approach was parameterized and implemented. The resulting flow behavior is shown on a model application of fluid mud layers moving down an inclined plane. With these changes, it is demonstrated that the isopycnal model is capable of simulating fluid mud dynamics.  相似文献   

19.
《国际泥沙研究》2020,35(6):563-575
Erosion of mixed cohesive and noncohesive sediments is studied using the erosion test instrument SEDFlume. The sediment mixtures are composed of well-sorted quartz sand (0.25–0.5 mm) and one of the three used muds: kaolinite, kaolinite-bentonite and Mississippi River muds. The mud contents cover from 0 to 100%. The measured data of erosion rate and bed shear stress are used to examine the segmented linear, nonlinear, and exponential erosion models. The parameters of each erosion model are related to the physical properties of sediment mixtures, including clay fraction, mud fraction, mixture dry density, and mud dry density. It is found that the three models can fit well with the data, and their parameters have strong relations with the mud fraction and mud dry density, to a less extent with the clay fraction, but not with the mixture dry density.  相似文献   

20.
This paper proposes an explanation of the mud deposits on the inner Shelf of Cassino Beach, South Brazil, by using computational modeling. These mud deposits are mainly formed by sediments delivered from Patos Lagoon, a coastal lagoon connected to the Shelf, next to Cassino Beach. The deposits are characterized by (soft) mud layers of about 1 m thick and are found between the −5 and −20 isobaths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号