首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study determined effects of an oil spill on subtropical benthic community production and respiration by monitoring CO2 fluxes in benthic chambers on intertidal sandflats during emersion before and after an accidental spill. The oil spill decreased sediment chlorophyll a concentrations, altered benthic macrofaunal community, and affected ecological functioning by suppressing or even stopping microalgal production, increasing bacterial respiration, and causing a shift from an autotrophic system to a heterotrophic system. Effects of the oil spill on the macrofauna were more severe than on benthic microalgae, and affected sedentary infauna more than motile epifauna. Despite the oil spill’s impact on the benthic community and carbon metabolism, the affected area appeared to return to normal in about 23 days. Our results suggest that the prompt response of benthic metabolism to exposure to petroleum hydrocarbons can serve as a useful indicator of the impact of an oil spill.  相似文献   

2.
Benthic metabolism (measured as CO2 production) and carbon oxidation pathways were evaluated in 4 mangrove mesocosms subjected daily to seawater or 60% sewage in the absence or presence of mangrove trees and biogenic structures (pneumatophores and crab burrows). Total CO2 emission from darkened sediments devoid of biogenic structures at pristine conditions was comparable during inundation (immersion) and air exposure (emersion), although increased 2-7 times in sewage contaminated mesocosms. Biogenic structures increased low tide carbon gas emissions at contaminated (30%) and particularly pristine conditions (60%). When sewage was loaded into the mesocosms under unvegetated and planted conditions, iron reduction was substituted by sulfate reduction and contribution of aerobic respiration to total metabolism remained above 50%. Our results clearly show impacts of sewage on the partitioning of electron acceptors in mangrove sediment and confirm the importance of biogenic structures for biogeochemical functioning but also on greenhouse gases emission.  相似文献   

3.
A two year survey of benthic primary production during periods of emersion was performed on two stations of an intertidal mudflat (a muddy-sand station and a muddy station) in the Seine Estuary (English Channel, France). The goals of this study were to investigate the seasonal variations of metabolism, to estimate daily potential primary production variation at the annual scale and to estimate the annual potential primary production of the mudflat. Primary production and respiration were estimated by in situ measurements of carbon dioxide fluxes. Chlorophyll a concentration exhibited a great variability on both locations. Gross community production ranged from ca. 0 to 77 mg C m(-2) h(-1) at the muddy-sand location and from ca. 0 to 122 mg C m(-2) h(-1) at the muddy location. Community respiration showed a seasonal trend following temperature variations (up to 28.51 mg C m(-2) h(-1) in the muddy-sand and up to 23.40 mg C m(-2) h(-1) in the mud). Daily potential primary production was calculated, according to seasonal variations of photosynthetic parameters calculated using three photosynthesis versus irradiance curves obtained for the muddy location. The annual gross community primary production was 135 g C m(-2) yr(-1), leading to a low autotrophic annual budget, considering an annual community respiration of 110 g C m(-2) yr(-1).  相似文献   

4.
Gravel bars (GBs) contribute to carbon dioxide (CO2) emissions from stream corridors, with CO2 concentrations and emissions dependent on prevailing hydraulic, biochemical, and physicochemical conditions. We investigated CO2 concentrations and fluxes across a GB in a prealpine stream over three different discharge‐temperature conditions. By combining field data with a reactive transport groundwater model, we were able to differentiate the most relevant hydrological and biogeochemical processes contributing to CO2 dynamics. GB CO2 concentrations showed significant spatial and temporal variability and were highest under the lowest flow and highest temperature conditions. Further, observed GB surface CO2 evasion fluxes, measured CO2 concentrations, and modelled aerobic respiration were highest at the tail of the GB over all conditions. Modelled CO2 transport via streamwater downwelling contributed the largest fraction of the measured GB CO2 concentrations (31% to 48%). This contribution increased its relative share at higher discharges as a result of a decrease in other sources. Also, it decreased from the GB head to tail across all discharge‐temperature conditions. Aerobic respiration accounted for 17% to 36% of measured surface CO2 concentrations. Zoobenthic respiration was estimated to contribute between 4% and 8%, and direct groundwater CO2 inputs 1% to 23%. Unexplained residuals accounted for 6% to 37% of the observed CO2 concentrations at the GB surface. Overall, we highlight the dynamic role of subsurface aerobic respiration as a driver of spatial and temporal variability of CO2 concentrations and evasion fluxes from a GB. As hydrological regimes in prealpine streams are predicted to change following climatic change, we propose that warming temperatures combined with extended periods of low flow will lead to increased CO2 release via enhanced aerobic respiration in newly exposed GBs in prealpine stream corridors.  相似文献   

5.
刘胜  陈宇炜 《湖泊科学》2017,29(6):1412-1420
于2014年10月到2015年5月鄱阳湖退水期,利用密闭箱—气相色谱法对鄱阳湖北部星子县洲滩两种代表性的植被群落——薹草(Carex cinerascens)和藜蒿(Artemisia selengensis)进行CO_2通量的对比观测,结果表明:薹草和藜蒿湿地的生态系统呼吸具有明显季节变化模式,其最小值均出现在冬季,最大值均出现在春季,平均值分别为3291.80和2581.89mg CO_2/(m~2·h),退水期薹草和藜蒿湿地累积的CO_2通量分别为213.71±2.27和176.39±11.48 t CO_2/hm~2.较高的生物量是薹草湿地CO_2通量高于藜蒿湿地的原因.5 cm土温是影响薹草和藜蒿湿地CO_2通量季节变化最重要的影响因子,藜蒿湿地生态系统呼吸的温度敏感性指数(Q10)高于薹草湿地.水分、植物生物量和湿地CO_2通量之间无显著相关性.  相似文献   

6.
Flow pulses that alternately immerse and expose benthic habitats are widely recognized as key determinants of biodiversity and ecosystem functioning in rivers. Terrestrial leaf litter input, colonization, and breakdown are also key processes in river ecosystems, but little is known about the effects of alternating immersion and emersion on these processes. We used litterbags to examine breakdown, microbial activity, and colonization of Populus sp. leaves by invertebrates along a natural gradient in immersion and emersion (i.e., submergence and exposure to air) in a temporary river. Rates of leaf litter mass loss, microbial activity and colonization by invertebrates differed among litterbags that were permanently immersed, intermittently immersed and permanently emersed, and breakdown rate coefficients (k) decreased with increasing cumulative emersed duration (the total number of day of emersion during the experiment). In contrast, the frequency of emersed periods had no detectable effects on these variables. k was positively correlated with the density of invertebrate shredders in immersed litterbags, with microbial activity and shredder density in intermittent litterbags, and with microbial activity in emersed litterbags. These correlations suggest that the relative importance of microbial activity on k increases with emersed duration, due to the periodic elimination of aquatic shredders and the scarcity of terrestrial detritivores. The fact that leaf litter breakdown was detectable under permanently emersed conditions indicates that mechanisms other than shredding by invertebrates, such as leaching and photodegradation, are dominant in dry river habitats.  相似文献   

7.
Nitrogen (N) cycling and respiration rates were measured in sediment columns packed with southeastern United States continental shelf sands, with high permeability (4.66×10−11 m2) and low organic carbon (0.05%) and nitrogen (0.008%). To simulate porewater advection, natural shelf seawater was pumped through columns of different lengths to achieve fluid residence times of approximately 3, 6, and 12 h. Experiments were conducted seasonally at in situ temperature. Fluid flow was uniform in nearly all columns, with minimal dead zones and channeling. Significant respiration (O2 consumption and ∑CO2 production) occurred in all columns, with highest respiration rates in summer. Most (78–100%) remineralized N was released as N2 in the majority of cases, including columns with oxic porewater throughout, with only a small fraction released as NO3 from some oxic columns. A rate of 0.84–4.83×1010 mol N yr−1, equivalent to 1.06–6.09×10−6 mmol N cm−2 h−1, was calculated for benthic N2 production in the South Atlantic Bight, which can account for a large fraction of new N inputs to this shelf region. Metal and sulfate reduction occurred in long residence time columns with anoxic outflow in summer and fall, when respiration rates were highest. Because permeable sediments dominate continental shelves, N2 production in high permeability coastal sediments may play an important role in the global N cycle.  相似文献   

8.
The long-term effect of elevated CO2 concentrations on needle dark respiration of two coniferous species-Pinus koraiensis and Pinus sylvestriformis on the Changbai Mountain was investigated using open-top chambers. P. Koraiensis and P. Sylvestriformis were exposed to 700,500μmol·mol-1 CO2 and ambient CO2(approx.350 μmol·mol-1)for four growing seasons. Needle dark respiration was measurd during the second, third and fourth growing seasons' exposure to elevated CO2.The results showed that needle dark respiration rate increased for P. Koraiensis and P. Sylvestriformis grown at elevated CO2 concentrations during the second growing season, could be attributed to the change of carbohydrate and/or nitrogen content of needles. Needle dark respiration of P. Koraiensis was stimulated and that of P. Sylvestriformis was inhibited by elevated CO2 concentrations during the third growing season. Different response of the two tree species to elevated CO2 mainly resulted from the difference in the growth rate. Elevated CO2 concentrations inhibited needle dark respiration of both P. Koraiensis and P. Sylvestriformis during the fourth growing season. There was consistent trend between the short-term effect and the long-term effect of elevated CO2 on needle dark respiration in P. Sylvestriformis during the third growing season by changing measurement CO2 concentrations. However, the short-term effect was different from the long-term effect for P. Koraiensis. Response of dark respiration of P. Koraiensis and P. Sylvestriformis to elevated CO2 concentrations was related to the treatment time of CO2 and the stage of growth and development of plant. The change of dark respiration for the two tree species was determined by the direct effect of CO2 and long-term acclimation. The prediction of the long-term response of needle dark respiration to elevated CO2 concentration based on the short-term response is in dispute.  相似文献   

9.
Carbon dioxide fluxes and water balance were examined in 43 tundra ponds in the northern portion of the Hudson Bay Lowland near Churchill, Manitoba. Most of the ponds were hydrologically disconnected from their catchments during dry periods throughout the post‐melt season. However, episodic reconnection occurred following large precipitation events where depression storage was exceeded. Significant shifts in pond chemistry were observed following precipitation events, with the degree of CO2 saturation increasing during these periods. Pond CO2 concentrations rapidly fell to pre‐event levels following events, suggesting that hydrological connectivity can affect the magnitude and direction of CO2 gas fluxes in tundra ponds. Atmospheric CO2 invaded ponds with highly organic sediments for most of the summer, suggesting that terrestrially derived inorganic carbon was insufficient to meet the demands of algal net production. In contrast, ponds with highly mineral sediments continued to evade CO2 during the summer. In a subset of 11 ponds, long‐term rates of carbon accumulation in sediment ranged from 0·6 to 2·2 mol C m?2 year?1. Very strong correlations existed between average sediment accumulation rates and pond perimeters and basin areas suggesting that peat may be a major source of sediment carbon. Aeolian transport is also a potentially large source of sediment carbon. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

10.
Variability in soil respiration at various spatial and temporal scales has been the focus of much research over the last decade aimed to improve our understanding and parameterization of physical and environmental controls on this flux. However, few studies have assessed the control of landscape position and groundwater table dynamics on the spatiotemporal variability of soil respiration. We investigated growing season soil respiration in a ~393 ha subalpine watershed in Montana across eight riparian–hillslope transitions that differed in slope, upslope accumulated area (UAA), aspect, and groundwater table dynamics. We collected daily‐to‐weekly measurements of soil water content (SWC), soil temperature, soil CO2 concentrations, surface CO2 efflux, and groundwater table depth, as well as soil C and N concentrations at 32 locations from June to August 2005. Instantaneous soil surface CO2 efflux was not significantly different within or among riparian and hillslope zones at monthly timescales. However, cumulative integration of CO2 efflux during the 83‐day growing season showed that efflux in the wetter riparian zones was ~25% greater than in the adjacent drier hillslopes. Furthermore, greater cumulative growing season efflux occurred in areas with high UAA and gentle slopes, where groundwater tables were higher and more persistent. Our findings reveal the influence of landscape position and groundwater table dynamics on riparian versus hillslope soil CO2 efflux and the importance of time integration for assessment of soil CO2 dynamics, which is critical for landscape‐scale simulation and modelling of soil CO2 efflux in complex landscapes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

11.
The sandy littoral zone of Lake Tegel (Berlin, Germany) was investigated during 2004–2006 down to sediment depths ≥26 cm to derive a scheme of seasonal carbon turnover under induced bank filtration conditions. Carbon turnover processes were quantified regarding external and internal sources of dissolved and particulate organic matter (DOM and POM), primary production, community respiration, redox potential as well as specific loads of soluble chemical compounds such as nitrogen, iron, manganese and DOC.Over the course of the year, infiltrating DOC decreased by about 13–20% within the upper 26 cm sediment of the infiltration stretch. Gradients of all observed soluble compounds that are highly cross-linked to biological activities were highest in the topmost centimetre. In this depth mass balances (output–input) were negative concerning NO3-N (−1 mg dm−2 d−1, summer mean) and DOC (−2 mg dm−2 d−1, winter mean), respectively, while specific loads of cations such as manganese reached up to 0.2 mg dm−2 d−1 during summer. Carbon mineralization ranged between 3 and 7 mg C dm−2 d−1 and was nearly twice as high in summer as in winter. The turnover of the infiltrating DOC contributed maximally 25% in summer to 50% in winter to the entire organic carbon mineralization. Gross and net primary production differed up to a factor of >10, indicating very fast turnover reactions and the predominance of community respiration and mineralization, respectively. The POC in the upper sediment layer (10 cm) temporally varied around 1% sediment d.w.; benthic algae, organic seston input and autumnal leaf fall contributed similar percentages to the POC pool.  相似文献   

12.
Continuous monitoring of soil CO2 dynamic concentration (which is proportional to the CO2 flux through the soil) was carried out at a peripheral site of Mt. Etna during the period November 1997–September 2000 using an automated station. The acquired data were compared with SO2 flux from the summit craters measured two to three times a week during the same period. The high frequency of data acquisition with both methods allowed us to analyze in detail the time variations of both parameters. Anomalous high values of soil CO2 dynamic concentration always preceded periods of increased flux of plume SO2, and these in turn were followed by periods of summit eruptions. The variations were modeled in terms of gas efflux increase due to magma ascent to shallow depth and its consequent depressurization and degassing. This model is supported by data from other geophysical and volcanological parameters. The rates of increase both of soil CO2 dynamic concentration and of plume SO2 flux are interpreted to be positively correlated both to the velocity of magma ascent within the volcano and to lava effusion rate once magma is erupted at the surface. Low rates of the increase were recorded before the nine-month-long 1999 subterminal eruption. Higher rates of increase were observed before the violent summit eruption of September-November 1999, and the highest rates were observed during shorter and very frequent spike-like anomalies that preceded the sequence of short-lived but very violent summit eruptions that started in late January 2000 and continued until late June of the same year. Furthermore, the time interval between the peaks of CO2 and SO2 in a single sequence of gas anomalies is likely to be controlled by magma ascent velocity.Editorial responsibility: H. Shinohara  相似文献   

13.
Soil CO2 efflux in forest and grassland over 5 years from 2005 to 2009 in a semiarid mountain area of the Loess plateau, China, was measured. The aim was to compare the soil respiration and its annual and inter‐annual responses to the changes in soil temperature and soil water content between the two vegetation types for observing soil quality evolution. The differences among the five study years were the annual precipitation (320.1, 370.5, 508.8, 341.6, and 567.4 mm in 2005–2009, respectively) and annual distribution. The results showed that the seasonal change of soil respiration in both vegetation types was similar and controlled by soil temperature and soil water content. The mean soil respiration across 5 years in the forest (3.78 ± 2.68 µmol CO2 m?2 s?1) was less than that in the grassland (4.04 ± 3.06 µmol CO2 m?2 s?1), and the difference was significant. The drought soil in summer depressed soil respiration substantially. The Q10 value across 5‐year measurements was 2.89 and 2.94 for forest and grassland. When soil water content was between wilting point (WP) and field capacity (FC), the Q10 in both types increased with increasing soil water content, and when soil water content dropped to below WP, soil respiration and the Q10 decreased substantially. Although an exponential model was well fitted to predict the annual mean soil respiration for each single year data, it overestimated and underestimated soil respiration, respectively, in drought conditions and after rain for short periods of time during the year. The two‐variable models including temperature and water content variables could be well used to predict soil respiration for both types in all weather conditions. The models proposed are useful for understanding and predicting potential changes in the eastern part of Loess plateau in response to climate change.  相似文献   

14.
The effect of patchy colonies of the invasive zebra mussel (Dreissena polymorpha) on sedimentary processes was investigated in a mesotrophic lake (Plateliai Lake, Lithuania). Benthic fluxes of O2, TCO2, CH4, Mn2+, Fe2+, N2, the inorganic forms of N, Si and P and dissolved organic C and N were quantified by dark incubations of sediments cores, with and without D. polymorpha. Individual mussels also were incubated for metabolic measurements. Sediments with D. polymorpha had significantly higher O2 and TCO2 fluxes and displayed higher rates of denitrification. The presence of mussels also resulted in higher regeneration of P and N (mostly as ammonium) while the effect on Si was not significant. However, likely due to the low zebra mussel biomass (57.2 ± 25.3 gSFDW m?2), biodeposition has not changed the ratio between anaerobic and total respiration. Methane and reduced metals fluxes were in fact similar in the presence and absence of D. polymorpha. Incubations of mussels without sediments confirmed that bivalve metabolism was the main driver of benthic respiration and nutrient recycling. Nitrate production suggested the presence of nitrifiers associated with the molluscs. The main outcome of this study was that zebra mussels alter the quantity and the stoichiometry of nutrients regenerated by the benthic compartment. The enhancement of nitrogen loss via denitrification, by a factor of 1.5, was much less pronounced than the increase in ammonium recycling rate, stimulated by a factor of 33. Negligible PO4 3? fluxes in bare sediments (?3.4 ± 6.8 μmol m?2 h?1) increased in the presence of mussels and considerable amounts of this nutrient (69.6 ± 29.4 μmol m?2 h?1) were mobilized to the water column. Further research should address other nutrient sources to the lake to verify whether altered rates and stoichiometry of benthic regeneration can affect primary producer community composition and activity.  相似文献   

15.
Use of eddy covariance (EC) techniques to map the spatial distribution of diffuse volcanic CO2 fluxes and quantify CO2 emission rate was tested at the Horseshoe Lake tree-kill area on Mammoth Mountain, California, USA. EC measurements of CO2 flux were made during September–October 2010 and ranged from 85 to 1,766 g m−2 day−1. Comparative maps of soil CO2 flux were simulated and CO2 emission rates estimated from three accumulation chamber (AC) CO2 flux surveys. Least-squares inversion of measured eddy covariance CO2 fluxes and corresponding modeled source weight functions recovered 58–77% of the CO2 emission rates estimated based on simulated AC soil CO2 fluxes. Spatial distributions of modeled surface CO2 fluxes based on EC and AC observations showed moderate to good correspondence (R 2 = 0.36 to 0.70). Results provide a framework for automated monitoring of volcanic CO2 emissions over relatively large areas.  相似文献   

16.
三峡水库澎溪河水-气界面CO2、CH4扩散通量昼夜动态初探   总被引:4,自引:2,他引:4  
李哲  姚骁  何萍  王钦  郭劲松  陈永柏 《湖泊科学》2014,26(4):576-584
三峡水库温室气体效应近年来备受关注.为揭示三峡水库典型支流澎溪河水-气界面CO2和CH4通量的昼夜动态规律,明晰短时间尺度下该水域温室气体释放的影响因素,在2010年6月至2011年5月的一个完整水文周年内,选择4个具有代表性的时段(2010年8、11月和2011年2、5月)对澎溪河高阳平湖水域开展昼夜跟踪观测.结果表明:2010年8、11月和2011年2、5月4次采样的CO2日总通量值分别为-8.34、73.94、28.13和-20.12 mmol/(m2·d),相应的CH4日总通量值分别为2.22、0.11、0.32和7.16 mmol/(m2·d),不同时期昼夜变化明显.研究水域CO2和CH4通量过程不具同步性:CO2昼夜通量变化可能更显著地受到水柱光合/呼吸过程的影响,但瞬时气象过程(水汽温差、瞬时风速等)在高水位时期亦可对CO2通量产生显著影响;CH4昼夜通量变化与水温条件改变更为密切.  相似文献   

17.
We measured soil, stem and branch respiration of trees and shrubs, foliage photosynthesis and respiration in ecosystem of the needle and broad-leaved Korean pine forest in Changbai Mountain by LI-6400 CO2 analysis system. Measurement of forest microclimate was conducted simultaneously and a model was found for the relationship of soil, stem, leaf and climate factors. CO2 flux of different components in ecosystem of the broad-leaved Korean pine forest was estimated based on vegetation characteristics. The net ecosystem exchange was measured by eddy covariance technique. And we studied the effect of temperature and photosynthetic active radiation on ecosystem CO2 flux. Through analysis we found that the net ecosystem exchange was affected mainly by soil respiration and leaf photosynthesis. Annual net ecosystem exchange ranged from a minimum of about ?4.671 μmol·m?2·s?1 to a maximum of 13.80 μmol·m?2·s?1, mean net ecosystem exchange of CO2 flux was ?2.0 μmol·m?2·s?1 and 3.9 μmol·m?2·s?1 in winter and summer respectively (mean value during 24 h). Primary productivity of tree, shrub and herbage contributed about 89.7%, 3.5% and 6.8% to the gross primary productivity of the broad-leaved Korean pine forest respectively. Soil respiration contributed about 69.7% CO2 to the broad-leaved Korean pine forest ecosystem, comprising about 15.2% from tree leaves and 15.1% from branches. The net ecosystem exchange in growing season and non-growing season contributed 56.8% and 43.2% to the annual CO2 efflux respectively. The ratio of autotrophic respiration to gross primary productivity (R a:GPP) was 0.52 (NPP:GPP=0.48). Annual carbon accumulation underground accounted for 52% of the gross primary productivity, and soil respiration contributed 60% to gross primary productivity. The NPP of the needle and broad-leaved Korean pine forest was 769.3 gC·m?2·a?1. The net ecosystem exchange of this forest ecosystem (NEE) was 229.51 gC·m?2·a?1. The NEE of this forest ecosystem acquired by eddy covariance technique was lower than chamber estimates by 19.8%.  相似文献   

18.
From 1999 to 2005, studies carried out in the frame of regional and national French programs aimed to determine whether the Phaeocystisglobosa bloom affected the intertidal benthic communities of the French coast of the eastern English Channel in terms of composition and/or functioning. Study sites were chosen to cover most of the typical shore types encountered on this coast (a rocky shore, an exposed sandy beach and a small estuary). Both the presence of active Phaeocystis cells and their degradation product (foam) did have a significant impact on the studied shores. The primary production and growth rates of the kelp Saccharina latissima decreased during the bloom because of a shortage of light and nutrient for the macroalgae. On sandy sediments, the benthic metabolism (community respiration and community primary production), as well as the nitrification rate, were enhanced during foam deposits, in relation with the presence of bacteria and active pelagic cells within the decaying colonies. In estuarine sediments, the most impressive impact was the formation of a crust at the sediment surface due to drying foam. This led to anoxic conditions in the surface sediment and resulted in a high mortality among the benthic community. Some organisms also tended to migrate upward and were then directly accessible to the higher trophic level represented by birds. Phaeocystis then created a shortcut in the estuarine trophic network. Most of these modifications lasted shortly and all the systems considered came back to their regular properties and activities a few weeks after the end of the bloom, except for the most impacted estuarine area.  相似文献   

19.
Extensive CO2 vents have been discovered in the Wagner Basin, northern Gulf of California, where they create large areas with lowered seawater pH. Such areas are suitable for investigations of long-term biological effects of ocean acidification and effects of CO2 leakage from subsea carbon capture storage. Here, we show responses of benthic foraminifera to seawater pH gradients at 74–207 m water depth. Living (rose Bengal stained) benthic foraminifera included Nonionella basispinata, Epistominella bradyana and Bulimina marginata. Studies on foraminifera at CO2 vents in the Mediterranean and off Papua New Guinea have shown dramatic long-term effects of acidified seawater. We found living calcareous benthic foraminifera in low pH conditions in the northern Gulf of California, although there was an impoverished species assemblage and evidence of post-mortem test dissolution.  相似文献   

20.
Jie Ma  Xin‐Jun Zheng  Yan Li 《水文研究》2012,26(26):4029-4037
As the substantial component of the ecosystem respiration, soil CO2 flux is strongly influenced by infrequent and unpredictable precipitation in arid region. In the current study, we investigated the response of soil CO2 flux to rain pulses at a saline desert in western China. Soil CO2 flux was measured continuously during the whole growing season of 2009 at six sites. We found that there were remarkable changes in amplitude or diurnal patterns of soil CO2 flux induced by rainfall events: from bimodal before rain to a single peak after that. Further analysis indicated that there is a significant linear relationship (P < 0.001) between soil CO2 flux and soil temperature (Tsoil). However, a hysteresis between the waveform of diurnal course of CO2 flux and Tsoil was observed: with soil CO2 flux always peaked earlier than Tsoil. Furthermore, a double exponential decay function was fitted to the soil CO2 flux after rainfall, and total carbon (C) releases were estimated by numerical integration for rainfall events. The relative enhancement and total C release, in association with the rain pulses, was linearly related to the amount of precipitation. According to the size and frequency of rainfall events, the total amount of C release induced by rain pulses was computed as much as 7.88 g C·m–2 in 2009, equivalent to 10.25% of gross primary production. These results indicated that rain pulses played a significant role in the carbon budget of this saline desert ecosystem, and the size of them was a good indicator of rain‐induced flux enhancement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号