首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A continental shelf scale survey from 22°S to 34°S along the Western Australia coast provides the first detailed synoptic examination of the structure, circulation and modification of the southward flowing Leeuwin Current (LC) during the late austral autumn-early winter (May-June 2007). At lower latitudes (22°S-25°S), the LC was masked within a broad expanse of warm ambient surface water, which extended across the shelf and offshore before becoming constrained at the shelf break and attaining its maximum velocity of ∼1.0 m s−1 at 28°S. The temperature and salinity signature of the LC experienced substantial modification as it flowed poleward; surface temperature of the LC decreased by ∼5.25 °C while surface salinity increased by ∼0.72, consistent with climatology estimates and smaller (larger) for temperature (salinity) than those found during summer. Subsequently, LC water was denser by ∼2σT in the south compared to the north, and the surface mixed layer of the LC revealed only a small deepening trend along its poleward trajectory. Modification of the LC resulted from a combination of mixing due to geostrophic inflow and entrainment of cooler, more saline surrounding subtropical waters, and convective mixing driven by large heat loss to the atmosphere. Air-sea heat fluxes accounted for 50% of the heat lost from the LC in the south, whilst only accounting for 25% in the north, where large geostrophic inflow occurred and the LC displayed its maximum flow. The onshore transport was characterised by distinct jet-like structures, enhanced in the upper 200 m of the water column, and the presence of eddies in the vicinity of the shelf break generated offshore transport.  相似文献   

2.
《Marine pollution bulletin》2011,62(7-12):432-448
An outstanding characteristic of New Caledonia upwelling is that most events appear limited to the southern half of the western barrier reef. This north–south difference cannot be explained by alongshore variability of the projected wind stress and no strong evidence for alternative explanations has been proposed. A major objective of this paper is to provide the first dynamical analysis of New Caledonia upwelling and its regional environment, based on numerical simulations. Coastal upwelling around New Caledonia is shown to be modulated by a system of geostrophic currents interacting with the island mass. Upwelling velocities are weaker than expected from the two-dimensional Ekman theory, as Ekman divergence is balanced by “coastal geostrophic convergence”. The cooling effect of upwelling is also attenuated by alongshore transport of warm water by the Alis current, reminiscent of the Leeuwin current off Western Australia. Nevertheless, coastal upwelling can locally modify the large-scale surface water heat budget, dominated by meridional advection warming and surface cooling. The upwelled waters appear to be mostly of western origin and are transported below the surface by the Subtropical Counter Current before upwelling off New Caledonia. This appears in sharp contrast with the eastern barrier reef where the general warming by meridional advection of tropical surface waters is accentuated by the vigorous western boundary type Vauban current.  相似文献   

3.
A global 1/4° resolution product of surface currents has been developed by the Centre de Topographie des Océans et de l’Hydrosphère. The surface current is calculated from a combination of Ekman currents derived from wind estimates from QuikSCAT satellite, geostrophic current anomalies derived from altimetry, and a mean geostrophic current derived from climatology. In the equatorial band, the currents are adjusted following the methodology proposed by Lagerloef et al. (J Geophys Res, 104(C10):22313–22326, 1999). These satellite-derived currents have been compared to different types of in situ current observations. A global validation is performed using Lagrangian surface drifting buoys and acoustic Doppler current profiler current observations along ship tracks. The comparison shows a very good agreement in the subtropical and mid-latitude bands. The correlation between the satellite-derived currents and the drifter currents in zonal mean bands is around 0.7 for most of the world oceans, both for the zonal and the meridional components. This correlation rises up to 0.8 in the regions of strong boundary currents. In the equatorial band, the correlation with the surface drifting buoys is reduced. A direct comparison with the TOGA/TAO moored current meter data at the equator shows that the low frequency currents are captured by the satellite current product, but there is a substantial high-frequency signal (<20 days), which is not reproduced. This is especially the case for the meridional component and is mainly related to the tropical instability waves. We also show that using daily QuikSCAT wind forcing improves the satellite current product, particularly in the high-latitude westerly wind belt and in the tropical Indian Ocean.  相似文献   

4.
This paper presents the development of a multiple‐station neural network for predicting tidal currents across a coastal inlet. Unlike traditional hydrodynamic models, the neural network model does not need inputs of coastal topography and bathymetry, grids, surface and bottom frictions, and turbulent eddy viscosity. Without solving hydrodynamic equations, the neural network model applies an interconnected neural network to correlate the inputs of boundary forcing of water levels at a remote station to the outputs of tidal currents at multiple stations across a local coastal inlet. Coefficients in the neural network model are trained using a continuous dataset consisting of inputs of water levels at a remote station and outputs of tidal currents at the inlet, and verified using another independent input and output dataset. Once the neural network model has been satisfactorily trained and verified, it can be used to predict tidal currents at a coastal inlet from the inputs of water levels at a remote station. For the case study at Shinnecock Inlet in the southern shore of New York, tidal currents at nine stations across the inlet were predicted by the neural network model using water level data located from a station about 70 km away from the inlet. A continuous dataset in May 2000 was used for the training, and another dataset in July 2000 was used for the verification of the neural network model. Comparing model predictions and observations indicates correlation coefficients range from 0·95 to 0·98, and the root‐mean‐square error ranges from 0·04 to 0·08 m s?1 at the nine current locations across the inlet. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
The current study tries a new approach to simulating interactions between waves and seagrass through Smoothed Particle Hydrodynamics (SPH). In this model, the plants are defined as a solid that respects Hooke's law, and are assumed to have direct interaction with the fluid. Given the characteristics of the SPH method, especially in terms of computational time, the dimensions of the simulations were limited. The first goal of the current study was to optimize the approach to avoid reaching certain limits such as the rupture of the simulated plant. Plant movements under waves and/or currents have been studied by several authors in various in-situ, physical, and numerical experiments concerning various vegetation species, thus proving that plant movements can be successfully reproduced by SPH 2D/3D. Manning's roughness coefficient, n, was calculated to confirm that the results were in accordance with what had been measured in flume studies. Even though there is still room for improvement, it is shown that this method can be used to estimate Manning's coefficient for coastal vegetation (seagrass and saltmarsh vegetation) and to greatly improve the modeling and forecasting of coastal erosion and storm surge risks by including the effects of vegetation in integrated models.  相似文献   

6.
The use of pearl oysters has recently been proposed as an environmental remediation tool in coastal ecosystems. This study quantified the nitrogen, phosphorus and heavy metal content of the tissue and shell of pearl oysters harvested from a small pearl oyster farm at Port Stephens, Australia. Each tonne of pearl oyster material harvested resulted in approximately 703 g metals, 7452 g nitrogen, and 545 g phosphorus being removed from the waters of Port Stephens. Increasing current farm production of 9.8 tyr(-1) to 499 tyr(-1) would balance current nitrogen loads entering Port Stephens from a small Sewage Treatment Plant (STP) located on its southern shores. Furthermore, manipulation of harvest dates to coincide with oyster condition would likely remove substantially greater quantities of nutrients. This study demonstrates that pearl aquaculture may be used to assist in the removal of pollutants from coastal waters while producing a commercially profitable commodity.  相似文献   

7.
Phytoplankton biomass, community and size structure, primary production and bacterial production were measured at shelf and continental slope sites near North West Cape, Western Australia (20.5°S–22.5°S) over two summers (October–February 1997–1998 and 1998–1999), and in April 2002. The North West Cape region is characterized by upwelling-favorable, southwesterly winds throughout the summer. Surface outcropping of upwelled water is suppressed by the geostrophic pressure gradients and warm low-density surface waters of the southward flowing Leeuwin Current. Strong El Niño (ENSO) conditions (SOI <0) prevailed through the summer of 1997–1998 which resulted in lower sea levels along the northwestern Australian coast and a weaker Leeuwin Current. La Niña conditions prevailed during the 1998–1999 summer and in April 2002. During the summer of 1997–1998, the North West Cape region was characterized by a shallower thermocline (nutricline), resulting in larger euphotic zone stocks of inorganic nitrogen and silicate over the continental slope. There was evidence for episodic intrusions of upper thermocline waters and the sub-surface chlorophyll maximum onto the outer continental shelf in 1997–1998, but not in 1998–1999. Pronounced differences in phytoplankton biomass, community size structure and productivity were observed between the summers of 1997–1998 and 1998–1999 despite general similarities in irradiance, temperature and wind stress. Phytoplankton primary production and bacterial production were 2- to 4-fold higher during the summer of 1997–1998 than in 1998–1999, while total phytoplankton standing crop increased by<2-fold. Larger phytoplankton (chiefly diatoms in the >10 μm size fraction) made significant contributions to phytoplankton standing crop and primary production during the summer of 1997–1998, but not 1998–1999. Although there were no surface signs of upwelling, primary production rates near North West Cape episodically reached levels (3–8 g C m−2 day−1) characteristic of eastern boundary Ekman upwelling zones elsewhere in the world. Bacterial production (0.006–1.2 g C m−2 day−1) ranged between 0.6 and 145 percent (median=19 percent) of concurrent primary production. The observed differences between years and within individual summers suggest that variations in the Leeuwin Current driven by seasonal or ENSO-related changes in the Indonesian throughflow region may have episodic, but significant influences on pelagic productivity along the western margin of Australia.  相似文献   

8.
Multiple‐layered tsunami deposits have been frequently reported from coastal stratigraphic sequences, but the formation processes of these layers remain uncertain. A terrestrial sandy deposit formed by the 2004 Indian Ocean Tsunami was investigated at Ban Nam Kem, southern Thailand. Four internal layers induced by two tsunami waves were identified in the tsunami deposit. Sedimentary structures indicated that two units were formed by run‐up currents caused by the tsunami and the other two units were deposited by the backwash flows. Graded bedding was common in the layers, but inverse grading was observed at limited intervals on the surveyed transects. The characteristics of the multiple‐layered tsunami deposit vary remarkably over a very short distance (<1 m) in response to the local topography. Remarkable asymmetries in thickness and grain‐size distribution are recognized between the run‐up and backwash flow deposits. On the basis of the interpretation of sedimentary structures, the formation process of the multiple‐layered tsunami deposit observed in this study can be explained in a schematic model as the modification of the ideal tsunami sequence by local erosion and the asymmetric hydraulic properties of tsunami waves, such as the maximum shear velocity and the heterogeneity of the flow velocity field.  相似文献   

9.
The circulation in the shelf seas of Maritime Canada is predominantly in the northeast–southwest direction. Despite the mean northeast–southwest flow, a number of AIS invasions have been observed to proceed in the opposite direction – from the Gulf of Maine, around Nova Scotia, and into the southern Gulf of St. Lawrence. Flow fields from a numerical circulation model are used to investigate whether these invasions could be due to drift in ocean currents. Particle tracking experiments are performed and probability density functions (PDFs) derived that describe the probability of drifting a given upstream distance in a given drift time. Analysis of these PDFs revealed that for invasions that took 20–40 y to occur, propagule drift in ocean currents could be responsible for the upstream spread, while this was not the case for short timescale invasions (<10 y). Rafting could be responsible for both short and long timescale invasions.  相似文献   

10.
Abstract

The Pimpama coastal plain is situated in southern Moreton Bay, in subtropical eastern Australia. The plain is low lying and tidal and is situated behind a large sand barrier island. Largely due to recent (30 years) drainage networks within the flood plain, surface water quality has declined. Groundwater hydrographs have enabled the determination of different flow systems: a deeper system responding to seasonal weather patterns and a shallower flow system more responsive to individual rainfall events. Elevated potentiometric heads in semi-confined aquifers reflect upward movement of saline to hypersaline groundwaters. However, interaction of this deeper groundwater with shallower groundwater and the surface drains is yet to be determined. Recharge to the shallower system is by direct infiltration while recharge to the deeper system includes a component from landward ranges or bedrock outcrops within the plain. Discrimination between groundwater bodies is possible using salinity, ionic ratios and stable isotopes. Features of groundwater hydrology, the distribution of salinity and variations in water chemistry all suggest that under current conditions infiltration has increased, plus there is a greater landward migration of groundwaters of marine origin.  相似文献   

11.
The South Florida Hybrid Coordinate Ocean Model (SoFLA-HYCOM) encompasses a variety of coastal regions (the broad Southwest Florida shelf, the narrow Atlantic Keys shelf, the shallow Florida Bay, and Biscayne Bay) and deep regions (the Straits of Florida), including Marine Protected Areas (the Florida Keys Marine Sanctuary and the Dry Tortugas Ecological Reserve). The presence of the strong Loop Current/Florida Current system and associated eddies connects the local and basin-wide dynamics. A multi-nested approach has been developed to ensure resolution of coastal-scale processes and proper interaction with the large scale flows. The simulations are free running and effects of data assimilation are introduced through boundary conditions derived from Global Ocean Data Assimilation Experiment products. The study evaluates the effects of boundary conditions on the successful hindcasting of circulation patterns by a nested model, applied on a dynamically and topographically complex shelf area. Independent (not assimilated) observations are employed for a quantitative validation of the numerical results. The discussion of the prevailing dynamics that are revealed in both modeled and observed patterns suggests the importance of topography resolution and local forcing on the inner shelf to middle shelf areas, while large scale processes are found to dominate the outer shelf flows. The results indicate that the successful hindcasting of circulation patterns in a coastal area that is characterized by complex topography and proximity to a large scale current system requires a dynamical downscaling approach, with simulations that are nested in a hierarchy of data assimilative outer models.  相似文献   

12.
地震背景噪声特性及噪声源的分布研究逐渐成为深化背景噪声层析成像的关键问题.海岛地区由于特殊的地理位置,其背景噪声具有相对独特的特征.地脉动(约0.003~1 Hz)是地震背景噪声中能量最强的分量,其激发与特性被认为与海浪运动和固体地球之间的相互作用有关,但海岛地区地脉动特征与海洋波浪场之间的关系尚未被充分研究.本文利用西北太平洋海岛地震台站的连续记录数据、波浪浮标的实测数据以及WAVEWATCH-Ⅲ海浪模式的数值模拟结果,通过地震学和海洋学的交叉,分析海岛地区地脉动信号的时频特性及其与海洋波浪场之间的相关性,从海洋学角度对地脉动信号的特征及激发进行探讨与解释.结果表明,海岛地区地脉动信号相对于内陆地区更强,并具有明显且稳定的季节性变化特征:高频地脉动信号(0.12~0.32 Hz)在夏秋季节(5月-10月)相对较弱,而在冬春季节(11月-次年4月)相对较强,与北半球海洋活动季节性变化相一致.此外,海岛地区地脉动主要受周边海域波浪场影响,与周边海域波浪能功率密度及实测和数值模拟所得的有效波高均具有很好的互相关性.该研究结果同时表明可进一步发展利用地脉动观测数据反演海表波浪场的可能,为海洋科学研究中海表波浪场连续观测数据的获取提供地震学上的支持.  相似文献   

13.
Coastal lagoons are significant wetland environments found on coastlines throughout the world. Groundwater seepage may be a key component of lagoon water balances, though only a few studies have investigated large (>100 km2) coastal lagoons. In this study, we combined airborne thermal infrared imagery with continuous measurements of radon (222Rn—a natural groundwater tracer), conductivity, water temperature and dissolved oxygen to map groundwater seepage to a large coastal lagoon in New Zealand. We found evidence of seepage along the margins of the lagoon but not away from the margins. Our findings confirmed previously known seepage zones and identified new potential locations of groundwater inflow. Both point source and diffuse seepage occurred on the western and northwestern margins of the lagoon and parallel to the barrier between the lagoon and sea. These observations imply geologic controls on seepage. The combination of remote sensing and in-situ radon measurements allowed us to effectively map groundwater discharge areas across the entire lagoon. Combined, broad-scale qualitative methods built confidence in our interpretation of groundwater discharge locations in a large, dynamic coastal lagoon.  相似文献   

14.
The Odra Estuary is one of the most polluted coastal waters of the southern Baltic. To investigate how and whether the estuary acts as a filter and transformation area for the fluviogenic material, different models were developed and an intensive monitoring programme was carried out. Summarizing different methodological approaches, it could be shown that the total system filter capacity reaches 2...5% for nutrients and 10...15% for some heavy metals related to the current mean annual input. In the western part of the estuary, the retention is more important and amounts to 10...40% of the annual nutrient yield. Carbon flux studies revealed that both a reduction of the inputs and more internal and external nutrient sinks are needed to reverse the anthropogenic eutrophication process.  相似文献   

15.
闽粤沿海全新世垂直构造运动的速率   总被引:4,自引:0,他引:4       下载免费PDF全文
基于华南地区新构造运动具有断块垂直差异运动的特征,本文主要根据目前已测定的,分布于闽粤沿海地区的若干个全新世海相沉积物的放射性年代,海拔高度等数据,初步估算和对比闽粤沿海不同断块构造区的垂直构造运动的速率,并探讨它与地震活动的关系  相似文献   

16.
A high-resolution numerical model system is essential to resolve multi-scale coastal ocean dynamics. So a multi-scale unstructured grid-based finite-volume coastal ocean model (FVCOM) system has been established for the East China Sea and Changjiang Estuary (ECS–CE) with the aim at resolving coastal ocean dynamics and understanding different physical processes. The modeling system consists of a three-domain-nested weather research and forecasting model, FVCOM model with the inclusion of FVCOM surface wave model in order to understand the wave–current interactions. The ECS–CE system contains three different scale models: a shelf-scale model for the East China Sea, an estuarine-scale model for the Changjiang Estuary and adjacent region, and a fine-scale model for the deep waterway regions. These three FVCOM-based models guarantee the conservation of mass and momentum transferring from outer domain to inner domain using the one-way common-grid nesting procedure. The model system has been validated using data from various observation data, including surface wind, tides, currents, salinity, and wave to accurately reveal the multi-scale dynamics of the East China Sea and Changjiang Estuary. This modeling system has been demonstrated via application to the seasonal variations of Changjiang diluted water and the bottom saltwater intrusion in the North Passage, and it shows strong potential for estuarine and coastal ocean dynamics and operational forecasting.  相似文献   

17.
Samples of polyethylene pellets were collected at 30 beaches from 17 countries and analyzed for organochlorine compounds. PCB concentrations in the pellets were highest on US coasts, followed by western Europe and Japan, and were lower in tropical Asia, southern Africa and Australia. This spatial pattern reflected regional differences in the usage of PCBs and was positively correlated with data from Mussel Watch, another monitoring approach. DDTs showed high concentrations on the US west coast and in Vietnam. In Vietnam, DDT was predominant over its metabolites (DDE and DDD), suggesting the principal source may be current usage of the pesticide for malaria control. High concentrations of pesticide HCHs were detected in the pellets from southern Africa, suggesting current usage of the pesticides in southern Africa. This study demonstrates the utility and feasibility of the International Pellet Watch approach to monitor POPs at a global scale.  相似文献   

18.
Tsunami Deposits   总被引:1,自引:0,他引:1  
—Geological investigations of coastal sediments indicate that prehistoric tsunamis can be identified. Their characterisation has altered our knowledge of the past frequency and magnitude of tsunamis for different areas of the world. Yet there have been relatively few geological studies of modern tsunamis with virtually no direct observations of the processes associated with tsunami sediment transport and deposition. This paper discusses these issues and draws on the results of recent research to summarise our current knowledge on the nature of tsunami deposits.  相似文献   

19.
Measurements from recently installed 5 MHz high-frequency radar (CODAR) stations south of Point Arena, California, are used to describe surface current patterns during the upwelling season (June-August 2007). The systems provide hourly current maps on a 5-km grid, covering a region from approximately 10 to 150 km offshore (the continental shelf into the deep ocean). These HF-radar observations provide an unprecedented view of circulation in this “coastal transition zone”, between the wind-driven circulation over the shelf and the California Current circulation offshore. Circulation patterns include: (1) bifurcation of the coastal upwelling jet downstream of Point Arena into an along-shelf (down-coast) branch and an offshore branch, and (2) a large-scale anticyclonic meander that often develops into an eddy-like recirculation south of the bifurcation. The “recirculation” feature extends well offshore, with surface currents 50-100 km from the coast consistently opposing the wind stress. The spatial and temporal evolution of the surface current features during upwelling events affects surface transport from Point Arena to areas in the south, increasing the travel time of a substantial fraction of newly upwelled water from a few days to roughly two weeks. Thus, surface currents even far offshore influence coastal transport of nutrients, phytoplankton and larvae on ecologically relevant timescales, with resultant connectivity patterns very different than implied by a simple examination of the mean flow.  相似文献   

20.
Seasonal variations in sea level are often neglected in studies of coastal aquifers; however, they may have important controls on processes such as submarine groundwater discharge, sea water intrusion, and groundwater discharge to coastal springs and wetlands. We investigated seasonal variations in salinity in a groundwater‐fed coastal wetland (the RAMSAR listed Piccaninnie Ponds in South Australia) and found that salinity peaked during winter, coincident with seasonal sea level peaks. Closer examination of salinity variations revealed a relationship between changes in sea level and changes in salinity, indicating that sea level–driven movement of the fresh water‐sea water interface influences the salinity of discharging groundwater in the wetland. Moreover, the seasonal control of sea level on wetland salinity seems to override the influence of seasonal recharge. A two‐dimensional variable density model helped validate this conceptual model of coastal groundwater discharge by showing that fluctuations in groundwater salinity in a coastal aquifer can be driven by a seasonal coastal boundary condition in spite of seasonal recharge/discharge dynamics. Because seasonal variations in sea level and coastal wetlands are ubiquitous throughout the world, these findings have important implications for monitoring and management of coastal groundwater–dependent ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号