首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Pleistocene basanite-tephrite Rothenberg cone complex in the East Eifel was constructed by alternating dominantly Strombolian (S1–3) and dominantly phreatomagmatic (P1–3) phases of volcanism along a NNE-SSW linear vent system. Strombolian eruptions, from the central vent of the S1 scoria cone, and phreatomagmatic eruptions, from a vent on the southern margin of the cone, occurred simultaneously during the second phreatomagmatic phase (P2). The P2 deposits are a complex sequence in which Strombolian fallout ejecta is intimately admixed with phreatomagmatic fallout and pyroclastic surge material. Every bed contains at least trace amounts of ejecta from both sources but, at every site, an alternation of Strombolian-dominant and phreatomagmatic-dominant units is recorded. Each bed also shows marked lateral changes with a progressive northward increase in the proportion of Strombolian material. The two eruptive styles produced morphologically distinct clast populations often with widely separated (5–7 φ) grain size modes. The phreatomagmatic component of the P2 deposits is inferred to be the result of shallow interaction of external water and cool, partially degassed magma which reached the surface at a time when the magma column was retreating from the northern Strombolian central vent.The Rothenberg deposits illustrate the complexity and sensitivity of controls on Strombolian and associated phreatomagmatic volcanism, and the shallow depth of fragmentation during such eruptions. During such shallow eruptions minor, ephemeral and localised variations in the rate of rise and discharge of magma, and vent geometry and hydrology significantly influence the magma:water ratio and hence eruptive style.  相似文献   

2.
The Quaternary Herchenberg composite tephra cone (East Eifel, FR Germany) with an original bulk volume of 1.17·107 m3 (DRE of 8.2·106 m3) and dimensions of ca. 900·600·90 m (length·width·height) erupted in three main stages: (a) Initial eruptions along a NW-trending, 500-m-long fissure were dominantly Vulcanian in the northwest and Strombolian in the southeast. Removal of the unstable, underlying 20-m-thick Tertiary clays resulted in major collapse and repeated lateral caving of the crater. The northwestern Lower Cone 1 (LC1) was constructed by alternating Vulcanian and Strombolian eruptions. (b) Cone-building, mainly Strombolian eruptions resulted in two major scoria cones beginning initially in the northwest (Cone 1) and terminating in the southeast (Cones 2 and 3) following a period of simultaneous activity of cones 1 and 2. Lapilli deposits are subdivided by thin phreatomagmatic marker beds rich in Tertiary clays in the early stages and Devonian clasts in the later stages. Three dikes intruded radially into the flanks of cone 1. (c) The eruption and deposition of fine-grained uppermost layers (phreatomagmatic tuffs, accretionary lapilli, and Strombolian fallout lapilli) presumably from the northwestern center (cone 1) terminated the activity of Herchenberg volcano. The Herchenberg volcano is distinguished from most Strombolian scoria cones in the Eifel by (1) small volume of agglutinates in central craters, (2) scarcity of scoria bomb breccias, (3) well-bedded tephra deposits even in the proximal facies, (4) moderate fragmentation of tephra (small proportions of both ash and coarse lapilli/bomb-size fraction), (5) abundance of dense ellipsoidal juvenile lapilli, and (6) characteristic depositional cycles in the early eruptive stages beginning with laterally emplaced, fine-grained, xenolith-rich tephra and ending with fallout scoria lapilli. Herchenberg tephra is distinguished from maar deposits by (1) paucity of xenoliths, (2) higher depositional temperatures, (3) coarser grain size and thicker bedding, (4) absence of glassy quenched clasts except in the initial stages and late phreatomagmatic marker beds, and (5) predominance of Strombolian, cone-building activity. The characteristics of Herchenberg deposits are interpreted as due to a high proportion of magmatic volatiles (dominantly CO2) relative to low-viscosity magma during most of the eruptive activity.  相似文献   

3.
The Ohakune Craters form one of several parasitic centres surrounding Ruapehu volcano, at the southern end of the Taupo Volcanic Zone. An inner scoria cone and an outer, probably older, tuff ring are the principal structures in a nested cluster of four vents.The scoria cone consists of alternating lava flows and coarse, welded and unwelded, strombolian block and bomb beds. The strombolian beds consist of principally two discrete types of essential clast, vesicular bombs and dense angular blocks. Rare finer-grained beds are unusually block-rich. The tuff ring consists of alternating strombolian and phreatomagmatic units. Strombolian beds have similar grain size characteristics to scoria cone units, but contain more highly vesicular unoxidised bombs and few blocks. Phreatomagmatic deposits, which contain clasts with variable degrees of palagonitisation, consist of less well-sorted airfall deposits and very poorly sorted, crystal-rich pyroclastic surge deposits.Disruption by expanding magmatic gas bubbles was a major but relatively constant influence on both strombolian and phreatomagmatic eruptions at Ohakune. Instead, the nature of deposits was principally controlled by two other variables, vent geometry and the relative influence of external water during volcanism. During tuff-ring construction, magma is considered to have risen rapidly to the surface, and to have been ejected without sufficient residence time in the vent for non-explosive degassing. Availability of external water principally governed the eruption mechanism and hence the nature of the deposits. Essentials clasts of the scoria cone are, by comparison, dense, degassed and oxidised. It is suggested that a change in vent geometry, possibly the construction of the tuff ring itself, permitted lava ponding and degassing during scoria cone growth. During strombolian eruptions, magma remaining in the vent probably became depleted in gas, leading to the formation of an inert zone, or crust, above actively degassing magma. Subsequent explosions had therefore to disrupt both this passive crust and underlying, vesiculating magma “driving” the eruption. Cycles of strombolian eruption are thought to have stopped when the thickness of the inert crust precluded explosive eruption and only recommenced when some of this material was removed, either as a lava flow or during phreatomagmatic explosions when external water entered the vent. Such explosions probably formed the unusually fine-grained and block-rich beds in the strombolian sequence.The Ohakune deposits are an excellent example of the products of explosive eruption of fluid, gas-rich basic magma vesiculating under very near-surface conditions. A complex interplay of rate of magma rise, rate and depth of formation of gas bubbles, vent geometry, abundance of shallow external water, wind velocity and accumulation rate of ejecta determines the nature of deposits of such eruptions.  相似文献   

4.
Scoria cones are common volcanic features and are thought to most commonly develop through the deposition of ballistics produced by gentle Strombolian eruptions and the outward sliding of talus. However, some historic scoria cones have been observed to form with phases of more energetic violent Strombolian eruptions (e.g., the 1943–1952 eruption of Parícutin, central Mexico; the 1975 eruption of Tolbachik, Kamchatka), maintaining volcanic plumes several kilometers in height, sometimes simultaneous with active effusive lava flows. Geologic evidence shows that violent Strombolian eruptions during cone formation may be more common than is generally perceived, and therefore it is important to obtain additional insights about such eruptions to better assess volcanic hazards. We studied Irao Volcano, the largest basaltic monogenetic volcano in the Abu Monogenetic Volcano Group, SW Japan. The geologic features of this volcano are consistent with a violent Strombolian eruption, including voluminous ash and fine lapilli beds (on order of 10?1 km3 DRE) with simultaneous scoria cone formation and lava effusion from the base of the cone. The characteristics of the volcanic products suggest that the rate of magma ascent decreased gradually throughout the eruption and that less explosive Strombolian eruptions increased in frequency during the later stages of activity. During the eruption sequence, the chemical composition of the magma became more differentiated. A new K–Ar age determination for phlogopite crystallized within basalt dates the formation of Irao Volcano at 0.4?±?0.05 Ma.  相似文献   

5.
Between 1986 and 1990 the eruptive activity of Erebus volcano was monitored by a video camera with on-screen time code and recorded on video tape. Corresponding seismic and acoustic signals were recorded from a network of 6 geophones and 2 infrasonic microphones. Two hundred Strombolian explosions and three lava flows which were erupted from 7 vents were captured on video. In December 1986 the Strombolian eruptions ejected bombs and ash. In November 1987 large bubble-bursting Strombolian eruptions were observed. The bubbles burst when the bubble walls thinned to ∼ 20 cm. Explosions with bomb flight-times up to 14.5 s were accompanied by seismic signals with our local size estimate, “unified magnitudes” (mu), up to 2.3. Explosions in pools of lava formed by flows in the Inner Crater were comparatively weak.  相似文献   

6.
Scoria cone eruptions are generally modeled as a simple succession from explosive eruption to form the cone to passive effusion of lava, generally from the base of the cone. Sector collapse of scoria cones, wherein parts of the cone are rafted on a lava flow, is increasingly recognized as common, but the reasons that a cone may not be rebuilt are poorly understood.  相似文献   

7.
Explosive activity at Lathrop Wells volcano, Nevada, U.S.A. originated with weak Strombolian (WS) eruptions along a short fissure, and transitioned to violent Strombolian (VS) activity from a central vent, with lava effusion during both stages. The cause for this transition is unknown; it does not reflect a compositional change, as evidenced by the consistent bulk geochemistry of all the eruptive products. However, comparison of agglutinate samples from the early, WS events with samples of scoria from the later, VS events reveal differences in the abundance and morphology of groundmass phases and variable textures in the rims of olivine phenocrysts. Scanning electron microscope (SEM) examination of thin sections from the WS samples show euhedral magnetite microlites in the groundmass glass and olivine phenocrysts show symplectite lamellae in their rims. Secondary ion mass spectrometry (SIMS) depth profiles of these symplectites indicate they are diffusion-controlled. The calculated DFe-Mg allows an estimation of the oxygen fugacity (fO2) and indicates an increased fO2 during eruption of the WS products. Conversely, the VS samples show virtually no magnetite microlites in the groundmass glass, a lack of symplectites in the olivines, and a lower calculated fO2. These microtextural features suggest that the Lathrop Wells trachybasalt experienced increased oxidation during WS activity. As magma ascended through the original fissure, exsolved bubbles were concentrated in the wider part(s) (the protoconduit) and this bubble flux drove convective circulation that oxidized the magma through exposure to atmosphere and recirculation. This oxidation resulted in groundmass crystallization of magnetite within the melt and formation of symplectites within the olivine phenocrysts. Bubble-driven convection mixed magma vertically within the protoconduit, keeping it fluid and driving Strombolian bursts, while microlite crystallization in narrower parts of the fissure helped to focus flow. Development of a central conduit increased the magma ascent velocity (due to a greater product volume in the later eruptive stages) and caused the shift in eruption intensity. Consequently, variations in microtextures of the Lathrop Wells products reveal how a combination of fluid dynamic and crystallization processes in the ascending magma resulted in different styles of activity while the products maintained a consistent bulk composition.  相似文献   

8.
The Middle Scoria deposit represents an explosive eruption of basaltic andesite magma (54 wt. % SiO2) from Okmok volcano during mid-Holocene time. The pattern of dispersal and characteristics of the ejecta indicate that the eruption opened explosively, with ash textural evidence for a limited degree of phreatomagmatism. The second phase of the eruption produced thick vesicular scoria deposits with grain texture, size and dispersal characteristics that indicate it was violent strombolian to subplinian in style. The third eruptive phase produced deposits with a shift towards grain shapes that are dense, blocky, and poorly vesicular, and intermittent surge layers, indicating later transitions between magmatic (violent strombolian) to phreatomagmatic (vulcanian) eruptive styles. Isopach maps yield bulk volume estimates that range from 0.06 to 0.43 km3, with ~ 0.04 to 0.25 km3 total DRE. The associated column heights and mass discharge values calculated from isopleth maps of individual Middle Scoria layers are 8.5 – 14 km and 0.4 to 45 × 106 kg/s. The Middle Scoria tephras are enriched in plagioclase microlites that have the textural characteristics of rapid magma ascent and relatively high degrees of effective undercooling. Those textures probably reflect the rapid magma ascent accompanying the violent strombolian and subplinian phases of the eruption. In the later stages of the eruption, the plagioclase microlite number densities decrease and textures include more tabular plagioclase, indicating a slowing of the ascent rate. The findings on the Middle Scoria are consistent with other explosive mafic eruptions, and show that outside of the two large caldera-forming eruptions, Okmok is also capable of producing violent mafic eruptions, marked by varying degrees of phreatomagmatism.  相似文献   

9.
Ngauruhoe cone, in southern Taupo Volcanic Zone, New Zealand, has grown rapidly over the last 2,500 years in an alternation of effusive, strombolian, vulcanian, and sub-plinian eruptions of andesitic magma. At times growth has been 'staccato' in fashion as evidenced in the historical record. Each historical eruption typically lasted days to months, alternating with repose periods of years to decades. Major historic eruptions occurred in 1870 1949 1954-1955 and 1973-1975, encompassing wide variations in eruptive style over short timescales. The early period of cone building appears to have been dominated by a more continuous form of activity characterised by a series of numerous frequent explosive eruptions, with associated lava flows. The 2.2-km3 cone has grown in a piecemeal sectorial manner reflecting constant modification to the morphology of the summit, which has funnelled eruption products to specific sectors of the cone. Eruption rates can be calculated on several different timescales. Discharge rates averaged over individual eruptive pulses vary by two orders of magnitude (2.7-280 m3 s-1), reflecting variations in high level magma ascent rates and processes such as degassing, which are, in turn, reflected in contrasting eruptive styles. Lower rates (e.g. 0.65 m3 s-1) are obtained by averaging the discharge over an entire eruption lasting several months and may correspond to the ascent rate of magma batch(es) feeding the eruption. The long-term growth rate of Ngauruhoe is 0.9 km3 ky-1. This is an average rate reflecting the long-term deep supply rate of magma to crustal reservoirs. By looking at eruption rates on these different timescales we are better able to constrain processes occurring at various depths within the plumbing system. There are few detailed studies of the growth patterns of young volcanic cones, but such data are essential in understanding the dynamics of andesitic systems. More than 60 lavas and pyroclastic units mapped on different sectors of Ngauruhoe cone have been correlated by flow chronology and their distinctive compositions into five groups. Although the cone has grown rapidly, Ngauruhoe shows little evidence for the existence of large crustal magma reservoirs and long-lived magma batches. Instead, abrupt and non-systematic changes in magma chemistry and isotopic composition between and within the five groups indicate that the volcano has an open-system, multi-process, multi-directional character and erupts small (<0.1 km3) and short-lived (100-103 years) magma batches with no simple time-composition relationships between successive batches.  相似文献   

10.
The Croscat pyroclastic succession has been analysed to investigate the transition between different eruptive styles in basaltic monogenetic volcanoes, with particular emphasis on the role of phreatomagmatism in triggering Violent Strombolian eruptions. Croscat volcano, an 11 ka basaltic complex scoria cone in the Quaternary Garrotxa Volcanic Field (GVF) shows pyroclastic deposits related both to magmatic and phreatomagmatic explosions.Lithofacies analysis, grain size distribution, chemical composition, glass shard morphologies, vesicularity, bubble-number density and crystallinity of the Croscat pyroclastic succession have been used to characterize the different eruptive styles. Eruptions at Croscat began with fissural Hawaiian-type fountaining that rapidly changed to eruption types transitional between Hawaiian and Strombolian from a central vent. A first phreatomagmatic phase occurred by the interaction between magma and water from a shallow aquifer system at the waning of the Hawaiian- and Strombolian-types stage. A Violent Strombolian explosion then occurred, producing a widespread (8 km2), voluminous tephra blanket. The related deposits are characterized by the presence of wood-shaped, highly vesicular scoriae. Glass-bearing xenoliths (buchites) are also present within the deposit. At the waning of the Violent Strombolian phase a second phreatomagmatic phase occurred, producing a second voluminous deposit dispersed over 8.4 km2. The eruption ended with a lava flow emission and consequent breaching of the western-side of the volcano. Our data suggest that the Croscat Violent Strombolian phase was related to the ascent of deeper, crystal-poor, highly vesicular magma under fast decompression rate. Particles and vesicles elongation and brittle failure observed in the wood-shaped clasts indicate that fragmentation during Violent Strombolian phase was enhanced by high strain-rate of the magma within the conduit.  相似文献   

11.
Cora Maar is a Quaternary volcano located to the 20 km northwest of Mount Erciyes, the largest of the 19 polygenetic volcanic complexes of the Cappadocian Volcanic Province in central Anatolia. Cora Maar is a typical example of a maar-diatreme volcano with a nearly circular crater with a mean diameter of c.1.2 km, and a well-bedded base surge-dominated maar rim tephra sequence up to 40 m in thickness. Having a diameter/depth ratio (D/d) of 12, Cora is a relatively “mature” maar compared to recent maar craters in the world.Cora crater is excavated within the andesitic lava flows of Quaternary age. The tephra sequence is not indurated, and consists of juvenile clasts up to 70 cm, non-juvenile clasts up to 130 cm, accretionary lapilli up to 1.2 cm in diameter, and ash to lapilli-sized tephra. Base surge layers display well-developed antidune structures indicating the direction of the transport. Both progressive and regressive dune structures are present within the tephra sequence. Wavelength values increase with increasing wave height, and with large wavelength and height values. Cora tephra display similarities to Taal and Laacher See base surge deposits. Impact sags and small channel structures are also common. Lateral and vertical facies changes are observed for the dune bedded and planar bedsets.According to granulometric analyses, Cora Maar tephra samples display a bimodal distribution with a wide range of Mdφ values, characteristic for the surge deposits. Very poorly sorted, bimodal ash deposits generally vary from coarse tail to fine tail grading depending on the grain size distribution while very poorly sorted lapilli and block-rich deposits display a positive skewness due to fine tail grading.  相似文献   

12.
Long-range dispersal of volcanic ash can disrupt civil aviation over large areas, as occurred during the 2010 eruption of Eyjafjallaj?kull volcano in Iceland. Here we assess the hazard for civil aviation posed by volcanic ash from a potential violent Strombolian eruption of Somma-Vesuvius, the most likely scenario if eruptive activity resumed at this volcano. A Somma-Vesuvius eruption is of concern for two main reasons: (1) there is a high probability (38?%) that the eruption will be violent Strombolian, as this activity has been common in the most recent period of activity (between AD 1631 and 1944); and (2) violent Strombolian eruptions typically last longer than higher-magnitude events (from 3 to 7?days for the climactic phases) and, consequently, are likely to cause prolonged air traffic disruption (even at large distances if a substantial amount of fine ash is produced such as is typical during Vesuvius eruptions). We compute probabilistic hazard maps for airborne ash concentration at relevant flight levels using the FALL3D ash dispersal model and a statistically representative set of meteorological conditions. Probabilistic hazard maps are computed for two different ash concentration thresholds, 2 and 0.2?mg/m3, which correspond, respectively, to the no-fly and enhanced procedure conditions defined in Europe during the Eyjafjallaj?kull eruption. The seasonal influence of ash dispersal is also analysed by computing seasonal maps. We define the persistence of ash in the atmosphere as the time that a concentration threshold is exceeded divided by the total duration of the eruption (here the eruption phase producing a sustained eruption column). The maps of averaged persistence give additional information on the expected duration of the conditions leading to flight disruption at a given location. We assess the impact that a violent Strombolian eruption would have on the main airports and aerial corridors of the Central Mediterranean area, and this assessment can help those who devise procedures to minimise the impact of these long-lasting low-intensity volcanic events on civil aviation.  相似文献   

13.
On aerial photographs fractures till 3 km long are shown to abound on the slopes and in the country surrounding the Lamongan volcano in the eastern spur of Java, Indonesia. Linear arrangements of maars and boccas in the same region possess orientations similar to those of the photographic lineaments. The Lamongan fracture system is compatible with a regional compression directed N15°–195°E.  相似文献   

14.
 A series of alternating phreatomagmatic ("wet") and magmatic ("dry") basaltic pyroclastic deposits forming the Crater Hill tuff ring in New Zealand contains one unit (M1) which can only be interpreted as the products of mixing of ejecta from simultaneous wet and dry explosions at different portions of a multiple vent system. The principal characteristics of M1 are (a) rapid lateral changes in the thicknesses of, and proportions in juvenile components in individual beds, and (b) wide ranges of juvenile clast densities in every sample. M1 appears to have been associated with an elongate source of highly variable and fluctuating magma : water ratios and magma discharge rates. This contrasts with the only other documented mixed (wet and dry) basaltic pyroclastic deposits where mixing from two point sources of quite different but stable character has been inferred. Received: July 11, 1995 / Accepted: February 13, 1996  相似文献   

15.
The Peperino Albano (approximately 19–36 ka old) is a phreatomagmatic pyroclastic flow deposit, cropping out along the slopes of the associated Albano maar (Colli Albani volcano, Italy). The deposit exhibits lateral and vertical transitions from valley pond to veneer facies, as well as intracrater facies. We present the results of a paleomagnetic study of thermal remanent magnetization (TRM) of the lithic clasts of the Peperino Albano ignimbrite that provide quantitative estimates of the range of emplacement temperatures across the different facies of the ignimbrite. Emplacement temperatures estimated for the Peperino Albano ignimbrite range between 240° and 350°C, with the temperatures defined in the intracrater facies being generally lower than in the valley pond and veneer facies. This is possibly due to the large size of the sampled clasts in the intracrater facies which, when coupled with low temperature at the vent, were not completely heated throughout their volume during emplacement. The emplacement temperatures derived from the paleomagnetic results are in good agreement with the presence of un-burnt plants at the base of the ignimbrite, indicating that the temperature of the pyroclastic flow was lower than the temperature of ignition of wood. Paleomagnetic results from the Peperino Albano confirm the reliability of the paleomagnetic approach in defining the thermal history of pyroclastic flow deposits.  相似文献   

16.
The 1986 eruption of B fissure at Izu-Oshima Volcano, Japan, produced, among other products, one andesite and two basaltic andesite lava flows. Locally the three flows resemble vent-effused holocrystalline blocky or aa lava; however, remnant clast outlines can be identified at most localities, indicating that the flows were spatter fed or clastogenic. The basaltic andesite flows are interpreted to have formed by two main processes: (a) reconstitution of fountain-generated spatter around vent areas by syn-depositional agglutination and coalescence, followed by extensional non-particulate flow, and (b) syn-eruptive collapse of a rapidly built spatter and scoria cone by rotational slip and extensional sliding. These processes produced two morphologically distinct lobes in both flows by: (a) earlier non-particulate flow of agglutinate and coalesced spatter, which formed a thin lobe of rubbly aa lava (ca. 5 m thick) with characteristic open extension cracks revealing a homogeneous, holocrystalline interior, and (b) later scoria-cone collapse, which created a larger lobe of irregular thickness (<20 m) made of large detached blocks of scoria cone interpreted to have been rafted along on a flow of coalesced spatter. The source regions of these lava flows are characterized by horseshoe-shaped scarps (<30 m high), with meso-blocks (ca. 30 m in diameter) of bedded scoria at the base. One lava flow has a secondary lateral collapse zone with lower (ca. 7 m) scarps. Backward-tilted meso-blocks are interpreted to be the product of rotational slip, and forward-tilted blocks the result of simple toppling. Squeeze-ups of coalesced spatter along the leading edge of the meso-blocks indicate that coalescence occurred in the basal part of the scoria cone. This low-viscosity, coalesced spatter acted as a lubricating layer along which basal failure of the scoria cone occurred. Rotational sliding gave way to extensional translational sliding as the slide mass spread out onto the present caldera floor. Squeeze-ups concentrated at the distal margin indicate that the extensional regime changed to one of compression, probably as a result of cooling of the flow front. Sliding material piled up behind the slowing flow front, and coalesced spatter was squeezed up from the interior of the flow through fractures and between rafted blocks. The andesite flow, although morphologically similar to the other two flows, has a slightly different chemical composition which corresponds to the earliest stage of the eruption. It is a much smaller lava flow emitted from the base of the scoria cone 2 days after the eruption had ceased. This lava is interpreted to have been formed by post-depositional coalescence of spatter under the influence of the in-situ cooling rate and load pressure of the deposit. Extrusion occurred through the lower part of the scoria cone, and subsequent non-particulate flow of coalesced material produced a blocky and aa lava flow. The mechanisms of formation of the lava flows described may be more common during explosive eruptions of mafic magma than previously envisaged. Received: 30 May 1997 / Accepted: 19 May 1998  相似文献   

17.
18.
A largely submarine avalanche amphitheatre that formed catastrophically in 1888 on Ritter volcano has been identified from a bathymetric survey. Collapse of the volcano in 1888 therefore is considered to have been caused by rapid, large-scale slope failure, rather than by cauldron subsidence, as previously supposed. Escarpments of pre-historic slope failures are common on other Papua New Guinea volcanoes. Directions of avalanching on some volcanoes in the Bismarck volcanic arc appear to be controlled by a regional stress pattern, and those for some volcanoes in the Fly-Highlands province on mainland Papua New Guinea point away from the regional centre of Pliocene uplift. Large amphitheatres such as at Doma Peaks in the Fly-High-lands province probably originated by multiple collapses.  相似文献   

19.
The 3-month long eruption of Asama volcano in 1783 produced andesitic pumice falls, pyroclastic flows, lava flows, and constructed a cone. It is divided into six episodes on the basis of waxing and waning inferred from records made during the eruption. Episodes 1 to 4 were intermittent Vulcanian or Plinian eruptions, which generated several pumice fall deposits. The frequency and intensity of the eruption increased dramatically in episode 5, which started on 2 August, and culminated in a final phase that began on the night of 4 August, lasting for 15 h. This climactic phase is further divided into two subphases. The first subphase is characterized by generation of a pumice fall, whereas the second one is characterized by abundant pyroclastic flows. Stratigraphic relationships suggest that rapid growth of a cone and the generation of lava flows occurred simultaneously with the generation of both pumice falls and pyroclastic flows. The volumes of the ejecta during the first and second subphases are 0.21 km3 (DRE) and 0.27 km3 (DRE), respectively. The proportions of the different eruptive products are lava: cone: pumice fall=84:11:5 in the first subphase and lava: cone: pyroclastic flow=42:2:56 in the second subphase. The lava flows in this eruption consist of three flow units (L1, L2, and L3) and they characteristically possess abundant broken phenocrysts, and show extensive "welding" texture. These features, as well as ghost pyroclastic textures on the surface, indicate that the lava was a fountain-fed clastogenic lava. A high discharge rate for the lava flow (up to 106 kg/s) may also suggest that the lava was initially explosively ejected from the conduit. The petrology of the juvenile materials indicates binary mixing of an andesitic magma and a crystal-rich dacitic magma. The mixing ratio changed with time; the dacitic component is dominant in the pyroclasts of the first subphase of the climactic phase, while the proportion of the andesitic component increases in the pyroclasts of the second subphase. The compositions of the lava flows vary from one flow unit to another; L1 and L3 have almost identical compositions to those of pyroclasts of the first and second subphases, respectively, while L2 has an intermediate composition, suggesting that the pyroclasts of the first and second subphases were the source of the lava flows, and were partly homogenized during flow. The complex features of this eruption can be explained by rapid deposition of coarse pyroclasts near the vent and the subsequent flowage of clastogenic lavas which were accompanied by a high eruption plume generating pumice falls and/or pyroclastic flows.Editorial responsibility: T. Druitt  相似文献   

20.
The Mawson Formation and correlatives in the Transantarctic Mountains and South Africa record an early eruption episode related to the onset of Ferrar-Karoo flood basalt volcanism. Mawson Formation rocks at Coombs Hills comprise mainly (≥80% vol) structureless tuff breccia and coarse lapilli tuff cut by irregular dikes and sills, within a large vent complex (>30 km2). Quenched juvenile fragments of generally low but variable vesicularity, accretionary lapilli and country rock clasts within vent-fill, and pyroclastic density current deposits point to explosive interaction of basalt with groundwater in porous country rock and wet vent filling debris. Metre-scale dikes and pods of coherent basalt in places merge imperceptibly into peperite and then into surrounding breccia. Steeply dipping to sub-vertical depositional contacts juxtapose volcaniclastic rocks of contrasting componentry and grainsize. These sub-vertical tuff breccia zones are inferred to have formed when jets of debris + steam + water passed through unconsolidated vent-filling deposits. These jets of debris may have sometimes breached the surface to form subaerial tephra jets which fed subaerial pyroclastic density currents and fall deposits. Others, however, probably died out within vent fill before reaching the surface, allowing mixing and recycling of clasts which never reached the atmosphere. Most of the ejecta that did escape the debris-filled vents was rapidly recycled as vents broadened via lateral quarrying of country rock and bedded pyroclastic vent-rim deposits, which collapsed along the margins into individual vents. The unstratified, poorly sorted deposits comprising most of the complex are capped by tuff, lapilli tuff and tuff breccia beds inferred to have been deposited on the floor of the vent complex by pyroclastic density currents. Development of the extensive Coombs Hills vent-complex involved interaction of large volumes of magma and water. We infer that recycling of water, as well as recycling of pyroclasts, was important in maintaining water supply for phreatomagmatic interactions even when aquifer rock in the vent walls lay far from eruption sites as a consequence of vent-complex widening. The proportion of recycled water increased with vent-complex size in the same way that the proportion of recycled tephra did. Though water recycling leaves no direct rock record, the volcaniclastic deposits within the vent complex show through their lithofacies/structural architecture, lithofacies characteristics, and particle properties clear evidence for extensive and varied recycling of material as the complex evolved. Editorial responsibility: J. Donnelly-Nolan  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号