首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Late glacial and early Holocene summer temperatures were reconstructed based on fossil chironomid assemblages at Lake Brazi (Retezat Mountains) with a joint Norwegian–Swiss transfer function, providing an important addition to the late glacial quantitative climate reconstructions from Europe. The pattern of the late glacial temperature changes in Lake Brazi show both similarities and some differences from the NGRIP δ18O record and other European chironomid-based reconstructions. Our reconstruction indicates that at Lake Brazi (1740 m a.s.l.) summer air temperature increased by ~ 2.8°C at the Oldest Dryas/Bølling transition (GS-2/GI-1) and reached 8.1–8.7°C during the late glacial interstade. The onset of the Younger Dryas (GS-1) was characterized by a weak (< 1°C) decrease in chironomid-inferred temperatures. Similarly, at the GS-1/Holocene transition no major changes in summer temperature were recorded. In the early Holocene, summer temperature increased in two steps and reached ~ 12.0–13.3°C during the Preboreal. Two short-term cold events were detected during the early Holocene between 11,480–11,390 and 10,350–10,190 cal yr BP. The first cooling coincides with the Preboreal oscillation and shows a weak (0.7°C) temperature decrease, while the second is characterized by 1°C cooling. Both cold events coincide with cooling events in the Greenland ice core records and other European temperature reconstructions.  相似文献   

2.
Natural Hazards - Rockfalls represents a sudden, extremely important geomorphological hazard and may become a threat for people’s life, as well as goods and transport. The present study aims...  相似文献   

3.
The eastern branch of the Romanian Carpathians – the East Carpathians – is essentially an Alpine thrust and fold belt made up in its median part by a Crystalline–Mesozoic zone. This, in turn, is built up by several Alpine nappes (top to bottom): the Wildflysch, Bucovinian, Subbucovinian and Infrabucovinian. In the basement of the Bucovinian and Subbucovinian nappes the following Variscan tectonic units have been identified (top to bottom): Rar?u, Putna, Pietrosu Bistri?ei and Rodna. The Infrabucovinian nappes comprise the Rar?u nappe only. The Alpine nappes have an eastward vergence, opposite to the Variscan ones (present coordinates). In terms of pre-Variscan terranes distribution, the Rar?u nappe involved the Bretila terrane basement and its late Paleozoic cover, Putna the Tulghe? terrane basement, Pietrosu Bistri?ei the Negri?oara terrane basement and Rodna the Rebra terrane basement. These terranes originated along northwestern Gondwana margin during some Ordovician thermotectonic events. They do not represent Cadomian terranes and we call them Carpathian-type terranes. Two igneous protoliths from Bretila terrane basement (i.e. Anie? orthogneiss and H?ghima? granitoid) yield U/Pb LA-ICP-MS zircon ages of 462 ± 3 Ma and 469.2 ± 6.5 Ma, respectively. An orthogneiss from Tulghe? terrane basement yield 462.6 ± 3.1 Ma; the Pietrosu porphyritic orthogneiss from Negri?oara terrane basement yield 461.1 ± 5.2 Ma; and the Nichita? orthogneiss from Rebra terrane basement yield 447.9 ± 2.8 Ma. All these ages suggest the magma crystallization time. Two paragneisses from the Rebra terrane basement show a detrital zircon age distribution characteristic of a NE-African provenance. Regarding the tectonic settings, the lithology of the Bretila terrane suggests a magmatic arc on a continental margin, while of the Tulghe? terrane suggests a back arc environment, and those of the Rebra and Negri?oara terranes suggest a passive continental margin. An Ordovician metamorphism of medium grade (staurolite–kyanite zone) affected the basements of Bretila, Negri?oara and Rebra terranes, whereas a low grade (chlorite to biotite zone) event affects the Tulghe? terrane. With regard to the Variscan orogeny, the existence of a Paleotethys suture is proposed within the metamorphic basement of the East Carpathians. In this interpretation, the Bretila terrane was the upper plate, the Rebra and Negri?oara terrane pair formed the lower plate and the Tulghe? terrane was a component of the suture. The Variscan thermotectonic events reflect isothermal decompression with andalusite + cordierite in the basement of the Rebra terrane and retrogression in the basement of the other terranes.  相似文献   

4.
Summary Allanites and monazites from different rocks of the South Carpathians (Romania) are described, and 17 analyses are presented. The genetic relations are discussed.
Untersuchungen an Allaniten und Monaziten aus den Südkarpaten (Rumänien)
Zusammenfassung Allanite und Monazite aus verschiedenen Gesteinen der Südkarpaten (Rumänien) werden beschrieben und 17 chemische Analysen werden gebracht. Die genetischen Beziehungen werden diskutiert.


With 1 Figure  相似文献   

5.
6.
Summary Metamorphic rocks in the pre-Alpine basement of the Getic-Supragetic units (Median Dacides of the Carpathian belt) are spatially related to different lithotectonic units, some of which contain high-pressure relicts reflecting an early stage of oceanic and continental subduction, locally synchronous with mylonitic shear zones. Kyaniteamphibole ± quartz-bearing eclogites preserve a complete metamorphic clockwise loop; the estimated peak conditions within the outer part of the Cumpana unit were at least 20 kb at 780–860 °C. Pre-eclogite-stage magmatic phases occur in some units with true equilibrated eclogites. Clinopyroxene-plagioclase inclusions in garnet of a garnet-clinopyroxene assemblage within a metagabbro indicate a temperature around 760–790 °C at a maximum pressure of about 19 kb. The units finally evolved together during stages of exhumation under metamorphic conditions ranging from the Barrovian-type (minimum age of 330 Ma) to the high-temperature/low-pressure type. The absolute age of the high-pressure stage and the eclogite protoliths is unknown. In comparison with other collision belts, it is likely that the gneiss units of the Median Dacides underwent a complete cycle of underthrusting and exhumation similar to other segments of the European Variscides, and that the formation of the eclogite occurred during the early stages of subduction.
Résumé Les roches métamorphiques du socle pré-alpin des domaines Gétiques et Supragétiques (Dacides médianes de la chaîne des Carpathes) appartiennent à des unités lithotectoniques différentes dont certaines contiennent des reliques de métamorphisme haute pression reflétant un stade précoce de subduction continentale et océanique, localement synchrone de zones de cisaillement mylonitiques. Des éclogites é disthène-amphibole ± quartz permettent de reconstituer un trajet PT horaire complet. Les conditions paroxysmales sont estimées au sein de l'unité de Cumpana é plus de 20 kb pour 780–860 °C. Des phases magmatiques pré-éclogitiques coexistent avec des phases de haute pression dans les éclogites de certaines unités et des inclusions de clinopyroxene-plagioclase dans les grenats d'un métagabbro indiquent une température de 760–790 °C pour une pression maximale de 19 kb. L'ensemble des unités évolue finalement durant les stades d'exhumation sous les mêmes conditions de métamorphisme barrovien (âge minimum de 330 Ma) puis de haute température-basse pression. L'âge du stade de haute pression et des protholithes reste inconnu. En comparaison avec d'autres chaînes de collision, il est vraisemblable que les Dacides médianes ont subi un cycle d'enfouissement et d'exhumation similaire é celui décrit dans d'autres segments de la chaîne varisque européenne, la formation des éclogites étant attribuée aux premiers stades de la subduction.


With 9 Figures  相似文献   

7.
Mineral exploration drillholes and geoelectric prospecting provide for the first time evidence for thrusting of the South Carpathian Paleozoic basement over northerly adjacent Middle Miocene sediments. Investigations were carried out in two locations, 30 km apart, along the northern margin of the Poiana Rusca Mountains, Romania, southwestern Carpathians. Drill holes in both locations encountered weakly consolidated Middle Miocene clay, sand, and fine gravel below Paleozoic low-grade metamorphic rocks. Intersections from various drill holes demonstrate the presence of low-angle thrusting. Kinematic indicators are so far lacking, but with a thrust direction oriented roughly normal to strike of the Poiana Rusca Mountains, minimum displacement is 1–1.4 km in northwestern or northern direction, respectively. Thrusting occurred most likely during the Late Miocene–Pliocene, whereafter Quaternary regional uplift dissected the thrust plane. In the tectonic framework of Neogene dextral translation of the Tisza–Dacia Block against the southerly adjacent Moesian Platform, transtension appears responsible for Middle Miocene basin formation along the northern margin of the Poiana Rusca region. Proceeding collision of the Tisza–Dacia Block with the East European Craton introduced stronger impingement of the Tisza–Dacia Block against the Moesian Platform, leading to a Late Miocene–Pliocene transpressional regime, in which the northern Poiana Rusca basement was thrust over its adjacent Middle Miocene sediments.  相似文献   

8.
Viorel Ilinca 《Landslides》2014,11(3):505-512
This paper focuses on characteristics of debris flows from the lower part of the Lotru River basin (South Carpathians, Romania). The damage produced by these debris flows has included burial of agricultural land, roads covered by debris flows, and even the obstruction of the Lotru River. Simple statistical analysis has been used to emphasize the characteristics of the debris flow sites. The collected data show that heavy rainfall is the main triggering mechanism of debris flow events in the Lotru hydrographic basin. The daily rainfall data for this region show that important debris flow events generally occur when rainfall exceeds 40 mm in 24 h, while rainfall levels between 25 and 40 mm in 24 h result in hyperconcentrated flows. For 11 of 14 studied debris flow sites, the fan area is greater than the source area, probably due to the thickness of the regolith, which is up to 5–10 m deep. Both source area and deposition area are very dynamic. The retreat rate calculated for five debris flow sites ranges from 5 to 30 m in 30 years (from 1975 to 2005). Channel cross section measurements on one of the debris flows show that velocity values vary from 1.31 to 2.64 m/s; corresponding discharge values vary from 4 to 10.03 m3/s.  相似文献   

9.
High-pressure (HP) metamorphic rocks, including garnet peridotite, eclogite, HP granulite, and HP amphibolite, are important constituents of several tectonostratigraphic units in the pre-Alpine nappe stack of the Getic–Supragetic (GS) basement in the South Carpathians. A Variscan age for HP metamorphism is firmly established by Sm–Nd mineral–whole-rock isochrons for garnet amphibolite, 358±10 Ma, two samples of eclogite, 341±8 and 344±7 Ma, and garnet peridotite, 316±4 Ma.

A prograde history for many HP metamorphic rocks is documented by the presence of lower pressure mineral inclusions and compositional zoning in garnet. Application of commonly accepted thermobarometers to eclogite (grt+cpx±ky±phn±pg±zo) yields a range in “peak” pressures and temperatures of 10.8–22.3 kbar and 545–745 °C, depending on tectonostratigraphic unit and locality. Zoisite equilibria indicate that activity of H2O in some samples was substantially reduced, ca. 0.1–0.4. HP granulite (grt+cpx+hb+pl) and HP amphibolite (grt+hbl+pl) may have formed by retrogression of eclogites during high-temperature decompression. Two types of garnet peridotite have been recognized, one forming from spinel peridotite at ca. 1150–1300 °C, 25.8–29.0 kbar, and another from plagioclase peridotite at 560 °C, 16.1 kbar.

The Variscan evolution of the pre-Mesozoic basement in the South Carpathians is similar to that in other segments of the European Variscides, including widespread HP metamorphism, in which PTt characteristics are specific to individual tectonostratigraphic units, the presence of diverse types of garnet peridotite, diachronous subduction and accretion, nappe assembly in pre-Westphalian time due to collision of Laurussia, Gondwana, and amalgamated terranes, and finally, rapid exhumation, cooling, and deposition of eroded debris in Westphalian to Permian sedimentary basins.  相似文献   


10.
11.
This study presented herein compares the bivariate and multivariate landslide susceptibility mapping methods and presents the landslide susceptibility map of the territory of Western Carpathians in small scale. This study also describes pioneer work for the territory of Western Carpathians, overreaching state borders, using verified sophisticated statistical methods. In the susceptibility mapping, digital elevation model was first constructed using a GIS software, and parameter maps affecting the slope stability such as geology, seismicity, precipitation, topographical elevation, slope angle, slope aspect and land cover were considered. In the last stage of the analyses, landslide susceptibility maps were produced using bivariate and multivariate analyses, and they were then compared by means of their validations. The validation of the bivariate analysis data was performed using the results of bivariate analysis for landslide areas of Slovakia containing five classes of susceptibility in scale 1:500,000. The validation area is the area of Western Carpathians within Slovakia. Eighty-two per cent of area does not differ in more than one class. The validation of the multivariate analysis data was performed using the results from the Kysuce region in the northern part of Slovakia in scale 1:10,000. The raster calculator was used to express the difference between each pair of pixels within these two layers. Seventy-seven per cent of the pixels do not differ in more than 25 %, 94 % of the pixels do not differ in more than 50 %. The maximal possible difference is 100 % (one pixel with value 0 and other with value 1, or vice versa). Receiver operating characteristic analysis was also performed, the area under curve value for bivariate model was calculated to be 0.735, while it was 0.823 for multivariate. The results of the validation can be considered as satisfactory.  相似文献   

12.
A wide range of trace elements have been analysed in mantle xenoliths (whole rocks, clinopyroxene and amphibole separates) from alkaline lavas in the Eastern Carpathians (Romania), in order to understand the process of metasomatism in the subcontinental mantle of the Carpatho-Pannonian region. The xenoliths include spinel lherzolites, harzburgites and websterites, clinopyroxenites, amphibole veins and amphibole clinopyroxenites. Textures vary from porphyroclastic to granoblastic, or equigranular. Grain size increases with increasing equilibrium temperature of mineralogical assemblages and results from grain boundary migration. In peridotites, interstitial clinopyroxenes (cpx) and amphiboles resulted from impregnation and metasomatism of harzburgites or cpx-poor lherzolites by small quantities of a melt I with a melilitite composition. Clinopyroxenites, amphibole veins and amphibole clinopyroxenites are also formed by metasomatism as a result of percolation through fracture systems of large quantities of a melt II with a melanephelinite composition. These metasomatic events are marked by whole-rock enrichments, relative to the primitive mantle (PM), in Rb, Th and U associated in some granoblastic lherzolites and in clinopyroxene and amphibole veins with enrichments in LREE, Ta and Nb. Correlations between major element whole-rock contents in peridotites demonstrate that the formation of interstitial amphibole and clinopyroxene induced only a slight but variable increase of the Ca/Al ratio without apparent modifications of the initial mantle composition. Metasomatism is also traced by enrichments in the most incompatible elements and the LREE. The Ta, Nb, MREE and HREE contents remained unchanged and confirm the depleted state of the initial but heterogeneous mantle. Major and trace element signature of clinopyroxene suggests that amphibole clinopyroxenites and some granoblastic lherzolites have been metasomatized successively by melts I and II. Both melts I and II were Ca-rich and Si-poor, somewhat alkaline (Na > K). Melt I differed from melt II in having higher Mg and Cr contents offset by lower Ti, Al, Fe and K contents. Both were highly enriched in all incompatible trace elements relative to primitive mantle, showing positive anomalies in Rb, Ba, Th, Sr and Zr. They contrasted by their Ta, Nb and LREE contents, lower in melt I than in melt II. Melts I and II originate during a two-stage melting event from the same source at high pressure and under increasing temperature. The source assemblage could be that of a metasomatized carbonated mantle but was more likely that of an eclogite of crustal affinity. Genetic relationships between calc-alkaline and alkaline lavas from Eastern Carpathians and these melts are thought to be only indirect, the former originating from partial melting of mantle sources respectively metasomatized by the melts I and II. Received: 17 March 1997 / Accepted: 14 July 1997  相似文献   

13.
14.
15.
The large-scale deformation of high mountain slopes finds its origin in many phenomena (inherent parameters, external stresses) with very different time constants (instantaneous to geological scale). Gravitational effect, tectonic forces and water infiltration are generally the principal causes of slope instability. However, it can be very difficult to distinguish which cause is dominant and which are their respective effects. To gain a better understanding of the complex processes taking place during the evolution of an unstable slope and separate the causes responsible of the landslide dynamic, an observational study based on geodetic, meteorological, seismological and electrical data has been performed on the La Clapière rockslide (Southern French Alps). This deep-seated landslide (DSL) is known for many years as one of the largest and fastest rock slide in Europe (60 million m3 of highly weathered metamorphic material, moving at 1 to 3 m year?1). The set-up of the “Observatoire Multidisciplinaire des Instabilités de Versants” (OMIV, http://omiv.osug.fr) in 2011 has allowed the production and availability of an important and original data set over several years of accurate monitoring. Thus, for the first time, the long-term study of geodetic data permitted us to highlight acceleration phases in the general movement of the landslide that affect its dynamic. These modifications are associated with variations of the velocity by a factor 3 to 6. The characterization of the origin of these variations was possible due to the comparison with meteorological, electrical and seismological data. Based on these various signals, we were able to establish correlations and contributions of meteorological water infiltration in the dynamic evolution of the La Clapière slope. We determine several response times to the meteorological stress for seismic endogenous events (mainly rockfalls), the resistivity of the ground (quasi-instantaneous) and the kinematics of the slope (from 2 weeks to 2.5 months). Moreover, our results strongly suggest the existence of rainfall threshold of 3.5?±?1 mm day?1 from which the number of seismic endogenous events is highly increased.  相似文献   

16.
Results from the application of digital filtering (simple and weighted averaging) to the analysis of sedimentary series are given. Two flysch sequences from the East Carpathians (Upper Eocene, Damacua Valley; and Lower Cretaceous, Sbrancani Valley) were studied. Individual components, affecting the conditions of deposition, were separated, and establishment of the geological significance of the components separated by digital filtering was investigated.  相似文献   

17.
This study of the upper Maastrichtian to Danian sedimentary succession from the northern part of the Romanian Eastern Carpathians (Varniţa section) aims to establish an integrated biostratigraphy based on calcareous nannofossils, organic-walled dinoflagellate cysts (dinocysts) and foraminiferal assemblages, and to reconstruct the depositional environments of the interval. The stratigraphic record across the studied section is incomplete, considering that an approximately 16 m thick strata interval from the top of the Maastrichtian to lowermost Danian cannot be analyzed due to a landslide covering the outcrop. The upper Maastrichtian is marked by a succession of biostratigraphic events, such as the First Appearance Datum (FAD) of the nannoplankton taxon Nephrolithus frequens and FAD of the dinocyst species Deflandrea galeata and Disphaerogena carposphaeropsis, and the Last Appearance Datum (LAD) of Isabelidinium cooksoniae in the lower part of the section. These bioevents are followed by the LAD of the Dinogymnium spp. and Palynodinium grallator dinocyst markers in the top of the Maastrichtian deposits analyzed. In terms of foraminiferal biostratigraphy, the upper Maastrichtian Abathomphalus mayaroensis Zone is documented in the lower part of the studied section. Some bioevents, such as the bloom of the calcareous dinoflagellate genus Thoracosphaera and the FAD of the organic-walled dinocysts Damassadinium californicum, Senoniasphaera inornata, Xenicodinium lubricum and X. reticulatum suggest an early Danian age for the middle part of the section. From the Danian deposits in the Varniţa section, we describe a new organic-walled dinocyst species, Pentadinium darmirae sp. nov., which is until now the only species of the Pentadinium genus discovered in the Paleocene. The occurrence of the global Danian dinocyst marker Senoniasphaera inornata in the top of the section, suggests an age not younger than middle Danian (62.6 Ma) for the analyzed deposits.The palynofacies constituents, as well as the agglutinated foraminiferal morphogroups, used to reconstruct the depositional environments, show that the late Maastrichtian sediments were deposited in an outer shelf to distal (bathyal) environment, followed by a marine transgression during the Danian.  相似文献   

18.
The DACIA PLAN (Danube and Carpathian Integrated Action on Process in the Lithosphere and Neotectonics) deep seismic sounding survey was performed in August–September 2001 in south-eastern Romania, at the same time as the regional deep refraction seismic survey VRANCEA 2001. The main goal of the experiment was to obtain new information on the deep structure of the external Carpathians nappes and the architecture of Tertiary/Quaternary basins developed within and adjacent to the seismically-active Vrancea zone, including the Focsani Basin. The seismic reflection line had a WNW–ESE orientation, running from internal East Carpathians units, across the mountainous south-eastern Carpathians, and the foreland Focsani Basin towards the Danube Delta. There were 131 shot points along the profile, with about 1 km spacing, and data were recorded with stand-alone RefTek-125s (also known as “Texans”), supplied by the University Texas at El Paso and the PASSCAL Institute. The entire line was recorded in three deployments, using about 340 receivers in the first deployment and 640 receivers in each of the other two deployments. The resulting deep seismic reflection stacks, processed to 20 s along the entire profile and to 10 s in the eastern Focsani Basin, are presented here. The regional architecture of the latter, interpreted in the context of abundant independent constraint from exploration seismic and subsurface data, is well imaged. Image quality within and beneath the thrust belt is of much poorer quality. Nevertheless, there is good evidence to suggest that a thick (10 km) sedimentary basin having the structure of a graben and of indeterminate age underlies the westernmost part of the Focsani Basin, in the depth range 10–25 km. Most of the crustal depth seismicity observed in the Vrancea zone (as opposed to the more intense upper mantle seismicity) appears to be associated with this sedimentary basin. The sedimentary successions within this basin and other horizons visible further to the west, beneath the Carpathian nappes, suggest that the geometry of the Neogene and recent uplift observed in the Vrancea zone, likely coupled with contemporaneous rapid subsidence in the foreland, is detached from deeper levels of the crust at about 10 km depth. The Moho lies at a depth of about 40 km along the profile, its poor expression in the reflection stack being strengthened by independent estimates from the refraction data. Given the apparent thickness of the (meta)sedimentary supracrustal units, the crystalline crust beneath this area is quite thin (< 20 km) supporting the hypothesis that there may have been delamination of (lower) continental crust in this area involved in the evolution of the seismic Vrancea zone.  相似文献   

19.
The post-collision late-kinematic Tismana pluton belongs to the shoshonitic series. It is part of a Late Precambrian basement within the Alpine Danubian nappes of the South Carpathians (Romania). This pluton displays an exceptionally complete range of compositions from ultramafic to felsic rocks (granites). Widespread mingling/mixing relationships at all scales give rise to a variety of facies. A liquid line of descent from the diorites to the granites is reconstructed by considering the variation in major and trace elements (REE, Sr, Rb, Ba, Nb, Zr, Hf, Zn, V, Co, Cr, U, Th, Ga, Pb) from 33 selected samples as well as mineral/melt equilibrium relationships. The first step of fractional crystallization is the separation from a monzodioritic parent magma of a peridotitic cumulate similar to the ultramafic rock found in the massif. A possible contamination by lower crustal mafic component takes place at this stage. The second step marks the appearance of apatite and Fe–Ti oxide minerals as liquidus phases, and the third step, saturation of zircon. Mixing by hybridisation of magmas produced at different stages of the evolution along the liquid line of descent is also operating (endo-hybridisation). As depicted by Nd and Sr isotopes, fractional crystallization was combined to an important early contamination by a mafic lower crust in a deep-seated magma chamber and to a later and mild contamination by a felsic medium crust in an intermediate chamber. The mingling essentially occurred during the final emplacement in the high-level magma chamber. The monzodioritic parent magma, identified by major and trace element modelling, is shown by Sr and Nd isotopes to have its source in the lithospheric mantle or in a juvenile mafic lower crust derived from it. The necessarily recent enrichment in K2O and associated elements of the lithospheric mantle is likely to be related to the preceding Pan-African subduction period. The partial melting of this newly formed deep source has to be linked to a major change in the thermal state of the plate.  相似文献   

20.
The Danubian domain basement of the South Carpathians, Romania, comprises two Neoproterozoic continental crustal fragments, the Dr?g?an and Lainici-P?iu? terranes, which were sutured by the closure of an intervening oceanic domain, the Ti?ovi?a terrane. Magmatic and detrital zircons extracted from an orthogneiss, four granitoid plutons, two metasedimentary units, and a Liassic sandstone were dated by zircon U/Pb LA-ICP-MS. The F?ge?el augen gneiss from the Dr?g?an terrane basement yielded an age of 803.2 ± 4.4 Ma, the oldest well-constrained crystallization age reported from the Romanian Carpathians basement. The Tismana, ?u?i?a, Novaci and Olte? granitoid plutons, which intrude the Lainici-P?iu? terrane basement, yielded ages of 600.5 ± 4.4, 591.0 ± 3.5, 592.7 ± 4.9, and 588 ± 2.9 Ma, respectively. The Tismana granitoid age of 600 Ma and the youngest detrital zircon ages of 637–622 Ma from a metaquartzite within the Lainici-Paiu? terrane, constrain the deposition of the metaquartzite protolith to ca. 620–600 Ma. The 803 Ma age represents an old Pan-African age, whereas the younger Neoproterozoic ages suggest Pan-African/Cadomian thermotectonic events. Detrital and inherited zircon ages within the Dr?g?an and Lainici-Paiu? terranes attest to a peri-Amazonian, Avalonian-type provenance for the Dr?g?an terrane and possibly a Ganderian-type provenance for the Lainici-P?iu? terrane. The Lainici-P?iu? terrane rifted off Gondwana before the Dr?g?an terrane. Both terranes were attached to Moesia during the Early Paleozoic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号