首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
The source parameters of the Bohai Sea earthquake, July 18, 1969 and Yongshan, Yunnan earthquake, May 11, 1974 were determined by full — wave theory synthetic seismograms of teleseismic P waves. P+pP+sP wereform were calculated with WKBJ approximation and real integral paths. One — dimensional unilateral, finite propagation source was also considered. By trail — and — error in comparing the theoretical seismograms with the observational ones of WWSSN stations, the source parameters were obtained as follow: for Bohai earthquake, φ=195°, δ=85°, λ=65°,M o=0.9×1019Nm,L=59.9km.V R=3.5km/s, ∧ R =160°; for Yongshan earthquake, φ=240°, δ=80°, ∧=150°,M o=1.3×1018Nm,L=48.8km,V R=3km/s, ∧ R =−10°, where φ is strike, δ dip angle, λ slip angle,M o seismic moment,L rupture length,V R rupture propagation speed. As III type fractures the faulting propagated along the fault planes, and ∧ R is the angle from the strike to the propagation direction. Yongshan earthquake showed complexity in its focal process, having four sub—ruptures during the first 60 seconds. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,13, 1–8, 1991.  相似文献   

2.
On July 20, 1995, an earthquake of M L=4.1 occurred in Huailai basin, northwest of Beijing, with epicenter coordinates 40.326°N, 115.448°E and focal depth 5.5 km. Following the main shock, seismicity sharply increased in the basin. This earthquake sequence was recorded by Sino-European Cooperative Huailai Digital Seismograph Network (HDSN) and the hypocentres were precisely located. About 2 hours after the occurrence of the main shock, a smaller event of M L=2.0 took place at 40.323°N, 115.447°E with a focal depth of 5.0 km, which is very close to the main shock. Using the M L=2.0 earthquake as an empirical Green’s function, a regularization method was applied to retrieve the far-field source-time function (STF) of the main shock. Considering the records of HDSN are the type of velocity, to depress high frequency noise, we removed instrument response from the records of the two events, then integrated them to get displacement seismogram before applying the regularization method. From the 5 field stations, P phases in vertical direction which mostly are about 0.5 s in length were used. The STFs obtained from each seismic phases are in good agreement, showing that the M L=4.1 earthquake consisted of two events. STFs from each station demonstrate an obvious “seismic Doppler effect”. Assuming the nodal plane striking 37° and dipping 40°, determined by using P wave first motion data and aftershock distribution, is the fault plane, through a trial and error method, the following results were drawn: Both of the events lasted about 0.1 s, the rupture length of the first one is 0.5 km, longer than the second one which is 0.3 km, and the rupture velocity of the first event is 5.0 km/s, larger than that of the second one which is about 3.0 km/s; the second event took place 0.06 s later than the first one; on the fault plane, the first event ruptured in the direction γ=140° measured clockwise from the strike of the fault, while the second event ruptured at γ=80°, the initial point of the second one locates at γ=−100° and 0.52 km from the beginning point of the first one. Using far-field ground displacement spectrum measurement method, the following source parameters about the M L=4.1 earthquake were also reached: the scalar earthquake moment is 3.3×1013 N·m, stress drop 4.6 MPa, rupture radius 0.16 km. Contribution No. 99FE2022, Institute of Geophysics, China Seismological Bureau. This study is supported by the Chinese Joint Seismological Science Foundation (95-07-411).  相似文献   

3.
The December 26, 2004 Sumatra–Andaman Island earthquake, which ruptured the Sunda Trench subduction zone, is one of the three largest earthquakes to occur since global monitoring began in the 1890s. Its seismic moment was M 0 = 1.00 × 1023–1.15 × 1023 Nm, corresponding to a moment-magnitude of M w = 9.3. The rupture propagated from south to north, with the southerly part of fault rupturing at a speed of 2.8 km/s. Rupture propagation appears to have slowed in the northern section, possibly to ∼2.1 km/s, although published estimates have considerable scatter. The average slip is ∼5 m along a shallowly dipping (8°), N31°W striking thrust fault. The majority of slip and moment release appears to have been concentrated in the southern part of the rupture zone, where slip locally exceeded 30 m. Stress loading from this earthquake caused the section of the plate boundary immediately to the south to rupture in a second, somewhat smaller earthquake. This second earthquake occurred on March 28, 2005 and had a moment-magnitude of M w = 8.5.  相似文献   

4.
The moment tensor solution, source time function and spatial-temporal rupture process of the MS6.4 earthquake, which occurred in Ning’er, Yunnan Province, are obtained by inverting the broadband waveform data of 20 global stations. The inverted result shows that the scalar seismic moment is 5.51×1018 Nm, which corresponds to a moment magnitude of MW 6.4. The correspondent best double couple solution results in two nodal planes of strike 152°/dip 54°/rake 166°, and strike 250°/dip 79°/ rake 37°, respectively...  相似文献   

5.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

6.
An analysis of source parameters of the two unexpected earthquakes from the Kaliningrad (Russia) area is presented. The earthquakes occurred on 21 September 2004 at 11:05:01 and 13:32:31 UT, respectively. The first event was located at the latitude φ = 54.924°N and the longitude λ = 20.120°E, with a depth h = 16 km, and the second event at φ = 54.876°N, λ = 20.120°E and h = 20 km. Magnitudes Mw of the two events were very similar: 5.1 and 5.2. The magnitude values reported by various international data centers have been meaningfully different. The reason is the presence of high-frequency components in Z velocity component of the S wavefield. They were observed along the direction defined by two stations, BLEU in Sweden and SUW in Poland, located in opposite sides of the source. Along the direction perpendicular to it, the effects are relatively very small. The high-frequency waves are understood to mean components in the 6–8 Hz band for event 1 and 2-4 Hz for event 2. The effects in question are also clearly visible on displacement spectrograms. The magnitude values calculated at such stations from S-wave amplitudes or from seismic spectra are clearly overestimated and are close to 6. Therefore, we made a careful selection of channels in order to determine the spectral parameters and, on this basis, the source parameters. The size of the source is relatively small, of about 2 km. The closest seismic station is at 100 source radii from the source. One can clearly see the effect of the TT zone which markedly reduces the seismic moment value for seismic stations laying on the opposite sides of the source. Both events have very similar spatial distributions of the source parameters: magnitude, seismic moment and radius.  相似文献   

7.
Based on Generalized Seismic Ray Theory (Helmberger, 1968), a new quickly linear inversion method from the data of seismic waveform to seismic moment tensor and source mechanism for domestic earthquake is studied in this paper. Six moderately strong earthquakes which occurred in Chinese mainland in the past few years are studied. The seismic source parameters of these earthquakes, seismic moment tensors, scalar seismic moments, fault plane solutions and source time functionsetc, are obtained. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 261–268, 1993.  相似文献   

8.
The source process of February 3, 1996 Lijiang earthquake in Yunnan was studied by body waveform inversion using teleseismic data from IRIS. Two normal double-couple subevents with different strikes were obtained. The difference of the onset time between these two subevents, which are 15 km apart in space, is 7 s. The total seismic moment is 3.81 × 1018 Nm (M w=6.3). The total fault area S is about 720 km2 from the aftershock data and the average dislocation is about ū=0.18 m. Considering both the result of inversion and tectonic environment around the source, the first rupture might result from the extension along the NNW directed Zhongdian-Yongsheng fault belt where an earthquake of M=6.4 occurred in 1966. Then, the second started along the NE directed the eastern foot of Snow Mountain fault where rupture seemed to be able to propagate more easily.  相似文献   

9.
杨萍  张辉  冯建刚 《地震工程学报》2017,39(1):150-153,185
采用CAP(Cut and Paste)方法反演了2015年11月23日青海祁连MS5.2主震的震源机制解,其最佳双力偶解:节面Ⅰ走向109°、倾角58°、滑动角21°,节面Ⅱ走向8°、倾角72°、滑动角146°,矩震级MW5.16,矩心震源深度约为9 km。结合震区的活动构造,判定发震断层面为节面Ⅰ,推测托勒山北缘活动断裂中段为此次地震的发震断裂。  相似文献   

10.
Based on digital teleseismic P-wave seismograms recorded by 28 long-period seismograph stations of the global seismic network, source process of the November 14, 2001 western Kunlun Mountain M S=8.1 (M W=7.8) earthquake is estimated by a new inversion method. The result shows that the earthquake is a very complex rupture event. The source rupture initiated at the hypocenter (35.95°N, 90.54°E, focal depth 10 km, by USGS NEIC), and propagated to the west at first. Then, in several minutes to a hundred minutes and over a large spatial range, several rupture growth points emerged in succession at the eastern end and in the central part of the finite fault. And then the source rupture propagated from these rupture growth points successively and, finally, stopped in the area within 50 km to the east of the centroid position (35.80°N, 92.91°E, focal depth 15 km, by Harvard CMT). The entire rupture lasted for 142 s, and the source process could be roughly separated into three stages: The first stage started at the 0 s and ended at the 52 s, lasting for 52 s and releasing approximately 24.4% of the total moment; The second stage started at the 55 s and ended at the 113 s, lasting for 58 s and releasing approximately 56.5% of the total moment; The third stage started at the 122 s and ended at the 142 s, lasting for 20 s and releasing approximately 19.1% of the total moment. The length of the ruptured fault plane is about 490 km. The maximum width of the ruptured fault plane is about 45 km. The rupture mainly occurred within 30 km in depth under the surface of the Earth. The average static slip in the underground rocky crust is about 1.2 m with the maximum static slip 3.6 m. The average static stress drop is about 5 MPa with the maximum static stress drop 18 MPa. The maximum static slip and the maximum stress drop occurred in an area within 50 km to the east of the centroid position. Foundation item: Joint Seismological Science Foundation of China (103066) and Foundation of the Seismic Pattern and Digital Seismic Data Application Research Office of Institute of Earthquake Science of the China Earthquake Administration.  相似文献   

11.
At GMT time 13:19, August 8, 2017, an Ms7.0 earthquake struck the Jiuzhaigou region in Sichuan Province, China, causing severe damages and casualties. To investigate the source properties, seismogenic structures, and seismic hazards, we systematically analyzed the tectonic environment, crustal velocity structure in the source region, source parameters and rupture process, Coulomb failure stress changes, and 3-D features of the rupture plane of the Jiuzhaigou earthquake. Our results indicate the following: (1) The Jiuzhaigou earthquake occurred on an unmarked fault belonging to the transition zone of the east Kunlun fault system and is located northwest of the Huya fault. (2) Both the mainshock and aftershock rupture zones are located in a region where crustal seismic velocity changes dramatically. Southeast to the source region, shear wave velocity at the middle to lower crust is significantly low, but it rapidly increases northeastward and lies close to the background velocity across the rupture fault. (3) The aftershock zone is narrow and distributes along the northwest-southeast trend, and most aftershocks occur within a depth range of 5–20 km. (4) The focal mechanism of the Jiuzhaigou earthquake indicates a left-lateral strike-slip fault, with strike, dip, and rake angles of 152°, 74° and 8°, respectively. The hypocenter depth measures 20 km, whereas the centroid depth is about 6 km. The co-seismic rupture mainly concentrates at depths of 3–13 km, with a moment magnitude (Mw) of 6.5. (5) The co-seismic rupture also strengthens the Coulomb failure stress at the two ends of the rupture fault and the east segment of the Tazang fault. Aftershocks relocation results together with geological surveys indicate that the causative fault is a near vertical fault with notable spatial variations: dip angle varies within 66°–89° from northwest to southeast and the average dip angle measures ~84°. The results of this work are of fundamental importance for further studies on the source characteristics, tectonic environment, and seismic hazard evaluation of the Jiuzhaigou earthquake.  相似文献   

12.
The preliminary research results of vertical deformation dislocation model of GongheM S =6.9 earthquake show that, the causative structure is a hidden fault with strike N60°W, dipping S47°W, which lies near the current subsidence center of Gonghe basin. The rupture length and width are 30km and 14km, the upper and lower bound depth of the fault in width direction are 3km and 17km respectively. The maximum coseismic and preseismic vertical deformation of GongheM S =6.9 earthquake are 247mm and about 100mm. The reasons why there existed rapid postseismic uplift are also given a tentative discussion. The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,15, 289–295, 1993.  相似文献   

13.
Source mechanism and source parameters of May 28, 1998 earthquake,Egypt   总被引:1,自引:0,他引:1  
On May 28, 1998, a moderate size earthquake of mb 5.5 occurred offshore the northwestern part of Egypt (latitude 31.45°N and longitude 27.64°E). It was widely felt in the northern part of Egypt. Being the largest well-recorded event in the area for which seismic data from the global digital network are available, it provides an excellent opportunity to study the tectonic process and present day stress field occurring along the offshore Egyptian coast. The source parameters of this event are determined using three different techniques: modeling of surface wave spectral amplitudes, regional waveform inversion, and teleseismic body waveform inversion. The results show a high-angle reverse fault mechanism generally trending NNW–SSE. The P-axis trends ENE–WSW consistently with the prevailed compression stress along the southeastern Hellenic arc and southwestern part of the Cyprean arc. This unexpected mechanism is most probably related to a positive inversion of the NW trending offshore normal faults and confirms an extension of the back thrusting effects towards the African margin. The estimated focal depth ranges from 22 to 25 km, indicating a lower crustal origin earthquake owing to deep-seated tectonics. The source time function indicates a single source with rise time and total rupture duration of 2 and 5 s, respectively. The seismic moment (M o) and the moment magnitude (M w) determined by the three techniques are 1.03 × 1017 Nm, 5.28; 1.24 × 1017 Nm, 5.33; and 1.68 × 1017 Nm, 5.42; respectively. The calculated fault radius, stress drop, and the average dislocation assuming a circular fault model are 7.2 km, 0.63 Mpa, and 0.11 m, respectively.  相似文献   

14.
The source parameters, such as moment tensor, focal mechanism, source time function (STF) and temporal-spatial rupture process, were obtained for the January 26, 2001, India, M S=7.8 earthquake by inverting waveform data of 27 GDSN stations with epicentral distances less than 90°. Firstly, combining the moment tensor inversion, the spatial distribution of intensity, disaster and aftershocks and the orientation of the fault where the earthquake lies, the strike, dip and rake of the seismogenic fault were determined to be 92°, 58° and 62°, respectively. That is, this earthquake was a mainly thrust faulting with the strike of near west-east and the dipping direction to south. The seismic moment released was 3.5×1020 Nm, accordingly, the moment magnitude M W was calculated to be 7.6. And then, 27 P-STFs, 22 S-STFs and the averaged STFs of them were determined respectively using the technique of spectra division in frequency domain and the synthetic seismogram as Green’s functions. The analysis of the STFs suggested that the earthquake was a continuous event with the duration time of 19 s, starting rapidly and ending slowly. Finally, the temporal-spatial distribution of the slip on the fault plane was imaged from the obtained P-STFs and S-STFs using an time domain inversion technique. The maximum slip amplitude on the fault plane was about 7 m. The maximum stress drop was 30 MPa, and the average one over the whole rupture area was 7 MPa. The rupture area was about 85 km long in the strike direction and about 60 km wide in the down-dip direction, which, equally, was 51 km deep in the depth direction. The rupture propagated 50 km eastwards and 35 km westwards. The main portion of the rupture area, which has the slip amplitude greater than 0.5 m, was of the shape of an ellipse, its major axis oriented in the slip direction of the fault, which indicated that the rupture propagation direction was in accordance with the fault slip direction. This phenomenon is popular for strike-slip faulting, but rather rare for thrust faulting. The eastern portion of the rupture area above the initiation point was larger than the western portion below the initiation point, which was indicative of the asymmetrical rupture. In other words, the rupturing was kind of unilateral from west to east and from down to up. From the snapshots of the slip-rate variation with time and space, the slip rate reached the largest at the 4th second, that was 0.2 m/s, and the rupture in this period occurred only around the initiation point. At the 6th second, the rupture around the initiation point nearly stopped, and started moving outwards. The velocity of the westward rupture was smaller than that of the eastward rupture. Such rupture behavior like a circle mostly stopped near the 15th second. After the 16th second, only some patches of rupture distributed in the outer region. From the snapshots of the slip variation with time and space, the rupture started at the initiation point and propagated outwards. The main rupture on the area with the slip amplitude greater than 5 m extended unilaterally from west to east and from down to up between the 6th and the 10th seconds, and the western segment extended a bit westwards and downwards between the 11th and the 13th seconds. The whole process lasted about 19 s. The rupture velocity over the whole rupture process was estimated to be 3.3 km/s. Foundation item: 973 Project (G1998040705) from Ministry of Science and Technology, P. R. China, and the National Science Foundation of China under grant No.49904004. Contribution No. 02FE2026, Institute of Geophysics, China Seismological Bureau.  相似文献   

15.
We analyze the waveforms generated by the January 12, 2010 Haiti earthquake (Mw=7.0) for its source characteristics. A 60 to 25 km source model is retrieved by the Kikuchi and Kanamori finite source inversion technique that uses broadband teleseismic body wave records. The derived rupture model points out unilateral rupture propagation commenced at the eastern side of the fault plane where the major seismic moment release occurred. The rupture front propagated westward and terminated at a site where the largest aftershocks occurred. Our estimates yield a seismic moment of Mo=8.17×1019 N m released on a 60 km-long fault plane. A patch at the eastern side of the ruptured fault plane inferred as a region of maximum moment release.  相似文献   

16.
The theoretical acceleration spectrum of observation site has been obtained from source acceleration spectrum derived from scaling law, using attenuation modelQ=Q ν f η . A comparison of a set of theoretical acceleration spectra with observation spectra has been made, and we have obtained the attenuation model for observation site and seismic moment magnitude. We obtain thatQ o=300,η=0.25 for Wuqia area, Xinjing Zizhizhou, and seismic moment magnitudes of 18 greater aftershocks of Wuqia earthquake occurred in 1985. In order to obtain seismic moment magnitued conveniently, three functional tables of acceleration spectra at 1Hz as the distances for variousQ value have been made. The seismic moment magnitude can be quickly measured from acceleration spectrum at 1Hz according to these tables (epicenter has to be known). The Chinese version of this paper appeared in the Chinese edition ofActa Seismologica Sinica,14, 435–445, 1992.  相似文献   

17.
基于一维单侧有限移动震源模式,根据地震波传播过程中的多普勒效应,分别利用P波和S波拐角频率的方位变化,反演2012年7月20日江苏高邮、宝应交界MS4.9地震的发震断层面参数。P波和S波拐角频率的反演结果一致显示:本次地震的断层面破裂方向为232°左右,破裂面呈NE-SW向;地震马赫数v/c为0.2左右,平均破裂速度小于S波速度,破裂长度较短,为0.2~0.3km左右。破裂面方位与震源机制解、宏观烈度调查和余震精定位的研究结果具有一致性,结合震区周边的地质构造背景,分析认为滁河断裂很可能是高邮、宝应交界MS4.9地震的发震构造。  相似文献   

18.
An interpretation of the type, size, and location of the source of the Aleutian earthquake on April 1, 1946, which was characterized by the highest intensity (I = 4), is proposed. The earthquake source is a subvertical reverse fault striking along the island arc and dipping at an angle of 85° toward the deep-sea trench. The reverse fault is located in the lower part of the island slope, within the eastern termination of the Aleutian terrace. The western end of the reverse fault is located in the area of the Krenitsyn Islands (λ ∼ 165°W), where the pattern of isobaths changes, and an abrupt widening of the shelf part of the Fox Islands takes place. Large (M S ∼ 7) shocks, preceding the 1946 earthquake, occurred here in 1940, 1942, and 1944. Structural inhomogeneities in the island slope in the area of the Sanak Islands (λ ∼ 162°W) determine the eastern edge of the source-reverse fault, whose length within the specified boundaries is about 200 km. The mean magnitude of the earthquake corresponding to such a source is ∼8.3. According to the regular relation between the rupture length and the mean movement, the vertical displacement of the ocean floor in the source region could attain 5–6 m. A significant vertical displacement of the ocean floor over its large length (∼200 km) was responsible for the high tsunamigenic ability of this earthquake. A favorable combination in the source area of the topographic and other conditions necessary for the tsunami formation could additionally contribute to an increase in the intensity of the tsunami. The earthquake of April 1, 1946, in the Fox Islands, as well as the tsunamigenic earthquakes of March 9, 1957, in the Andreanof Islands and February 4, 1965, in the Rat Islands, does not belong to the class of “slow” earthquakes.  相似文献   

19.
采用双差定位法对山东莱州地震序列重新定位,通过CAP方法反演M4.6地震震源机制,在此基础上初步探讨莱州地震序列发震构造。结果显示:精确定位震中位置主要位于柞村—仙夼断裂的NW方向,深度剖面显示从SE方向到NW方向断层深度呈由浅逐渐变深的趋势,这均与柞村—仙夼断裂位置、走向、倾向特征较为吻合;M4.6地震震源机制解的节面Ⅰ与柞村—仙夼断裂走向、倾角较为接近。综合精确定位震中位置、剖面深度分布特征、M4.6地震震源机制解及宏观调查烈度分布等结果与柞村-仙夼断裂产状之间的关系,初步推测柞村—仙夼断裂可能为莱州地震序列的发震断层。  相似文献   

20.
We conducted moment tensor inversion and studied source rupture process for M S=7.9 earthquake occurred in the border area of China, Russia and Mongolia on September 27 2003, by using digital teleseismic P-wave seismograms recorded by long-period seismograph stations of the global seismic network. Considering the aftershock distribution and the tectonic settings around the epicentral area, we propose that the M S=7.9 earthquake occurred on a fault plane with the strike of 127°, the dip of 79° and the rake of 171°. The rupture process inversion result of M S=7.9 earthquake shows that the total rupture duration is about 37 s, the scalar moment tensor is M 0=0.97×1020 N·m. Rupture mainly occurred on the shallow area with 110 km long and 30 km wide, the location in which the rupture initiated is not where the main rupture took place, and the area with slip greater than 0.5 m basically lies within 35 km deep middle-crust under the earth surface. The maximum static slip is 3.6 m. There are two distinct areas with slip larger than 2.0 m. We noticed that when the rupture propagated towards northwest and closed to the area around the M S=7.3 hypocenter, the slip decreased rapidly, which may indicate that the rupture process was stopped by barriers. The consistence of spatial distribution of slip on the fault plane with the distribution of aftershocks also supports that the rupture is a heterogeneous process owing to the presence of barriers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号